Simplicity

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:
Tanja Lange
Technische Universiteit Eindhoven

NIST's ECC standards
— NSA's prime choices

+ NSA'’s curve choices

+ NSA'’s coordinate choices
+ NSA’s computation choices
+ NSA's protocol choices.

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

Simplicity

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:
Tanja Lange
Technische Universiteit Eindhoven

NIST's ECC standards
— NSA's prime choices

+ NSA'’s curve choices

+ NSA'’s coordinate choices
+ NSA’s computation choices
+ NSA's protocol choices.

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Ly

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

rk with:
Inge
he Universiteit Eindhoven

-CC standards

5 prime choices

5 curve choices

5 coordinate choices

5 computation choices
5 protocol choices.

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Should ¢
every Im

Replace

is at Chicago &
siteit Eindhoven

siteit Eindhoven

ards

olces

olces

te choices
tion choices
choices.

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,
interferes with optimization,
keeps ECC out of small devices,

®

®

e scares away auditors,

e interferes with verification, and
®

creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Should cryptograp
every imaginable s

Replace GCM with

g0 &
hoven

hoven

€S

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,
interferes with optimization,
keeps ECC out of small devices,
scares away auditors,

interferes with verification, and
creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Should cryptographers apply
every imaginable simplificati

Replace GCM with ECB?

NIST's ECC standards create Should cryptographers apply
unnecessary complexity every imaginable simplification?

in ECC implementations. Replace GCM with ECB?

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

NIST's ECC standards create Should cryptographers apply
unnecessary complexity every imaginable simplification?

in ECC implementations. Replace GCM with ECB?

This unnecessary complexity No: ECB doesn't authenticate

scares away Implementors, |
and doesn't securely encrypt.

®
e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

NIST's ECC standards create Should cryptographers apply
unnecessary complexity every imaginable simplification?

in ECC implementations. Replace GCM with ECB?

This unnecessary complexity No: ECB doesn't authenticate

scares away Implementors, |
and doesn't securely encrypt.

reduces ECC adoption,

®

®

e interferes with optimization, Replace ECDH with FFDH?
e keeps ECC out of small devices,
®
®
®

scares away auditors,
interferes with verification, and
creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

NIST's ECC standards create

unnecessary complexity
in ECC implementations.

This unnecessary complexity

e scares away Implementors,

e reduces ECC adoption,

e interferes with optimization,

e keeps ECC out of small devices,
e scares away auditors,

e interferes with verification, and
e creates ECC security failures.

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

-CC standards create
ssary complexity
implementations.

1ecessary complexity
away Implementors,

s ECC adoption,

res with optimization,
ECC out of small devices,
away auditors,

res with verification, and
s ECC security failures.

jest: " The poor user iIs
ough rope with which
himself—something
rd should not do.”

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 I1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Wild ove
example

“Simplic

“Simplic

ards create
plexity
1tations.

“omplexity
lementors,
option,
ptimization,

f small devices,
tors,
erification, and
urity failures.

> poor user Is
' with which
something
not do."

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Wild overgeneraliz
examples of oversi

“Simplicity damag

“Simplicity damag

»n,
VICES,

~and
es.

ris

ch

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 I1s to meet the

user's performance requirements.
Priority #3 is simplicity.

Wild overgeneralizations fro
examples of oversimplificatic

“Simplicity damages security

“Simplicity damages speed.”

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”

“Simplicity damages speed.”

Should cryptographers apply Wild overgeneralizations from
every imaginable simplification? examples of oversimplification:
Replace GCM with ECB? “Simplicity damages security.”
No: ECB doesn't authenticate “Simplicity damages speed.”

and doesn't securely encrypt. L
These overgeneralizations are

Replace ECDH with FFDH? often used to cover up deficient

No: FFDH is vulnerable to index analyses of speed and security.

calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Should cryptographers apply
every imaginable simplification?

Replace GCM with ECB?

No: ECB doesn’'t authenticate
and doesn't securely encrypt.

Replace ECDH with FFDH?

No: FFDH is vulnerable to index
calculus. Bigger keys; slower;
much harder security analysis.

Priority #1 Is security.

Priority #2 1s to meet the

user's performance requirements.
Priority #3 Is simplicity.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

ryptographers apply
aginable simplification?

GCM with ECB?

3 doesn't authenticate
sn't securely encrypt.

ECDH with FFDH?

DH Is vulnerable to index
- Bigger keys; slower;
rder security analysis.

#1 Is security.

#2 1s to meet the
rformance requirements.
#3 Is simplicity.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constan

Imitate |
Allocate
for each
Always |
on all bi

hers apply
implification?

1 ECB?

authenticate
ly encrypt.

th FFDH?

erable to index
eys; slower;
1ty analysis.

Irity.
neet the
> requirements.

olicity.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constant-time Cul

Imitate hardware |
Allocate constant
for each integer.

Always perform ar
on all bits. Don't

on”’

1te

ents.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constant-time Curve25519

Imitate hardware in software
Allocate constant number o
for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

If you're adding a to b,

wit

n 255 bits a

dNdG

255 bits al

located for a
ocated for b:

allocate 256 bits for a + b.

Wild overgeneralizations from
examples of oversimplification:

“Simplicity damages security.”
“Simplicity damages speed.”

These overgeneralizations are
often used to cover up deficient
analyses of speed and security.

In fact, many simplifications
don't hurt security at all
and don't hurt speed at all.

Next-generation ECC simplicity
contributes to security
and contributes to speed.

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

If you're adding a to b,

wit

n 255 bits a

dNdG

255 bits al

located for a
ocated for b:

allocate 256 bits for a + b.

If you're multiplying a by b,

wit

n 256 bits a

dNnd

2560 bits al

located for a
ocated for b:

allocate 512 bits for ab.

rgeneralizations from
s of oversimplification:

1ty damages security.”
1ty damages speed.”

vergeneralizations are
ed to cover up deficient
of speed and security.

many simplifications
rt security at all
't hurt speed at all.

1eration ECC simplicity
ites to security
tributes to speed.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

If you're adding a to b,

with 255 bits allocated for a
and 255 bits allocated for b:
allocate 256 bits for a + b.

If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If 600 bi
Replace
r=cm
same as
Allocate

ations from

mplification:
es security.”
es speed.”

Izations are
r up deficient
and security.

lifications
at all
ed at all.

CC simplicity
curity
0 speed.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

If you're adding a to b,

with 255 bits allocated for a
and 255 bits allocated for b:
allocate 256 bits for a + b.

If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If 600 bits are allo
Replace ¢ with 19
r = ¢ mod 222, g

same as ¢ modulo
Allocate 350 bits 1

n:

CIty

Constant-time Curve25519

Imitate hardware in software.

Allocate constant number of bits

for each integer.

Always perform arithmetic
on all bits. Don't skip bits.

If you're adding a to b,

wit

n 255 bits a

dNdG

255 bits al

located for a
ocated for b:

allocate 256 bits for a + b.

If you're multiplying a by b,

wit

ith 256 bits a

dNd@

256 bits al

located for a
ocated for b:

allocate 512 bits for ab.

If 600 bits are allocated for

Replace ¢ with 199 + r whe

r = ¢ mod 22, g = Lc/225

same as ¢ modulo p = 22°°

Allocate 350 bits for 19qg +

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

If you're adding a to b,

with 255 bits allocated for a
and 255 bits allocated for b:
allocate 256 bits for a + b.

If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If 600 bits are allocated for c:
Replace ¢ with 19g + r where
r = ¢ mod 22, g = {c/2255J;
same as ¢ modulo p = 22°° — 19.
Allocate 350 bits for 19q + r.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

If you're adding a to b,

with 255 bits allocated for a
and 255 bits allocated for b:
allocate 256 bits for a + b.

If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If 600 bits are allocated for c:
Replace ¢ with 19g + r where
r = ¢ mod 22, g = {c/2255J;
same as ¢ modulo p = 22°° — 19.
Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits
for each integer.

Always perform arithmetic

on all bits. Don't skip bits.

If you're adding a to b,

with 255 bits allocated for a
and 255 bits allocated for b:
allocate 256 bits for a + b.

If you're multiplying a by b,
with 256 bits allocated for a
and 256 bits allocated for b:
allocate 512 bits for ab.

If 600 bits are allocated for c:
Replace ¢ with 19g + r where
r = ¢ mod 22, g = {c/2255J;
same as ¢ modulo p = 22°° — 19.
Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

t-time Curve25519

nardware in software.
constant number of bits
Integer.

berform arithmetic

ts. Don't skip bits.

adding a to b,

) bits allocated for a
bits allocated for b:
256 bits for a + b.

multiplying a by b,

) bits allocated for a
bits allocated for b:
512 bits for ab.

If 600 bits are allocated for c:

Replace ¢ with 19g + r where
r=cmod 2>, g = |c/2°>|;

same as ¢ modulo p = 22°° — 19.

Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

Constan

NIST P-
2256 _ 9

ECDSA

reductio
an integ

Write A
(A1s, Aq
Ag, A7,

meaning

Define
T;51;5:

dS

ve2b5h19

n software.
number of bits

Ithmetic
skip bits.

to b,
ated for a
yted for b:
or a+ b.

g a by b,
ated for a
yted for b:
or ab.

If 600 bits are allocated for c:

Replace ¢ with 199 + r where
r = ¢ mod 22, g = {c/2255J;

same as ¢ modulo p = 22°° — 19.

Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

Constant-time NIS

NIST P-256 prime
2256 o 2224 4 2192

ECDSA standard

reduction procedu
an integer “A less

Write A as
(A1s, A14, A13, A1
Ag, A7, Ag, As, A

meaning 3 A;2%

Define
T;51;52;53;54; L

dS

f bits

If 600 bits are allocated for c:

Replace ¢ with 19g + r where
r=cmod 2>, q = |c/2°>|;

same as ¢ modulo p = 22°° — 19.

Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 _

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A2, A11, A10
Ag. A7 As. As. As. A, Ao, »

meaning 3_: A;23%

Define
T:51;592;53;54; D1; Dy; D3
as

If 600 bits are allocated for c:

Replace ¢ with 19g + r where
r = ¢ mod 22, g = {c/2255J;

same as ¢ modulo p = 22°° — 19.

Allocate 350 bits for 19q + r.

Repeat same compression:
350 bits — 256 bits.
Small enough for next mult.

To completely reduce 256 bits
mod p, do two iterations of
constant-time conditional sub.

One conditional sub:
replace ¢ with ¢ — (1 — s)p
where s Is sign bit in ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?":

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
AS,A7,A6,A5,A4_, Az, Az, A1, Ao),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

ts are allocated for c:
c with 19g + r where

od 2255, g = LC/2255J;

¢ modulo p = 2%°° — 19

350 bits for 19q + r.

s5ame compression:
— 256 bits.
ough for next mult.

pletely reduce 256 bits
do two iterations of
-time conditional sub.

ditional sub:
- with ¢ — (1 —s)p
Is sign bit in ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, Ap, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T:51;52;53;54; D1; Dy; D3; Dy
as

Reduce
subtract

cated for c:
q + r where

L LC/2255J ;

p =222 _19

or 19qg + r.

oression:
ts.
ext mult.

duce 256 bits
rations of
ditional sub.

1b:

(1=s9)p
In ¢ — p.

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

(A10,As,0,0,0, A
(A11, A9, 0,0, Azs,
(A12,0, A1g, Ag, A
(A13,0, A11, A10, /

Compute T + 257
So — D1 — Dy — [

Reduce modulo p
subtracting a few

re

— 19.

JItS

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer "A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, Ap, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%

Define
T:51;52;53;54; D1; Dy; D3; Dy
as

(A7, Ag, As, Ag, A3, Ao, A, /
(A15, A14, A13, A12, A11,0,0
(0, A1s, A14, A13, A12,0,0,0
(A1s5,A14,0,0,0, A, Ag, Asg
(Ag, A13, A1s, A1a, A13, A11,
(A10,A8,0,0,0, A3, A2, A
(A11, A9, 0,0, A1s, A14, A13,
(A12,0, A1g, Ag, Ag, A1s, A14
(A13,0, A11, A10, A9, 0, A1,

Compute T + 251 + 25> +
Ss — D1 — Dy — D3 — Dyg.

Reduce modulo p “by addin
subtracting a few copies” of

Constant-time NIST P-256

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

(A7, As, As, Aq. Az, As, A1, Ag),
(A1s, A14, A13, A12, A11, 0,0, 0);
(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);
(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A1p, A9, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

t-time NIST P-256

250 prime p is

standard specifies
n procedure given
r “A less than p2”

as
4, A13, A12, A11, A10, Ao,

Ag, As, Ag, Az, Ao, A1, Ag),

Y A3

;. 53, 54; D1; Do; D3; Dy

(A7, Ag, As, As, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1, A14,0,0,0, A9, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is
A loop?

presuma

I P-256

D IS
+2% -1

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ap),

i

)1; Do; D3; Dy

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What 1s “a few co

A loop? Variable
presumably a secu

(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A1a, A13, A11, A1, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security proble

(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conda
conda
conda
condc

conc

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.

(A7, Ap, As, Ag, A3, Ao, A1, Ap); What is “a few copies” 7

(A15 A1a, A13, A12, A11, 0, 0, 0) A loop? Variable time,

(0, A1s, A14, A13, A12,0,0,0); presumably a security problem.
(A15, A14,0,0,0, Aro, Ag, Ag): Correct but quite slow:

(Ag, A13, A1s, A14, A13, A11, A10, Ag);

conditionally add 4p,
(A10,A8,0,0,0, A13, A12, A11);

(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A19, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,
Compute T + 251 + 257 + 53 + conditionally sub p.
S4 — D1 — Dy — D3 — Dy.

Delay until end of computation?
Reduce modulo p “by adding or Trouble: "A less than p?”
subtracting a few copies’ of p.

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p?”

Even worse: what about platforms

232

where Isn't best radix?

As, Ay, A3, Az, A1, Ap);

4, A13, A12, A11, 0,0, 0);

A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

, A1s, A14, A13, A11, A10. Ag);
,0,0,0, A13, A12, A11);

0,0, A1s, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy,.

modulo p “by adding or
ing a few copies” of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms

232

where Isn't best radix?

The Mo

X2,22,X.
for 1 1
bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

4*xx:
X2 ,x3
z2,23

return

, Az, A1, Ag);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10. Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A14, A13);
19,0, Ay, A14).

+ 257 + 53 +
)3 — Dy.

“by adding or
copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery

x2,z22,x3,z3 = 1,
for 1 1n reverse
bit =1 & (n >
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = ((x2*x
x1* (x2%*2z

x2,z2 = ((x272
Axx2%Z2% (x2°
x2,x3 = cswap(
z2,z3 = cswap(

return x2*xz2” (p-

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:

conda
conda
conc
conc

conc

conc

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

itiona
itiona
itiona
itiona
itiona
itiona

y add 4p,
y add 2p,

y add p,
y sub 4p,

y sub 2p,
y sub p.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

1 & (n > i)

= cswap(x2,x3,bit
= cswap(z2,z3,bit
= ((x2%x3-z2%z3)"
x1* (x2%23-2z2%x3) "~
= ((x272-z2"2) "2,

Axx2%72% (X2 " 2+A*x2% 72

xX2,x3
z2,23

= cswap(x2,x3,bit
= cswap(z2,z3,bit

return x2*z2” (p-2)

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*xx3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

“a few copies’ ?
Variable time,
bly a security problem.

but quite slow:
nally add 4p,
nally add 2p,

nally add p,
nally sub 4p,

nally sub 2p,

nally sub p.

1til end of computation?
“A less than p?".

rse: what about platforms

32 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X272+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple;
compute
on y2 =
when A:

pies’ ? The Montgomery ladder Simple; fast; alwa
time, computes scalar n
_ x2,z2,x3,z3 = 1,0,x1,1 5 3 5
rity problem. o on y© = x> + Ax
for i in reversed(range(255)): 5 _

, , when A4 — 4 iIs no
slow: bit =1 & (n >> 1)
ip, x2,x3 = cswap(x2,x3,bit)
2P, z2,z3 = cswap(z2,z3,bit)
D, x3,2z3 = ((x2*x3-22%23) "2,
Yo} x1* (x2*z3-22*x3) ~2)
D, x2,z2 = ((x27°2-22"2)"2,
). 4xx2%xZ72% (X2 2+A*x2%Z22+22"2))

computation? x2,x3 = cswap(x2,x3,bit)

” z2,2z3 = cswap(z2,z3,bit
han p?". P)

return x2*xz2" (p-2)
about platforms

st radix?

m.

on?

tforms

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X272+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple; fast; always
computes scalar multiplicati
on y? = x3 + Ax? + x
when A% — 4 is non-square.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

11

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
on y? = x3 + Ax? + x
when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):

bit =1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272))
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
on y? = x3 + Ax? + x
when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

ntgomery ladder

3,z3 = 1,0,x1,1

n reversed(range (255)):
1 & (n > i)

= cswap(x2,x3,bit)

= cswap(z2,z3,bit)

= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)

= ((x272-z2"2) "2,
2%Z2% (X227 2+A*xx2%Zz2+2272))
= cswap(x2,x3,bit)

= cswap(z2,z3,bit)
x2%z2" (p-2)

10

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, yc
that xq |

ladder

O,x1,1

d(range (255)):
> i)
x2,%x3,bit)
z2,z3,bit)
3-z2%z3) "2,
3-z2*x3) "2)
-z272) "2,
2+A*xx2%xz2+2272))
x2,x3,bit)
z2,z3,bit)

2)

10

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

“Hey, you forgot t
that x7 Is on the ¢

10

55)) :

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

12

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

12

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

12

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n< 2255
so this iIs still constant-time.

12

fast; always

s scalar multiplication
x3 + Ax? + x

' — 4 is non-square.

me extra lines
pute (x, y) output

,y) input.
oler to use just X,

sed by 1985 Miller.

ions to NIST curves

h slower; not as simple;
en to always work.
alar-mult methods:

)ut much more complex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n< 2295
so this is still constant-time.

12

Many m

blog. c1
/201403
analyzes
designin

Unneces
ECDSA:
Welerstr
variable-

Next-gel
much sit

much sii

much sii

yS
wultiplication
+ X
n-square.

Ines
) output

' just X,
85 Miller.

ST curves

1ot as simple;
1yS work.
methods:
more complex.

11

“"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°4 < n< 2255
so this iIs still constant-time.

12

Many more issues

blog.cr.yp.to

/20140323-ecds:
analyzes choices n
designing ECC sig

Unnecessary comg
ECDSA: scalar inv
Welerstrass incom
variable-time NAF

Next-generation E
much simpler for |
much simpler for ¢

much simpler for :

on

ple;

slex.

11

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°4 < n< 225>
so this iIs still constant-time.

12

Many more Issues

blog.cr.yp.to

/20140323-ecdsa.html
analyzes choices made iIn
designing ECC signatures.

Unnecessary complexity In
ECDSA: scalar inversion;
Welerstrass incompleteness;
variable-time NAF: et al.

Next-generation ECC is
much simpler for implement
much simpler for designers,

much simpler for auditors, e

"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n< 2255
so this iIs still constant-time.

12

Many more iIssues

blog.cr.yp.to

/20140323-ecdsa.html
analyzes choices made iIn
designing ECC signatures.

Unnecessary complexity in
ECDSA: scalar inversion;
Welerstrass incompleteness;
variable-time NAF: et al.

Next-generation ECC is
much simpler for implementors,
much simpler for designers,

much simpler for auditors, etc.

13

