Goals of Encryption

authenticated encryption

sender
Daniel J. Bernstein ¢
University of lllinois at Chicago & m
Technische Universiteit Eindhoven i
| | C < k
More details, credits: i
competitions.cr.yp.to network

/features.html
k: secret key.

m: variable-length plaintext.
c: variable-length ciphertext.

Encryption Authent

cated encryption

sender sender
. Bernstein i i
ty of lllinois at Chicago & m m
he Universiteit Eindhoven i i
| | C < K C <
tails, credits: i i
tions. cr.yp.to network network
es.html '
k: secret key. k: secre
m: variable-length plaintext. m: variz

c: variable-length ciphertext. c: varial

yption

0
is at Chicago &
siteit Eindhoven

ts:

C.yp.to

Encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Authenticated enc

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length
c: variable-length

g0 &
hoven

Encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Authenticated encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext
c: variable-length ciphertext

Encryption Authenticated encryption

sender sender
: :
i < K i < K
netvivork netvivork
k: secret key. k: secret key.
m: variable-length plaintext. m: variable-length plaintext.

c: variable-length ciphertext. c: variable-length ciphertext.

Encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Authenticated encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Same picture! But now
c is slightly longer than m:

iIncludes an “authentication tag' .

]

t key.
ble-length plaintext.
ole-length ciphertext.

Authenticated encryption

sender

'

m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Same picture! But now
c is slightly longer than m:

includes an “authentication tag' .

Message

-

n = —

RN

k: secre
n: publi
m: varie

c: varial

Changes
hide rep

Authenticated encryption Message numbers

ser:£ler / sender
| '\g

C < K ~—
network network
k: secret key. k: secret key.
- plaintext. m: variable-length plaintext. n: public message
ciphertext. c: variable-length ciphertext. m: variable-length

. c: variable-length
Same picture! But now 5

c Is slightly longer than m: Changes In messa;

includes an “authentication tag . hide repetitions of

Authenticated encryption

sender
m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Same picture! But now
c is slightly longer than m:

includes an “authentication tag' .

Message numbers

sender

N

network

< k

k: secret key.

n: public message number.
m: variable-length plaintext
c: variable-length ciphertext

Changes in message number
hide repetitions of plaintext.

Authenticated encryption

sender
m

i

C < k

i

network

k: secret key.
m: variable-length plaintext.
c: variable-length ciphertext.

Same picture! But now
c is slightly longer than m:

includes an “authentication tag" .

Message numbers

/ sender
’\i

network

< k

k: secret key.

n: public message number.
m: variable-length plaintext.
c: variable-length ciphertext.

Changes in message number
hide repetitions of plaintext.

icated encryption

]

t key.
ble-length plaintext.
ole-length ciphertext.

cture! But now
1itly longer than m:

an “authentication tag .

Message numbers

sender

N

network

<

k: secret key.
n: public message number.
m: variable-length plaintext.

c: variable-length ciphertext.

Changes in message number
hide repetitions of plaintext.

Associat

-

n = —

RN

k: secre
n: publi
a: varial
m: varie

c: varial

ryption

- plaintext.
ciphertext.

[NnOwW

“than m:

ntication tag .

Message numbers

/ sender
’\i

network

< k

k: secret key.
n: public message number.
m: variable-length plaintext.

c: variable-length ciphertext.

Changes in message number
hide repetitions of plaintext.

Associated data

sender —

’\T/

C

network

k: secret key.

n: public message
a: variable-length
m: variable-length
c: variable-length

tag .

Message numbers

sender

N

network

<

k: secret key.
n: public message number.
m: variable-length plaintext.

c: variable-length ciphertext.

Changes in message number
hide repetitions of plaintext.

Associated data

/EETN
'\if

network

k: secret key.

n: public message number.
a: variable-length associatec
m: variable-length plaintext
c: variable-length ciphertext

Message numbers Associated data

/sender /sender\
BN N\

< k
network network
k: secret key. k: secret key.
n: public message number. n: public message number.
m: variable-length plaintext. a: variable-length associated data.
c: variable-length ciphertext. m: variable-length plaintext.

. c: variable-length ciphertext.
Changes in message number & P

hide repetitions of plaintext.

Message numbers Associated data

/sender /sender\
BN N\

< k
network network
k: secret key. k: secret key.
n: public message number. n: public message number.
m: variable-length plaintext. a: variable-length associated data.
c: variable-length ciphertext. m: variable-length plaintext.

. c: variable-length ciphertext.
Changes in message number & P

hide repetitions of plaintext. No problem repeating a.

numbers

—

sender

network

t key.
C message number.
ble-length plaintext.

ole-length ciphertext.

- In message number
etitions of plaintext.

Associated data

/EETN
'\if

network

k: secret key.
n: public message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

No problem repeating a.

Secret n

-

n —~

k: secre
n: secre
a: varial
m: varie

c: varial

number.

- plaintext.

ciphertext.

e number

plaintext.

Associated data

/I
'\¢f

network

k: secret key.
n: public message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

No problem repeating a.

Secret message ntL

/ sender [~
m
RNV
C

network

k: secret key.

n. secret message
a: variable-length
m: variable-length
c: variable-length

Associated data

/EETN
'\if

network

k: secret key.
n: public message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

No problem repeating a.

Secret message numbers

/ ser:er

network

k: secret key.

n: secret message number.

a: variable-length associatec
m: variable-length plaintext
c: variable-length ciphertext

Associated data Secret message numbers

/sender\ /sender
N\ N\

C
network network
k: secret key. k: secret key.
n: public message number. n: secret message number.
a: variable-length associated data. a: variable-length associated data.
m: variable-length plaintext. m: variable-length plaintext.
c: variable-length ciphertext. c: variable-length ciphertext.

No problem repeating a.

ed data

—

sender

\’ff

C

network

t key.
C message number.

ble-length associated data.

ble-length plaintext.
ole-length ciphertext.

lem repeating a.

Secret message numbers

/ ser:er

network

k: secret key.
n: secret message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

What is

Plainte;
associaf
messag
Forge (r
recelver

legitima

INT-P
(integrit
protectic

Stronget
Forge at

— - d

number.

associated data.

- plaintext.
ciphertext.

Ling a.

Secret message numbers

/ ser:ler
N\

C

network

k: secret key.
n. secret message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

What is the attacl

Plaintext corrupt
associated-data
message-number
Forge (n, m, a) th:

receiver accepts b
legitimate sender |

“INT-PTXT"
(integrity of plaint
protection against

Stronger goal:
Forge at least f mr

] data.

Secret message numbers

/ ser:er

network

k: secret key.
n: secret message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

What is the attacker’s goal?

Plaintext corruption,
associated-data corruptiot
message-number corruptic
Forge (n, m, a) that

recelver accepts but that
legitimate sender never encr

INT-PTXT"
(integrity of plaintexts) mea
protection against such atta

Stronger goal:
Forge at least f messages.

Secret message numbers

/ ser:ler
N\

C

network

k: secret key.
n. secret message number.

a: variable-length associated data.

m: variable-length plaintext.
c: variable-length ciphertext.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that
legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

1essage numbers

sender

\’ff

C

network

t key.
t message number.

ble-length associated data.

ble-length plaintext.
ole-length ciphertext.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphert
Forge ¢
recelver
legitimar

INT-C
(integrit
protectic

imbers

~

— - d

7

K

number.

associated data.

- plaintext.
ciphertext.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphertext corruj
Forge c that

recelver accepts bl
legitimate sender |

INT-CTXT"
(integrity of ciphe
protection against

] data.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphertext corruption.
Forge ¢ that

recelver accepts but that
legitimate sender never prod

INT-CTXT"
(integrity of ciphertexts) me
protection against such atta

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphertext corruption.
Forge ¢ that

recelver accepts but that
legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphertext corruption.
Forge ¢ that

recelver accepts but that
legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

What is the attacker’'s goal?

Plaintext corruption,
associated-data corruption,
message-number corruption.
Forge (n, m, a) that

recelver accepts but that

legitimate sender never encrypted.

INT-PTXT"

(integrity of plaintexts) means
protection against such attacks.

Stronger goal:
Forge at least f messages.

Ciphertext corruption.
Forge ¢ that

recelver accepts but that
legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

the attacker’s goal?

<t corruption,

ed-data corruption,

e-number corruption.

,m,a) t
accepts

te sender never encrypted.

[XT"

nat

out that

y of plaintexts) means

on against such attacks.

- goal:
least f

messages.

Ciphertext corruption.
Forge ¢ that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.
Convinc
legitima
than leg

er's goal?

on,
corruption,
~corruption.
1t

1t that

ever encrypted.

exts) means
such attacks.

essages.

Ciphertext corruption.
Forge c that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver
legitimate (n, m, a
than legitimate se

n.

ypted.

ns

cks.

Ciphertext corruption.
Forge ¢ that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more tin
than legitimate sender sent

Ciphertext corruption.
Forge c that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Ciphertext corruption.
Forge c that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept
legitimate messages out of order.

Ciphertext corruption.
Forge c that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept
legitimate messages out of order.

Sabotage.

Prevent receiver from seeing

(n, m, a) as often as sender sent
it: flood radio, switch, CPU, etc.

Ciphertext corruption.
Forge c that
recelver accepts but that

legitimate sender never produced.

INT-CTXT"

(integrity of ciphertexts) means
protection against such attacks.

Ciphertext prediction.
Distinguish ¢ from
uniform random string.

Is it better to

randomly pad or zero-pad a
strong 112-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept
legitimate messages out of order.

Sabotage.

Prevent receiver from seeing

(n, m, a) as often as sender sent
it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

ext corruption.
that
accepts but that

te sender never produced.

[XT"
y of ciphertexts) means
on against such attacks.

ext prediction.
ish ¢ from
random string.

er to

y pad or zero-pad a
12-bit MAC to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plainte>
Figure o

tion.

1t that

1ever produced.

rtexts) means
such attacks.

~tion.
|

ring.

ero-pad a
\C to 128 bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espion:
Figure out user's ¢

uced.

ans
cks.

bits?

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espionage.
Figure out user’'s secret mes

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espionage.
Figure out user’s secret message.

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espionage.
Figure out user’s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espionage.
Figure out user’s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Replay.

Convince receiver to accept
legitimate (n, m, a) more times
than legitimate sender sent it.

Reordering.
Convince receiver to accept

legitimate messages out of order.

Sabotage.
Prevent receiver from seeing
(n, m, a) as often as sender sent

it: flood radio, switch, CPU, etc.

Typically delegate solutions
to higher-level protocols,
but is this optimal?

Plaintext espionage.
Figure out user’s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.

Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

> recelver to accept
te (n, m, a) more times
itimate sender sent it.

Ing.
> recelver to accept

te messages out of order.

ye.
receiver from seeing
as often as sender sent

radio, switch, CPU, etc.

/ delegate solutions
r-level protocols,
s optimal?

Plaintext espionage.

Figure out user’s secret message.

Message-number espionage.
Figure out user's secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

What ar

Extensi
Are 80-k
Are 128-

to accept
) more times
nder sent It.

to accept

a5 out of order.

om seeing
3s sender sent

itch, CPU, etc.

solutions

tocols,
7

Plaintext espionage.

Figure out user’'s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

What are the atta

Extensive compu
Are 80-bit keys ad
Are 128-bit keys a

1€S

yrder.

sent

, etc.

Plaintext espionage.

Figure out user’s secret message.

Message-number espionage.
Figure out user's secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

What are the attacker's resc

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Plaintext espionage.

Figure out user’'s secret message.

Message-number espionage.

Figu

re out user's secret

message number.

Traditional crypto view:

It's okay to use a counter

dS d

message number.

Count is public anyway.

Counterarguments:

Did attacker see everything?

May
but

e timestamp Is better,

how much does it leak?

Should encrypt by default.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Plaintext espionage.
Figure out user’s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Main arguments for small keys:

1. Smaller keys are cheaper.

Plaintext espionage.
Figure out user’s secret message.

Message-number espionage.
Figure out user’s secret
message number.

Traditional crypto view:
It's okay to use a counter
as a message number.
Count is public anyway.

Counterarguments:
Did attacker see everything?
Maybe timestamp Is better,

but how much does it leak?

Should encrypt by default.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Main arguments for small keys:
1. Smaller keys are cheaper.

2. Attack cost outweighs
economic benefit of breaking key,
so no sensible attacker will

carry out a 230 attack.

Maybe 64-bit keys are enough.

<t espio

ut user’'s secret message.

e-number espionage.

nage.

ut user's secret

number.

nal crypto view:

" TO use a counter

5sage nu

mber.

- public anyway.

arguments:

cker see everything?

Imestamp Is better,

much ¢

oes it leak?

ncrypt

oy default.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Main arguments for small keys:
1. Smaller keys are cheaper.

2. Attack cost outweighs
economic benefit of breaking key,
so no sensible attacker will

carry out a 230 attack.

Maybe 64-bit keys are enough.

Main co

1. Large
User doe
better p

1g¢€.
ecret message.

- espionage.
ecret

View:
counter
ber.

yway.

verything?

IS better,
s it leak?
default.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Main arguments for small keys:
1. Smaller keys are cheaper.

2. Attack cost outweighs
economic benefit of breaking key,
so no sensible attacker will

carry out a 230 attack.

Maybe 64-bit keys are enough.

Main counterargui

1. Larger keys are
User doesn't actu:
better performanc

sage.

What are the attacker’s resources?

Extensive computation.
Are 80-bit keys adequate?
Are 128-bit keys adequate?

Main arguments for small keys:
1. Smaller keys are cheaper.

2. Attack cost outweighs
economic benefit of breaking key,
so no sensible attacker will

carry out a 230 attack.

Maybe 64-bit keys are enough.

Main counterarguments:

1. Larger keys are cheap en
User doesn't actually need
better performance.

What are the attacker's resources? Main counterarguments:

Extensive computation. 1. Larger keys are cheap enough.
Are 80-bit keys adequate? User doesn’t actually need
Are 128-bit keys adequate? better performance.

Main arguments for small keys:
1. Smaller keys are cheaper.

2. Attack cost outweighs
economic benefit of breaking key,
so no sensible attacker will

carry out a 230 attack.

Maybe 64-bit keys are enough.

What are the attacker's resources? Main counterarguments:

Extensive computation. 1. Larger keys are cheap enough.
Are 80-bit keys adequate? User doesn’t actually need

Are 128-bit keys adequate? better performance.

Main arguments for small keys: 2. Attacker’s cost-benefit ratio

1. Smaller keys are cheaper. 'S Im.proved by
multiple-user attacks,

2. Attack cost outweighs multiple forgeries, etc.

economic benefit of breaking key,
so no sensible attacker will
carry out a 230 attack.

Maybe 64-bit keys are enough.

What are the attacker's resources? Main counterarguments:

Extensive computation. 1. Larger keys are cheap enough.
Are 80-bit keys adequate? User doesn’t actually need

Are 128-bit keys adequate? better performance.

Main arguments for small keys: 2. Attacker’s cost-benefit ratio

1. Smaller keys are cheaper. 'S Im.proved by
multiple-user attacks,

2. Attack cost outweighs multiple forgeries, etc.

economic benefit of breaking key,

. . 3. Some attackers carry out
so no sensible attacker will

30 attacks that are feasible
carry out a 2°¥ attack.

but not economically rational.

Maybe 64-bit keys are enough. |
What attacks are feasible?

e the attacker's resources?

ve computation.
it keys adequate?
-bit keys adequate?

ruments for small keys:
ler keys are cheaper.

k cost outweighs

c benefit of breaking key,
nsible attacker will

t a 299 attack.

4-bit keys are enough.

Main counterarguments:

1. Larger keys are cheap enough.

User doesn't actually need
better performance.

2. Attacker’s cost-benefit ratio
Is improved by
multiple-user attacks,

multiple forgeries, etc.

3. Some attackers carry out
attacks that are feasible
but not economically rational.

What attacks are feasible?

Back-of-

227 \watt

atmospr

244 \watt

226 \watt

costing .

1 watt:
208 hit ¢

using m

cker's resources?

tation.
equate?
dequate?

or small keys:
e cheaper.

'welghs

of breaking key,
cker will

rack.

- are enough.

Main counterarguments:

1. Larger keys are cheap enough.

User doesn’'t actually need

better performance.

2. Attacker’s cost-benefit ratio

Is iImproved by

mu

mu

tip
tip

e-user attacks,
e forgeries, etc.

3. Some attackers carry out

attacks that are feasible

but not economically rational.

What attacks are feasible?

Back-of-the-envelc

227 watts: receive

atmosphere from 1

244 watts: world

226 \vatts: one col

costing 239 dollars

1 watt: power for
208 hit operations
using mass-market

urces?

YS:

Main counterarguments:

1. Larger keys are cheap enough.

User doesn't actually need
better performance.

2. Attacker’s cost-benefit ratio
Is improved by
multiple-user attacks,

multiple forgeries, etc.

3. Some attackers carry out
attacks that are feasible
but not economically rational.

What attacks are feasible?

Back-of-the-envelope figures

221 watts: received by Eart}

atmosphere from the Sun.

244 watts: world power usag

226 \watts: one computer ce

costing 239 dollars.

1 watt: power for
2038 hit operations per year
using mass-market GPUs.

Main counterarguments:

1. Larger keys are cheap enough.

User doesn’t actually need

better performance.

2. Attacker’s cost-benefit ratio

Is iImproved by

mu

mu

tip
tip

e-user attacks,
e forgeries, etc.

3. Some attackers carry out

attacks that are feasible

but not economically rational.

What attacks are feasible?

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

220 \watts: one computer center

costing 239 dollars.

1 watt: power for
208 hit operations per year
using mass-market GPUs.

Main counterarguments:

1. Larger keys are cheap enough.

User doesn’t actually need

better performance.

2. Attacker’s cost-benefit ratio

Is iImproved by

mu

mu

tip
tip

e-user attacks,
e forgeries, etc.

3. Some attackers carry out

attacks that are feasible

but not economically rational.

What attacks are feasible?

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

220 \watts: one computer center

costing 239 dollars.

1 watt: power for
208 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

unterarguments:

r keys are cheap enough.

sn't actually need
erformance.

ker's cost-benefit ratio
ved by

-user attacks,
forgeries, etc.

 attackers carry out
that are feasible
economically rational.

tacks are feasible?

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

226 \watts: one computer center

costing 239 dollars.

1 watt: power for
2038 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

Many n
Some de
“switch
Other d
eliminat
adds rok

nents:

cheap enough.

lly need
e.

-benefit ratio
ks,
etc.

carry out
asible
lly rational.

feasible?

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

220 \watts: one computer center

costing 239 dollars.

1 watt: power for
208 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

Many messages.
Some designers bl
“switch keys after
Other designers ar
eliminating such r
adds robustness.

ough.

tio

1.

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

226 \watts: one computer center

costing 239 dollars.

1 watt: power for
2038 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

Many messages.
Some designers blame the u

220 mess:

“switch keys after
Other designers argue that
eliminating such requiremen

adds robustness.

Back-of-the-envelope figures: Many messages.

Some designers blame the user:

227 watts: receivec by Earth's ~20

“switch keys after messages .

atmosphere from the Sun. |
Other designers argue that

watts: world power usage. eliminating such requirements

220 \watts: one computer center adds robustness.

244

costing 239 dollars.

1 watt: power for
208 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

Back-of-the-envelope figures:

227 watts: received by Earth's

atmosphere from the Sun.

244 watts: world power usage.

220 \watts: one computer center

costing 239 dollars.

1 watt: power for
208 hit operations per year
using mass-market GPUs.

Scalable quantum computers.

204 simple quantum operations

to find a 128-bit key
using Grover's algorithm.

Many messages.
Some designers blame the user:

220 messages” .

“switch keys after
Other designers argue that
eliminating such requirements

adds robustness.

Chosen plaintexts,

chosen ciphertexts,

chosen message numbers.
Consensus:

Unacceptable to blame the user.

All ciphers must be safe against
chosen-plaintext attacks and
against chosen-ciphertext attacks.

the-envelope figures:

s: received by Earth's

ere from the Sun.
s: world power usage.

S: one computer center
230 dollars.

power for
yperations per year
3ss-market GPUs.

2 quantum computers.

le quantum operations
 128-bit key
over's algorithm.

Many messages.
Some designers blame the user:

220 messages” .

“switch keys after
Other designers argue that
eliminating such requirements

adds robustness.

Chosen plaintexts,

chosen ciphertexts,

chosen message numbers.
Consensus:

Unacceptable to blame the user.

All ciphers must be safe against
chosen-plaintext attacks and

against chosen-ciphertext attacks.

Many u
degrade

pe figures:

d by Earth's
‘he Sun.

)YOwer usage.

mputer center

per year
- GPUs.

n computers.

m operations

ey
orithm.

Many messages.

Some designers blame the user:
“switch keys after 229
Other designers argue that
eliminating such requirements

adds robustness.

Chosen plaintexts,
chosen ciphertexts,
chosen message numbers.
Consensus:

Unacceptable to blame the user.

All ciphers must be safe against
chosen-plaintext attacks and

against chosen-ciphertext attacks.

messages .

Many users. Howv
degrade with num

nter

ers.

NS

Many messages.

Some designers blame the user:

“switch keys after

220

Other designers argue that

eliminating such requirements

adds robustness.

Chosen plaintexts,

chosen ciphertexts,

chosen message numbers.

Consensus:

Unacceptable to blame the user.

All ciphers must be safe against

chosen-p
against c

aintext attacks and

messages’ .

nosen-ciphertext attacks.

Many users. How does sec
degrade with number of key

Many messages.

Some designers blame the user:
“switch keys after 229
Other designers argue that
eliminating such requirements

adds robustness.

Chosen plaintexts,

chosen ciphertexts,

chosen message numbers.
Consensus:

Unacceptable to blame the user.

All ciphers must be safe against
chosen-plaintext attacks and

against chosen-ciphertext attacks.

messages .

Many users. How does security
degrade with number of keys?

Many messages.

Some designers blame the user:
“switch keys after 229
Other designers argue that
eliminating such requirements

adds robustness.

Chosen plaintexts,

chosen ciphertexts,

chosen message numbers.
Consensus:

Unacceptable to blame the user.

All ciphers must be safe against
chosen-plaintext attacks and

against chosen-ciphertext attacks.

messages .

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.
Allow forgery under this n.

Allow forgery under any n'.

1essages.

signers blame the user:

keys after

220

signers argue that

ng such requirements

)ustness.

plaintexts,

ciphertexts,

message numbers.

us.

table to blame the user.

rs must be safe against

)

p—~
Nt

aintext attacks and

nosen-ciphertext attacks.

messages' .

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

| eak xor of first non-shared block.

Allow forgery under this n.

Allow forgery under any n'.

Softwar
Typical «

secret DI
secret m
Also, on
secret m

ame the user:
220 messages” .
gue that

aquirements

S,
ts,
numbers.

lame the user.
e safe against
ttacks and
hertext attacks.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.
Allow forgery under this n.

Allow forgery under any n'.

Software side ch:
Typical culprits:

secret branches,

secret memory ad«
Also, on some CP
secret multiplicati

SEr.

1ges .

ts

iSer.
Inst

tacks.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.
Allow forgery under this n.

Allow forgery under any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.

Allow forgery under this n.

Allow forgery under any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.

Allow forgery under this n.

Allow forgery under any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.

Allow forgery under this n.

Allow forgery under any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Many users. How does security
degrade with number of keys?

Repeated message numbers.
Minimum impact: Attacker sees
whether (n, m, a) is repeated.

Examples of larger impact
for many ciphers:

Leak number of shared initial
blocks of plaintext.

Leak xor of first non-shared block.

Allow forgery under this n.

Allow forgery under any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Thefts and monitors.
Attacker steals secret keys.
Can we still protect

past communication?

sers. How does security
with number of keys?

>d message numbers.
n impact: Attacker sees
(n, m, a) is repeated.

s of larger impact
/ ciphers:

mber of shared initial
f plaintext.

- of first non-shared block.
rgery under this n.

rgery under any n’.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Thefts and monitors.
Attacker steals secret keys.
Can we still protect

past communication?

What pe

Typical |
for ASIC

Low ene

Low pov

Low are;

loosely

"gate ec

High thr
(bytes p

Low

very

ate
0]0)

v does security
ber of keys?

ze numbers.
Attacker sees
S repeated.

~Impact

yared initial

on-shared block.
or this n.

r any n'.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Thefts and monitors.
Attacker steals secret keys.
Can we still protect

past communication?

What performance

Typical performan
for ASICs:

Low energy (joule:

Low power (watts

Low area (square |

loosely predicted t

“gate equivalents”

High throughput

(bytes per second’

Low

very

atency (seco
oosely predic

urity

'rS.
SEES

)|

block.

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Thefts and monitors.
Attacker steals secret keys.
Can we still protect

past communication?

What performance is measu

Typical performance metrics
for ASICs:

Low energy (joules) per byte

Low power (watts).

Low area (square micromete

loosely predicted by

“gate equivalents”).

High throughput

(bytes per second).

Low

very

atency (seconds;
oosely predicted by cyc

Software side channels.
Typical culprits:

secret branches,

secret memory addresses.
Also, on some CPUs,
secret multiplication inputs.

Hardware side channels.
Power consumption,
electromagnetic radiation, etc.

Faults. Flip bits in computation.

Thefts and monitors.
Attacker steals secret keys.
Can we still protect

past communication?

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

e side channels.
culprits:

-anches,

emory addresses.
some CPUs,

ultiplication inputs.

re side channels.
onsumption,
agnetic radiation, etc.

Flip bits in computation.

and monitors.
- steals secret keys.
still protect

nmunication?

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

Similar 1

FPGAs .

For ASI(
through
IS not a
without

Paralleli;
Or acros:
for arbit

annels.

Jresses.
Us,

on Inputs.

1annels.
»n,

diation, etc.

n computation.

tors.

ret keys.
T

on’?

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

Similar metrics for
FPGAs and softws

For ASICs and FP
throughput per se
Is not a useful me
without limit on a

Parallelize across |
or across indepenc
for arbitrarily high

[C.

ytion.

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

is not a useful metric
without limit on area (or po

Parallelize across blocks
or across independent mess:
for arbitrarily high throughp

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric
without limit on area (or power).

Parallelize across blocks
or across independent messages
for arbitrarily high throughput.

What performance is measured?

Typical performance metrics
for ASICs:

Low energy (joules) per byte.
Low power (watts).

Low area (square micrometers;
loosely predicted by
“gate equivalents”).

High throughput
(bytes per second).

Low latency (seconds;

very loosely predicted by cycles).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,
product of area and time per byte.

rformance is measured?

performance metrics
S:

rgy (joules) per byte.
ver (watts).

) (square micrometers;
redicted by
uivalents”).

oughput
er second).

ncy (seconds;

sely predicted by cycles).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across Independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,

product of area and time per byte.

What of

Authen
encrypt
Cost pelt
far belov

Send ve
data, or
"Encryp
cost of ¢

> IS measured?

ce metrics

5) per byte.

micrometers;

Yy

).

.

nds:

ted by cycles).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,

product of area and time per byte.

What operations ¢

Authenticate onl
encrypt and autl
Cost per byte of a
far below cost per

Send valid data,
data, or receive |
"Encrypt then MA
cost of decryption

red?

\v

rS;

les).

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across Independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,

product of area and time per byte.

What operations are measur

Authenticate only, or
encrypt and authenticate:
Cost per byte of a can be
far below cost per byte of m

Send valid data, receive v
data, or receive invalid da
“Encrypt then MAC" skips

cost of decryption for forger

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,

product of area and time per byte.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Similar metrics for
FPGAs and software.

For ASICs and FPGAs,
throughput per se

IS not a useful metric

without limit on area (or power).

Parallelize across blocks
or across independent messages
for arbitrarily high throughput.

Fix: measure
ratio of area and throughput, i.e.,

product of area and time per byte.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Different area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

netrics for
ind software.

_s and FPGAs,

out per se

useful metric

limit on area (or power).

ze across blocks
s Independent messages
rarily high throughput.

sure
area and throughput, 1.e.,

of area and time per byte.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Different area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

Plainte;
and ass
Huge im

Warning
“overhe:
Cipher v
can be ¢

1IIE.

GAEs,
ngle
rea (or power).

blocks
lent messages
throughput.

hroughput, 1.e.,

d time per byte.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Different area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

Plaintext length
and associated-d
Huge impact on p

Warning: Do not
“overhead” of twc
Cipher with larger
can be consistent!|

wer).

ZEes
ut.

El.e.,

r byte.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Ditfferent area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

Plaintext length
and associated-data lengt
Huge impact on performanc

Warning: Do not solely cormr
“overhead” of two ciphers.
Cipher with larger “overheac
can be consistently faster.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Different area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

What operations are measured?

Authenticate only, or
encrypt and authenticate?
Cost per byte of a can be
far below cost per byte of m.

Send valid data, receive valid
data, or receive invalid data?
“Encrypt then MAC" skips

cost of decryption for forgeries.

Different area targets:

encryption /authentication circuit;
verification /decryption circuit;
circuit that can dynamically select
either operation.

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages In parallel.
Simplest if many messages
have the same length.

yerations are measured?

ticate only, or

and authenticate?
- byte of a can be

v cost per byte of m.

lid data, receive valid
- receive invalid data?
t then MAC" skips

lecryption for forgeries.

L area targets:

on /authentication circuit;
on/decryption circuit;

nat can dynamically select
yeration.

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages In parallel.
Simplest if many messages
have the same length.

Numbe
Most (n
expect
“expand

Warning
“agility”
Cipher v

can be c

Ire measured?

y, Or
enticate?
can be
byte of m.

receive valid
nvalid data?
\C" skips

for forgeries.

ets:
tication circuit;
ytion circuit;

namically select

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages In parallel.
Simplest if many messages
have the same length.

Number of times
Most (not all) cipl
expect precomput.
"expanded keys' .

Warning: Do not
“agility” of two ci
Cipher with better
can be consistentl

les.

rcult;
It;
select

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages in parallel.
Simplest if many messages
have the same length.

Number of times a key is
Most (not all) ciphers
expect precomputation of
"expanded keys" .

Warning: Do not solely cormr
“agility” of two ciphers.
Cipher with better “agility”
can be consistently slower.

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages in parallel.
Simplest if many messages
have the same length.

Number of times a key is used.
Most (not all) ciphers
expect precomputation of
"expanded keys' .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

Plaintext length
and associated-data length.
Huge impact on performance.

Warning: Do not solely compare
“overhead” of two ciphers.
Cipher with larger “overhead”
can be consistently faster.

Number of inputs.

e.g. reduce latency by
processing several AES-CBC
messages in parallel.
Simplest if many messages
have the same length.

Number of times a key is used.
Most (not all) ciphers
expect precomputation of
"expanded keys' .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data;
associated data before plaintext.

t length
ociated-data length.
pact on performance.

. Do not solely compare
d” of two ciphers.

vith larger “overhead”
onsistently faster.

r of inputs.

ice latency by

1g several AES-CBC
s In parallel.

- 1If many messages

' same length.

Number of times a key is used.

Most (not all) ciphers
expect precomputation of
"expanded keys" .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data;
associated data before plaintext.

Schedul
schedul
Typically
to right.
processi

(“Incren
Update

when In

ata length.
erformance.

solely compare

 ciphers.
“overhead”

y faster.

S.
/ by
AES-CBC
el
nessages
gth.

Number of times a key is used.

Most (not all) ciphers
expect precomputation of
"expanded keys' .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data;
associated data before plaintext.

Scheduling withi
scheduling withir
Typically receive d
to right. Reduce /
processing earlier |

(“Incrementality” :
Update output eff
when Input Is moc

Number of times a key is used.

Most (not all) ciphers
expect precomputation of
"expanded keys" .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data:;
associated data before plaintext.

Scheduling within plainte>
scheduling within cipherte
Typically receive data from |
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Number of times a key is used.

Most (not all) ciphers
expect precomputation of
"expanded keys' .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data;
associated data before plaintext.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Number of times a key is used.

Most (not all) ciphers
expect precomputation of
"expanded keys' .

Warning: Do not solely compare
“agility” of two ciphers.

Cipher with better “agility”

can be consistently slower.

General input scheduling.
Reduce latency by

processing key and nonce

before seeing associated data;
associated data before plaintext.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

r of times a key is used.

ot all) ciphers
recomputation of
ed keys' .

. Do not solely compare
of two ciphers.

vith better “agility”

onsistently slower.

input scheduling.
latency by

1g key and nonce

2eing assoclated data;
>d data before plaintext.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Interme
Higher-I:
long pla
each sef
= small

Do bett:
similar f

, a key Is used.

ners
ytion of

solely compare
phers.

- agility”

v slower.

1eduling.

] nonce
ciated data:
fore plaintext.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Intermediate tag
Higher-level proto
long plaintext Intc
each separately au
= small buffer is

Do better by integ
similar feature intc

used.

pare

text.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticate
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Intermediate tags.

Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Scheduling within plaintext;
scheduling within ciphertext.
Typically receive data from left
to right. Reduce latency by
processing earlier parts first.

(“Incrementality” :
Update output efficiently
when input is modified.)

Also save area if large plaintext
does not need large buffer.
Warning: Large ciphertext
needs large buffer or

analysis of security impact of
releasing unverified plaintext.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

ing within plaintext;

ing within ciphertext.

/ receive data from left
Reduce latency by

1g earlier parts first.

entality” :
output efficiently
but is modified.)

e area if large plaintext
- need large buffer.

. Large ciphertext

rge buffer or

of security impact of

- unverified plaintext.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,

each separately authenticated.

= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.
Single circuit for, e.g.,

hash and authenticated cipher;

for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support

Simplic
Cryptan.
that are

n plaintext;
1 ciphertext.
ata from left
atency by
parts first.

ciently
lified.)

arge plaintext
e buffer.
phertext

or

/ impact of

1 plaintext.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for crypta

Simplicity.
Cryptanalysts prio
that are easy to ul

4%

left

ext

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for cryptanalysis

Simplicity.
Cryptanalysts prioritize targ
that are easy to understand.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for cryptanalysis

Simplicity.
Cryptanalysts prioritize targets
that are easy to understand.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.

Single circuit for, e.g.,

hash and authenticated cipher;
for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for cryptanalysis

Simplicity.
Cryptanalysts prioritize targets
that are easy to understand.

Scalability.
Reduced-round targets,
reduced-word targets, etc.

Intermediate tags.
Higher-level protocol splits
long plaintext into packets,
each separately authenticated.
= small buffer is safe.

Do better by integrating
similar feature into cipher?

Other operations.
Single circuit for, e.g.,

hash and authenticated cipher;

for different key sizes; etc.

Cache context.
How well does the system
fit into fast memory?

Support for cryptanalysis

Simplicity.
Cryptanalysts prioritize targets
that are easy to understand.

Scalability.
Reduced-round targets,
reduced-word targets, etc.

Proofs.

The phrase “proof of security”

is almost always fraudulent.

Proof says that attacks meeting
certain constraints are difficult, or
as difficult as another problem.
Can be useful for cryptanalysts.

