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Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.
Single circuit for, e.g.,

hash and authenticated cipher;

for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for cryptanalysis

Simplicity.
Cryptanalysts prioritize targets
that are easy to understand.

Scalability.
Reduced-round targets,
reduced-word targets, etc.

Proofs.

The phrase “proof of security”

is almost always fraudulent.

Proof says that attacks meeting
certain constraints are difficult, or
as difficult as another problem.
Can be useful for cryptanalysts.



