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Y A3

;. 53, 54; D1; Do; D3; Dy

(A7, Ag, As, As, A3, A2, A1, Ao);
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1, A14,0,0,0, A9, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is
A loop?

presuma



I P-256

D IS
+2% -1

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ap),

i

)1; Do; D3; Dy

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What 1s “a few co

A loop? Variable
presumably a secu



(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A1a, A13, A11, A1, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security proble



(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.



(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,

presumably a security problem.

Correct but quite slow:

conda
conda
conda
condc

conc

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.



(A7, Ap, As, Ag, A3, Ao, A1, Ap); What is “a few copies” 7

(A15 A1a, A13, A12, A11, 0, 0, 0) A loop? Variable time,

(0, A1s, A14, A13, A12,0,0,0); presumably a security problem.
(A15, A14,0,0,0, Aro, Ag, Ag): Correct but quite slow:

(Ag, A13, A1s, A14, A13, A11, A10, Ag);

conditionally add 4p,
(A10,A8,0,0,0, A13, A12, A11);

(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A19, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,
Compute T + 251 + 257 + 53 + conditionally sub p.
S4 — D1 — Dy — D3 — Dy.

Delay until end of computation?
Reduce modulo p “by adding or Trouble: "A less than p?”
subtracting a few copies’ of p.




(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p?”

Even worse: what about platforms

232

where Isn't best radix?



As, Ay, A3, Az, A1, Ap);

4, A13, A12, A11, 0,0, 0);

A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

, A1s, A14, A13, A11, A10. Ag);
,0,0,0, A13, A12, A11);

0,0, A1s, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy,.

modulo p “by adding or
ing a few copies” of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms

232

where Isn't best radix?

The Mo

X2,22,X.
for 1 1
bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

4*xx:
X2 ,x3
z2,23

return



, Az, A1, Ag);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10. Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A14, A13);
19,0, Ay, A14).

+ 257 + 53 +
)3 — Dy.

“by adding or
copies’ of p.

What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery

x2,z22,x3,z3 = 1,
for 1 1n reverse
bit =1 & (n >
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = ((x2*x
x1* (x2%*2z

x2,z2 = ((x272
Axx2%Z2% (x2°
x2,x3 = cswap(
z2,z3 = cswap(

return x2*xz2” (p-



What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:

conda
conda
conc
conc

conc

conc

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

itiona
itiona
itiona
itiona
itiona
itiona

y add 4p,
y add 2p,

y add p,
y sub 4p,

y sub 2p,
y sub p.

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2

bit =
x2,x%X3
z2,Z3
x3,Z3

X2 ,22

1 & (n > i)

= cswap(x2,x3,bit
= cswap(z2,z3,bit
= ((x2%x3-z2%z3)"
x1* (x2%23-2z2%x3) "~
= ((x272-z2"2) "2,

Axx2%72% (X2 " 2+A*x2% 72

xX2,x3
z2,23

= cswap(x2,x3,bit
= cswap(z2,z3,bit

return x2*z2” (p-2)



What is “a few copies” ?

A loop? Variable time,
presumably a security problem.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*xx3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10



“a few copies’ ?
Variable time,
bly a security problem.

but quite slow:
nally add 4p,
nally add 2p,

nally add p,
nally sub 4p,

nally sub 2p,

nally sub p.

1til end of computation?
“A less than p?".

rse: what about platforms

32 isn't best radix?

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2xz2% (X272+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple;
compute
on y2 =
when A:



pies’ ? The Montgomery ladder Simple; fast; alwa
time, computes scalar n
_ x2,z2,x3,z3 = 1,0,x1,1 5 3 5
rity problem. o on y© = x> + Ax
for i in reversed(range(255)): 5 _

, , when A4 — 4 iIs no
slow: bit =1 & (n >> 1)
ip, x2,x3 = cswap(x2,x3,bit)
2P, z2,z3 = cswap(z2,z3,bit)
D, x3,2z3 = ((x2*x3-22%23) "2,
Yo} x1* (x2*z3-22*x3) ~2)
D, x2,z2 = ((x27°2-22"2)"2,
). 4xx2%xZ72% (X2 2+A*x2%Z22+22"2) )

computation? x2,x3 = cswap(x2,x3,bit)

” z2,2z3 = cswap(z2,z3,bit
han p?". P )

return x2*xz2" (p-2)
about platforms

st radix?




m.

on?

tforms

The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2%2z3-z2%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X272+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2” (p-2)

10

Simple; fast; always
computes scalar multiplicati
on y? = x3 + Ax? + x
when A% — 4 is non-square.



The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.
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The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*xz2" (p-2)

10
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Simple; fast; always

computes scalar multiplication
on y? = x3 + Ax? + x
when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.



The Montgomery ladder

x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):

bit =1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,2z3 = ((x2*x3-22%23) "2,

x1* (x2%z3-z2*x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%xz2% (X2 2+A*xx2%xZz2+2272) )
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*xz2" (p-2)

10

11
Simple; fast; always

computes scalar multiplication
on y? = x3 + Ax? + x
when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.



ntgomery ladder

3,z3 = 1,0,x1,1

n reversed(range (255)):
1 & (n > i)

= cswap(x2,x3,bit)

= cswap(z2,z3,bit)

= ((x2*x3-z2%z3) "2,
x1* (x2%2z3-z2%x3) "2)

= ((x272-z2"2) "2,
2%Z2% (X227 2+A*xx2%Zz2+2272) )
= cswap(x2,x3,bit)

= cswap(z2,z3,bit)
x2%z2" (p-2)

10

Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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O,x1,1

d(range (255)):
> i)
x2,%x3,bit)
z2,z3,bit)
3-z2%z3) "2,
3-z2*x3) "2)
-z272) "2,
2+A*xx2%xz2+2272))
x2,x3,bit)
z2,z3,bit)

2)
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Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.

11

“Hey, you forgot t
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With some extra lines
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given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.
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are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.
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Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves
are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:

proven but much more complex.
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"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.
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Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me
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from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)
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Simple; fast; always
computes scalar multiplication
on y? = x3 + Ax? + x

when A% — 4 is non-square.

With some extra lines

can compute (x, y) output
given (x, y) input.

But simpler to use just x,
as proposed by 1985 Miller.

Adaptations to NIST curves

are much slower; not as simple;
not proven to always work.
Other scalar-mult methods:
proven but much more complex.
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"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n< 2255
so this iIs still constant-time.
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that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
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The Curve25519 DH function
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so this is still constant-time.

12

Many m

blog. c1
/201403
analyzes
designin

Unneces
ECDSA:
Welerstr
variable-

Next-gel
much sit

much sii

much sii



yS
wultiplication
+ X
n-square.

Ines
) output

' just X,
85 Miller.

ST curves

1ot as simple;
1yS work.
methods:
more complex.

11

“"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
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so this iIs still constant-time.
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No need to check.
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“This textbook tells me
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from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri “Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°4 < n< 225>
so this iIs still constant-time.
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"Hey, you forgot to check
that x7 I1s on the curvel”

No need to check.
Curve25519 is twist-secure.

“This textbook tells me

to start the Montgomery ladder
from the top bit set in n!”
(Exploited in, e.g., 2011
Brumley—Tuveri "Remote timing
attacks are still practical”.)

The Curve25519 DH function
takes 22°% < n< 2255
so this iIs still constant-time.
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Many more iIssues

blog.cr.yp.to

/20140323-ecdsa.html
analyzes choices made iIn
designing ECC signatures.

Unnecessary complexity in
ECDSA: scalar inversion;
Welerstrass incompleteness;
variable-time NAF: et al.

Next-generation ECC is
much simpler for implementors,
much simpler for designers,

much simpler for auditors, etc.
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