
1

Simplicity

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

NIST’s ECC standards

= NSA’s prime choices

+ NSA’s curve choices

+ NSA’s coordinate choices

+ NSA’s computation choices

+ NSA’s protocol choices.

2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.



1

Simplicity

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

NIST’s ECC standards

= NSA’s prime choices

+ NSA’s curve choices

+ NSA’s coordinate choices

+ NSA’s computation choices

+ NSA’s protocol choices.

2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”



1

Simplicity

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

NIST’s ECC standards

= NSA’s prime choices

+ NSA’s curve choices

+ NSA’s coordinate choices

+ NSA’s computation choices

+ NSA’s protocol choices.

2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?



1

Simplicity

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

NIST’s ECC standards

= NSA’s prime choices

+ NSA’s curve choices

+ NSA’s coordinate choices

+ NSA’s computation choices

+ NSA’s protocol choices.

2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?



1

Simplicity

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

NIST’s ECC standards

= NSA’s prime choices

+ NSA’s curve choices

+ NSA’s coordinate choices

+ NSA’s computation choices

+ NSA’s protocol choices.

2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”



2

NIST’s ECC standards create

unnecessary complexity

in ECC implementations.

This unnecessary complexity

• scares away implementors,

• reduces ECC adoption,

• interferes with optimization,

• keeps ECC out of small devices,

• scares away auditors,

• interferes with verification, and

• creates ECC security failures.

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.



3

Should cryptographers apply

every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate

and doesn’t securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index

calculus. Bigger keys; slower;

much harder security analysis.

Priority #1 is security.

Priority #2 is to meet the

user’s performance requirements.

Priority #3 is simplicity.

4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .



4

Wild overgeneralizations from

examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

These overgeneralizations are

often used to cover up deficient

analyses of speed and security.

In fact, many simplifications

don’t hurt security at all

and don’t hurt speed at all.

Next-generation ECC simplicity

contributes to security

and contributes to speed.

5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



5

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic

on all bits. Don’t skip bits.

If you’re adding a to b,

with 255 bits allocated for a

and 255 bits allocated for b:

allocate 256 bits for a + b.

If you’re multiplying a by b,

with 256 bits allocated for a

and 256 bits allocated for b:

allocate 512 bits for ab.

6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as



6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



6

If 600 bits are allocated for c :

Replace c with 19q + r where

r = c mod 2255, q =
¨
c=2255

˝
;

same as c modulo p = 2255 − 19.

Allocate 350 bits for 19q + r .

Repeat same compression:

350 bits → 256 bits.

Small enough for next mult.

To completely reduce 256 bits

mod p, do two iterations of

constant-time conditional sub.

One conditional sub:

replace c with c − (1− s)p

where s is sign bit in c − p.

7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.



7

Constant-time NIST P-256

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



8

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.



9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.



9

What is “a few copies”?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”



10

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 ≤ n < 2255,

so this is still constant-time.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 ≤ n < 2255,

so this is still constant-time.

13

Many more issues

blog.cr.yp.to

/20140323-ecdsa.html

analyzes choices made in

designing ECC signatures.

Unnecessary complexity in

ECDSA: scalar inversion;

Weierstrass incompleteness;

variable-time NAF; et al.

Next-generation ECC is

much simpler for implementors,

much simpler for designers,

much simpler for auditors, etc.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 ≤ n < 2255,

so this is still constant-time.

13

Many more issues

blog.cr.yp.to

/20140323-ecdsa.html

analyzes choices made in

designing ECC signatures.

Unnecessary complexity in

ECDSA: scalar inversion;

Weierstrass incompleteness;

variable-time NAF; et al.

Next-generation ECC is

much simpler for implementors,

much simpler for designers,

much simpler for auditors, etc.



11

Simple; fast; always

computes scalar multiplication

on y2 = x3 + Ax2 + x

when A2 − 4 is non-square.

With some extra lines

can compute (x; y) output

given (x; y) input.

But simpler to use just x ,

as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;

not proven to always work.

Other scalar-mult methods:

proven but much more complex.

12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 ≤ n < 2255,

so this is still constant-time.

13

Many more issues

blog.cr.yp.to

/20140323-ecdsa.html

analyzes choices made in

designing ECC signatures.

Unnecessary complexity in

ECDSA: scalar inversion;

Weierstrass incompleteness;

variable-time NAF; et al.

Next-generation ECC is

much simpler for implementors,

much simpler for designers,

much simpler for auditors, etc.



12

“Hey, you forgot to check

that x1 is on the curve!”

No need to check.

Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder

from the top bit set in n!”

(Exploited in, e.g., 2011

Brumley–Tuveri “Remote timing

attacks are still practical”.)

The Curve25519 DH function

takes 2254 ≤ n < 2255,

so this is still constant-time.

13

Many more issues

blog.cr.yp.to

/20140323-ecdsa.html

analyzes choices made in

designing ECC signatures.

Unnecessary complexity in

ECDSA: scalar inversion;

Weierstrass incompleteness;

variable-time NAF; et al.

Next-generation ECC is

much simpler for implementors,

much simpler for designers,

much simpler for auditors, etc.


