Computational
algebraic number theory
tackles lattice-based cryptography

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Moving to the left
Moving to the right
Big generator

Moving through the night
—Yes, "Big Generator’, 1987

2013.07 talk slide online:
"l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)[x]/(xP — x — 1).

ational
- number theory
attice-based cryptography

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Moving to the left
Moving to the right

Big generator

Moving through the night

‘es, "Big Generator”, 1987

2013.07 talk slide online:
“I think NTRU should switch to

random prime-degree extensions

with

big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,

whic
for e
that

n I'll call NTRU Prime,

iminating the structures

| find worrisome In

existing ideal-lattice-based

encryption systems.”

NTRU Prime uses primes p, g

with field (Z/q)[x]/(xP — x — 1).

Clear ad
cycloton

theory
=d cryptography

0
is at Chicago &
siteit Eindhoven

loving to the left
ving to the right

Big generator
hrough the night
senerator’, 1987

2013.07 talk slide online:
“l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)|x]/(xP — x — 1).

Clear advantage o
cyclotomics: minc

raphy

g0 &
hoven

he left
e right
1erator
> night
, 1987

2013.07 talk slide online:
“l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)[x]/(xP — x — 1).

Clear advantage of the usua
cyclotomics: minor speedup

2013.07 talk slide online:
“l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)[x]/(xP — x — 1).

Clear advantage of the usual
cyclotomics: minor speedup.

2013.07 talk slide online:
“l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)[x]/(xP — x — 1).

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .

2013.07 talk slide online:
“l think NTRU should switch to
random prime-degree extensions
with big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,
which I'll call NTRU Prime,

for eliminating the structures

that | find worrisome In

existing ideal-lattice-based
encryption systems.”

NTRU Prime uses primes p, g
with field (Z/q)[x]/(xP — x — 1).

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

2013
"l th

.07 talk slide online:
iInk NTRU should switch to

random prime-degree extensions

with

big Galois groups.”

2014.02 blog post:
"Here's a concrete suggestion,

whic
for e
that

n I'll call NTRU Prime,

iminating the structures

| find worrisome In

existing ideal-lattice-based

encryption systems.”

NTRU Prime uses primes p, g

with

field (Z/q)[x]/(xP — x — 1).

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

talk slide online:
N TRU should switch to
prime-degree extensions
Galois groups.”

blog post:

a concrete suggestion,
| call NTRU Prime,
nating the structures

1d worrisome In

ideal-lattice-based

on systems.”

’rime uses primes p, g
d (Z/q)[x]/(xP —x —1),

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

Typical |
“Becaus
in high-c
has beer
algorithr
of years
unique €
Ccryptosc

online:
ould switch to
ree extensions
ups.”

 suggestion,
U Prime,

' Structures
me In
“e-based

S.

primes p, q

|/(xP = x=1).

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

Typical lattice adv
“Because finding ¢
in high-dimension:
has been a notoric
algorithmic questi
of years ... we ha
unique evidence tt
cryptoschemes are

h to
ons

n,

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

Typical lattice advertisemen
“Because finding short vectc

in high-dimensional lattices
has been a notoriously hard
algorithmic question for hun
of years ... we have solid al
unique evidence that lattice-
cryptoschemes are secure.”

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

Typical lattice advertisement:
“Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based

cryptoschemes are secure.”

Clear advantage of the usual
cyclotomics: minor speedup.

Extra advantage often claimed:
some “security reductions’ .
But is this really an advantage?
Lange and | conjecture that
security Is negatively correlated
with strength of reductions.

Disadvantage of cyclotomics:
many more symmetries

feed a scary attack strategy.
Already serious damage

to some lattice-based systems,
concerns about other systems.

Typical lattice advertisement:
“Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based

cryptoschemes are secure.”

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:

e.g., the systems use ideals.
Important to study these gaps.

vantage of the usual
1Ics: minor speedup.

lvantage often claimed:
ecurity reductions’ .
s really an advantage?
nd | conjecture that
Is negatively correlated
ngth of reductions.

ntage of cyclotomics:
ore symmetries

ary attack strategy.
serious damage
lattice-based systems,
> about other systems.

Typical lattice advertisement:
"Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based
cryptoschemes are secure.”

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:

e.g., the systems use ideals.
Important to study these gaps.

2009 Sn
homomc

relativel
sizes' :

key give
therefore
principal
a princif
'small’ g
This Is ¢
In comp
and has
previous
see for €

f the usual
r speedup.

ften claimed:
luctions’ .
n advantage?
cture that
ely correlated
2ductions.

yclotomics:
tries

K strategy.
mage

sed systems,
her systems.

Typical lattice advertisement:
“Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based
cryptoschemes are secure.”

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:

e.g., the systems use ideals.
Important to study these gaps.

2009 Smart—Verca
homomorphic enci
relatively small ke
sizes : "Recoverin
key given the publ
therefore an instar
principal ideal prol
a principal ideal ..
'small’ generator ¢
This is one of the
In computational 1
and has formed th
previous cryptogra
see for example [3

ed:

ge?’

ted

1S,
1S.

Typical lattice advertisement:
"Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based
cryptoschemes are secure.”

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:

e.g., the systems use ideals.
Important to study these gaps.

2009 Smart—Vercauteren “F
homomorphic encryption wi
relatively small key and ciph
sizes' . "Recovering the priv
key given the public key Is

therefore an instance of the
principal ideal problem: ...

a principal ideal ... comput
'small’ generator of the idea
This is one of the core probl
in computational number th
and has formed the basis of
previous cryptographic prop:

see for example [3].

Typical lattice advertisement:
“Because finding short vectors

in high-dimensional lattices

has been a notoriously hard
algorithmic question for hundreds
of years ... we have solid and
unique evidence that lattice-based
cryptoschemes are secure.”

No. Dangerous exaggeration!
There are many obvious gaps
between lattice-based systems
and the classic lattice problems:

e.g., the systems use ideals.
Important to study these gaps.

2009 Smart—Vercauteren “Fully
homomorphic encryption with
relatively small key and ciphertext
sizes' : "'Recovering the private
key given the public key is
therefore an instance of the small
principal ideal problem: ... Given
a principal ideal ... compute a
'small” generator of the ideal.
This is one of the core problems
in computational number theory
and has formed the basis of
previous cryptographic proposals,

see for example [3].

lattice advertisement:

e finding short vectors

limensional lattices

1 a notoriously hard

nic question for hundreds

. we have solid

and

vidence that lattice-based

hemes are secure.

\gerous exaggeration!

€ many obvious gaps

lattice-based systems

classic lattice pro
systems use idea

blems:

S.

1t to study these gaps.

2009 Smart—Vercauteren “Fully
homomorphic encryption with

relatively small key and ciphertext

sizes' : "'Recovering the private
key given the public key Is
therefore an instance of the small
principal ideal problem: ... Given
a principal ideal ... compute a
‘'small’ generator of the ideal.
This is one of the core problems
in computational number theory
and has formed the basis of

previous cryptographic proposals,

see for example [3].

Smart-\
“There :
approacl
In concli
private |
key Is ar
and well
algorithr
particulz
solution:
the only
does nof
equivale

ertisement:
snort vectors

| lattices

usly hard

on for hundreds
ve solid and

1at lattice-based
secure.”

aggeration|
OVIOUS gaps
sed systems
tice problems:

Ise ideals.
y these gaps.

2009 Smart—Vercauteren “Fully
homomorphic encryption with
relatively small key and ciphertext
sizes' : "'Recovering the private
key given the public key is
therefore an instance of the small
principal ideal problem: ... Given
a principal ideal ... compute a
‘'small’ generator of the ideal.
This is one of the core problems
in computational number theory
and has formed the basis of
previous cryptographic proposals,

see for example [3].

Smart—Vercautere
“There are curren
approaches to the
In conclusion dete
private key given ¢
key Is an instance
and well studied p
algorithmic numbe
particular there ar
solutions for this
the only sub-expol
does not find a so
equivalent to our |

IS

dreds
1d
based

)S
NS

*MS.

2009 Smart—Vercauteren “Fully
homomorphic encryption with
relatively small key and ciphertext
sizes' : "'Recovering the private
key given the public key Is
therefore an instance of the small
principal ideal problem: ... Given
a principal ideal ... compute a
‘'small’ generator of the ideal.
This is one of the core problems
in computational number theory
and has formed the basis of
previous cryptographic proposals,

see for example [3].

Smart—Vercauteren, continu
“There are currently two
approaches to the problem.
In conclusion determining tf
private key given only the pi
key Is an instance of a classi
and well studied problem in
algorithmic number theory.
particular there are no efficie
solutions for this problem, a
the only sub-exponential me
does not find a solution whi
equivalent to our private ke

2009 Smart—Vercauteren “Fully
homomorphic encryption with

relatively small key and ciphertext

sizes' : "'Recovering the private
key given the public key is
therefore an instance of the small
principal ideal problem: ... Given
a principal ideal ... compute a
‘'small” generator of the ideal.
This is one of the core problems
in computational number theory
and has formed the basis of
previous cryptographic proposals,

see for example [3].

Smart—Vercauteren, continued:
“There are currently two
approaches to the problem. ...
In conclusion determining the
private key given only the public
key Is an instance of a classical
and well studied problem in
algorithmic number theory. In
particular there are no efficient
solutions for this problem, and
the only sub-exponential method

does not find a solution which is
equivalent to our private key."

art—Vercauteren “Fully

rphic encryption with

/ small key and ciphertext

‘Recovering the private

n the public key s

> an instance of the small
ideal problem: ... Given

al ideal ... compute a

enerator of the ideal.

ne of the core problems

utational number theory
formed the basis of
cryptographic proposals,

example [3 :

Smart—Vercauteren, continued:
“There are currently two
approaches to the problem. ...
In conclusion determining the
private key given only the public
key Is an instance of a classical
and well studied problem in
algorithmic number theory. In
particular there are no efficient
solutions for this problem, and
the only sub-exponential method

does not find a solution which is
equivalent to our private key.”

In fact,
focus on
e.g., ma
for man
make ta
for man

Highligh
Low-dim

Far fewe
consider
of the al
to much

uteren “Fully
yption with

y and ciphertext
g the private

ic key Is

1ce of the small
olem: ... Given
. compute a
f the ideal.
core problems
wumber theory
e basis of

ohic proposals,

Smart—Vercauteren, continued:
“There are currently two
approaches to the problem. ...
In conclusion determining the
private key given only the public
key Is an instance of a classical
and well studied problem in
algorithmic number theory. In
particular there are no efficient
solutions for this problem, and
the only sub-exponential method

does not find a solution which is
equivalent to our private key."

In fact, the classic

focus on sma
e.g., make ta

| din

ble o

for many quadrati

make table of clas

for many cubic fie

Highlights multipl

L ow-dim lattice is:

Far fewer papers

consider scalability

of the algorithmic

to much larger dir

ully
h

ertext
ate

small
Given
e 3

.
ems

eory

bsals,

Smart—Vercauteren, continued:
“There are currently two
approaches to the problem. ...
In conclusion determining the
private key given only the public
key Is an instance of a classical
and well studied problem in
algorithmic number theory. In
particular there are no efficient
solutions for this problem, and
the only sub-exponential method

does not find a solution which is
equivalent to our private key.”

In fact, the classical studies

focus on sma
e.g., make ta

| dimensions:

hle of class nur

for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative isst

| ow-dim lattice i1ssues are e:

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

Smart—Vercauteren, continued:
“There are currently two
approaches to the problem. ...
In conclusion determining the
private key given only the public
key Is an instance of a classical
and well studied problem in
algorithmic number theory. In
particular there are no efficient
solutions for this problem, and
the only sub-exponential method

does not find a solution which is
equivalent to our private key."

In fact, the classical studies
focus on small dimensions:

e.g., make table of class numbers
for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

/ercauteren, continued:
are currently two

1es to the problem. . ..
1sion determining the
ey given only the public
1 instance of a classical
studied problem In

nic number theory. In

r there are no efficient

5 for this problem, and
sub-exponential method

- find a solution which is
nt to our private key."

In fact, the classical studies
focus on small dimensions:

e.g., make table of class numbers
for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The sho

Take de
l.e. field

(Weaker
with Q ¢

n, continued:

ly two

problem. ...

rmining the

only the public

of a classical

roblem In

r theory. In

= no efficient

yroblem, and

1ential met
lution whic
orivate key.

nod

N 1S

In fact, the classical studies
focus on small dimensions:

e.g., make table of class numbers
for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generat

Take degree-n nur
l.e. field K C C w

(Weaker specificat
with Q C K and |

ed:

e
1blic

cal

In
>Nt
nd
thod
ch iIs

In fact, the classical studies
focus on small dimensions:

e.g., make table of class numbers
for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problen

Take degree-n number field
l.e. field K C C with leng K

(Weaker specification: field
with Q € K and lenq K =1

In fact, the classical studies

focus on sma
e.g., make ta

| dimensions:

ble of class numbers

for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.

Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

In fact, the classical studies

focus on sma
e.g., make ta

| dimensions:

ble of class numbers

for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.

Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

e.g. n=2; K=Q(i) =
Q® Qi — Q[x]/(x*+1).

In fact, the classical studies
focus on small dimensions:

e.g., make table of class numbers
for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.
Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problem

Take degree-n num

1.e. fie

d K C C wit

ver field K.

n leng K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

eg. n=2, K=Q(i) =

Q® Qi — Q[x]/(x* +1).
e.g. n = 256; { = exp(mi/n);
K = Q(¢) = QIx]/(x" + 1)

In fact, the classical studies

focus on sma
e.g., make ta

| dimensions:

ble of class numbers

for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.

Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

e.g. n=2; K=Q(i) =

Q® Qi — Q[x]/(x*+1).

e.g. n = 256; ¢ = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(2mi/661);
K=Q({) — Q[x]/(x"+---+1).

In fact, the classical studies

focus on sma
e.g., make ta

| dimensions:

ble of class numbers

for many quadratic fields,

make table of class numbers

for many cubic fields.

Highlights multiplicative issues.

Low-dim lattice issues are easy.

Far fewer papers

consider scalability

of the algorithmic ideas

to much larger dimensions.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

eg. n=2, K=Q(/) =

Q® Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(27i/661);
K=Q({) — Q[x]/(x"+---+1).
e K=Q(vV2 /3.5, ... v/29).

the classical studies
" small dimensions:

ke table of class numbers
/ quadratic fields,

ble of class numbers

/ cubic fields.

ts multiplicative issues.
 lattice Issues are easy.

r papers
scalability

gorithmic ideas
larger dimensions.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenq K = n.)

eg. n=2, K=Q(/) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(2mi/661);
K=Q() — Q[x]/(x"+---+1).
e K=Q(v3.v3./5,....7/2)

Define (
O 2

Nonzero
factor ul
DOWETS (

al studies The short-generator problem Define O =Z N K

1ENSIoNs. Take degree-n number field K. O = 2% as Z-mo
Ec]:c!zlsjsnumbers l.e. field K € C with lenqg K = n. Nonzero ideals of
ields, .

s numbers (Weaker specification: field K factor unic u§ly a.s
de with Q C K and leng K = n.) powers of prime ic
cative Issues. eg. n=2; K=Q(i) =
sues are easy. Q® Qi — Q[x]/(x*+1).

e.g. n = 256; ¢ = exp(mi/n);

K =Q(¢) = Q[x]/(x" +1).
' e.g. n = 660; { = exp(27ri/661)'
ideas

| K=Q(¢) = Qx]/(x" +--- +1).
nensions. e.g. K=Q(2,v3,V5, ..., V'29).

nbers

I1€ES.

1SY.

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenq K = n.)

eg. n=2;, K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" +1)

e.g. n = 660; { = exp(2mi/661);
K=Q() — Q[x]/(x"+---+1).
e K—Q(v2.7/3.v5.. .. v/29)

Define © = Z N K; subring
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products

powers of prime ideals of O.

T he short-generator problem Define O = Z N K; subring of K.
O —» Z" as Z-modules.

Take degree-n number field K.
l.e. field K C C with lenqg K = n. Nonzero ideals of O

(Weaker specification: field K factor uniquely as products of

with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);
K=Q({) — Q[x]|/(x"+1).

e.g. n = 660; { = exp(27ri/661)'
K=Q(¢) = Qlx]/(x" +---+1).

powers of prime ideals of O.

T he short-generator problem Define O = Z N K; subring of K.
O —» Z" as Z-modules.

Take degree-n number field K.
l.e. field K C C with lenqg K = n. Nonzero ideals of O

(Weaker specification: field K factor uniquely as products of

with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);
K=Q({) — Q[x]|/(x"+1).

e.g. n = 660; { = exp(27ri/661)'
K=Q(¢) = Qlx]/(x" +---+1).

powers of prime ideals of O.

e.g. K=Q(/) —» Q[X]/(X2 + 1)
= O = Z[i] = Z[x]/(x* + 1).

T he short-generator problem Define O = Z N K; subring of K.

n —_
Take degree-n number field K. O = £7 as Z-modules.

l.e. field K C C with lenqg K = n. Nonzero ideals of O
factor uniquely as products of

(Weaker specification: field K
with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);
K=Q({) — Q[x]|/(x"+1).

e.g. n = 660; { = exp(27ri/661)'
K=Q(¢) = Qlx]/(x" +---+1).

powers of prime ideals of O.

e.g. K= Q(')‘*Q[X]/(X + 1)
= 0 = Z[]L»Z[X]/(1).

e.g. { = exp(mwi/256), K = Q({)
= O =Z[¢] — Z[x]/(x*° +1).

T he short-generator problem Define O = Z N K; subring of K.
O —» Z" as Z-modules.

Take degree-n number field K.
l.e. field K C C with lenqg K = n. Nonzero ideals of O

(Weaker specification: field K factor uniquely as products of

with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =
Q® Qi — Q[x]/(x*+1)

powers of prime ideals of O.

e.g. K =Q(i) L»Q[X]/(X +1)
= O =Z[i] = Z[x]/(x* +1).
e.g. n = 256; ¢ = exp(mi/n); e.g. ¢ = exp(mi/256), K = Q(¢)
Q0 o Qe 1) = 0= Z[¢] = ZI/(% + 1)
e.g. n = 660; { = exp(27i/661); e.g. ¢ = exp(2mi/661), K = Q(¢)

K=QE) = QI/(x"+---+1). 972

T he short-generator problem Define O = Z N K; subring of K.
O —» Z" as Z-modules.

Take degree-n number field K.
l.e. field K C C with lenqg K = n. Nonzero ideals of O
factor uniquely as products of

(Weaker specification: field K
with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =
Q® Qi — Q[x]/(x*+1)

powers of prime ideals of O.

e.g. K = Q(/) ;»Q[X]/(X +1)
= 0 =Z[i] = Z|[x]/(x* +1).
eg. n=2506; (=exp(mi/n): e.g. ¢ = exp(mi/256), K = Q(¢)
Kg: Q(g)i» EQ[X]/(Z(” +/1§ = O =Z[{] — Z[x]/(x*° + 1),
e.g. n = 660; ¢ = exp(27i/661); e.g. ¢ = exp(2mi/661), K = Q({)

K=QE) = QI/(x"+---+1). — O=&d=>-

B e.g. K = Q(v/5) :>. O =
e.g. K=Q(v2,v3,V5, ..., V29). Z[(1++/5)/2] — Z[x]/(x*—x—1).

rt-generator problem

yree-n number field K.
K C C with lenq K = n.

specification: field K
_ K and lenq K = n.)

2, K=Q(i) =

— Q[x]/(x* +1).

256; ¢ = exp(7i/n);

¢) = Q[x]/(x" +1).
660; { = exp(27i/661);

() = Qx| /(x" 4 ---+1).

Define © = Z N K; subring of K.
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K=Q(i) — Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x%2 + 1).
e.g. (= exp(mi/256), K = Q({)
= 0 =Z[¢] — Z[x]/(x*° +1).
e.g. ¢ = exp(2mi/661), K = Q(¢)
= O =Z|[{] = -~

eg. K=Q(v5) = O =
Z[(1++/5)/2] <= Z[x]/(x*—x—1).

The sho
Find “sf
given th

e.g. (=
O = ZJ¢
The Z-s
201 — 2.
035 — 1
979 — 1.
(18 — 8.
IS an Ide
Can you
such tha

or problem

nber field K.
ith lenq K = n.

1on: field K
enQ K = n.)

(/) =

x? +1).
exp(mi/n);
|/(x" +1).
exp(27mi/661);

|/(x" + -+ 1).
3,5, ..., V29).

Define © = Z N K; subring of K.
O < Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x* + 1).
e.g. (= exp(mi/256), K = Q({)
= O = Z[¢] < Z[x]/(x?*®® + 1).
e.g. { = exp(27i/661), K = Q({)
= O =Z[{] < ---.

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x>—x—1).

The short-generat
Find “short” nonz
given the principal

e.g. { =exp(mi/4
0 = Z[¢] = Z|x],
The Z-submodule
201 — 233¢ — 430
935 — 1063¢ — 19
979 — 1119¢ — 20!
718 — 829¢ — 153
is an ideal I of O.
Can you find a shc
such that I = gO

Define © = Z N K; subring of K.
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K= Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x%2 + 1).
e.g. { = exp(mi/256), K = Q({)
= 0 =Z[¢] = Z[x]/(x*° + 1).
e.g. ¢ = exp(2mi/661), K = Q(¢)
= O =Z|[{] = -~

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x*—x—1).

The short-generator problen
Find “short” nonzero g € O
given the principal ideal gO

e.g. (=exp(mi/4); K= Q(
O =Z[¢] — Z[x]/(x* + 1).
The Z-submodule of O gen
201 — 233¢ — 430¢2 — 712¢
935 — 1063¢ — 1986¢2 — 32
079 — 1119¢ — 2092¢2 — 34
718 — 829¢ — 1537¢2 — 254
Is an ideal I of O.

Can you find a short g € O

such that I = g7

Define © = Z N K; subring of K.
O < Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x* + 1).
e.g. (= exp(mi/256), K = Q({)
= O = Z[¢] < Z[x]/(x?*®® + 1).
e.g. { = exp(27i/661), K = Q({)
= O =Z[{] <= ---.

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x>—x—1).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 430¢2 — 712¢3,
035 — 1063¢ — 1986¢2 — 3299¢3,
079 — 1119¢ — 2092¢2 — 3470¢3,
718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O

such that I = g7

) = Z N K; subring of K.

'3

s Z-modules.

ideals of O

110

uely as products of

T

orime ideals of O.

- Q) — Q[x]/(x2 +1)
Z[i] — Z[X]/(X2 1).
exp(mi/256), K = Q(¢)

Z[¢] < Z[x]/(x*° + 1).
exp(2mi /661), K = Q(¢)

Z[] = -
-Q(V5) = 0=

5)/2] < Z[X]/(XZ—X—].).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q(C);
O =Z[¢] — Z[x]/(x* + 1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The latt

=+ subring of K.
dules.

O
products of
leals of O.

[X]/(X +1)
[X]/(1).

6), K = Q(¢)
[x]/(x*° + 1),
561), K = Q(¢)

= 0 =

Z[x]/(x?>—x—1).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspe

Use LLL to quickl
short elements of

ZA+ZB+ZC +
A = (201, —233, -
B = (935, —1063,
C = (979, —1119,
D = (718, —829, -

of K.

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD wher
A = (201, —233, —430, —71
B = (935, —1063, —1986, —
C = (979, —1119, —2092, —
D = (718, —829, —1537, —2

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

S

Use LLL to quickly find

nort elements of lattice

LA+ ZB + ZC + ZD where

201, —233, —430, —712),
035, —1063, —1986, —3299),
079, —1119, —2092, —3470),

= (
= (
= (
— (718, —829, —1537, —2546).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ 2ZB + ZC + ZD where
(201, —233, —430, —712),
(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(718, —829, —1537, —2546).

A
B
C
D

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ 2ZB + ZC + ZD where
201, —233, —430, —712),
935, —1063, —1986, —3299),
979, —1119, —2092, —3470),
718, —829, —1537, —2546).

A=
B = (
C =
D = (

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

rt-generator problem:
ort” nonzero g € O
e principal ideal gO.

exp(mi/4); K = Q({);
] < Z[x]/(x* +1).
ubmodule of O gen by
33¢ — 43002 — 712¢3,

)63¢ — 1986¢2 — 3299¢3,
119¢ — 2092¢2 — 3470¢3,

29¢ — 1537¢2 — 2546¢3
al I of O.

find a short g € O

t I =g07?

The lattice perspective

Use LLL to quickly find

short elements of lattice
LA+ ZB + ZC + ZD where
A = (201, —233, —430, —712),

C =
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+3B—-7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(
B = (935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),

For muc

LLL alm

Big gap
and size
that LLI

or problem:

ero g € O
ideal gO.

) K = Q(Q);
/(x* +1).
of O gen by
2 —712¢°,

36¢2 — 3290¢3,
3282 — 3470¢3,

7¢2 — 2546¢3
ort g € O
!

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n

LLL almost never
Big gap between s
and size of “short
that LLL typically

The lattice perspective

Use LLL to quickly find

short elements of lattice
LA+ ZB + ZC + ZD where
A = (201, —233, —430, —712),

C =
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+3B—-7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(
B = (935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n:

LLL almost never finds g.

Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n:

LLL almost never finds g.

Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
(201, —233, —430, —712),
(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(718, —829, —1537, —2546).

A
B
C
D

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Ice perspective

“to quickly find

ments of lattice

B+ ZC + ZD where

1, —233, —430, —712),

5, —1063, —1986, —3299),
9, —1119, —2092, —3470),
8, —829, —1537, —2546).

1,4,1) as
3B—-7C 4+ 16D.
s my original g.

I, eg., (—4,-1,3,1).
ing by root of unity
) preserves shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploitir

Use LLL
generate
What hc

Pure lat
Work m

ctive

v find

lattice

ZD where
-430, —712),
—1986, —3299),
—2092, —3470),
-1537, —2546).

+ 16D.
1al g.
4,—1,3,1).

t of unity
5 shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,

2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factoriz

Use LLL, BK/Z, et

generate rather sh
What happens if ¢

Pure lattice appro
Work much harde

V)

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € g
What happens if aO # gO:

Pure lattice approach: Disc:
Work much harder, find sho

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

eg. If ;O =g0" P2 . Q?

For much larger n:

LLL almost never finds g.

Big gap between size of g

and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")

but sti

| exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = g0 - P?.Q?
and apO = g0 - P - Q3

For much larger n:

LLL almost never finds g.

Big gap between size of g

and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")

but sti

| exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = g0 - P?.Q?
and a0 = g0 - P - @3
and 30 = g0 - P - Q?

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,

2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

eg. If a1O =gO - P?. Q2
and apO = g0 - P - Q3
and o300 = gO - P - Q? then

P=aja; 10 and Q = Q0 10
—1

and g0 = o "ay, oz3(9

h larger n:

ost never finds g.
between size of g
of “short” vectors
_ typically finds in I.

d BKZ block size:
gap but slower.

lattice algorithms:
asonable assumptions,
arhoven—de Weger

n time ~1.23".

ress compared to, e.g.,
uyen—Vidick (/~1.33")
exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard o.

Work much harder, find shorter «.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = gO - P?.Q?
and agO:gO-P-Q3
and 030 = gO - P - Q? then

P=aja; 10 and Q = QapQ, 10
—1

and g0 = oy "ay, oz3(9

General
factor o
of some

Solve sy
to find ¢
as prodt

finds g.
ize of g

" vectors
finds in I.

ck size:
lower.

orithms:

assumptions,

e Weger
23",

ared to, e.g.,

ck (~1.33")
al time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO?

Pure lattice approac
Work much harder,

n: Discard «.

find shorter o.

Alternative: Gain information

from factorization of ideals.

e.g. If 10 = gO - P?- Q2

and ac O =g0 - P -
and az30 =g0 - P -

Q3
Q? then

P=aja; 10 and Q = Q0 10

and gO—all

a, oz3(9

General strategy:
factor O into pre
of some primes an

Solve system of ec
to find generator {
as product of pow

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO?

Pure lattice approach: Discard o.

Work much harder, find shorter «.

Alternative: Gain information
from factorization of ideals.

e.g. If 1O = gO - P? - Q?
and a0 = g0 - P - Q3
and 030 = gO - P - Q? then

P=aja; 10 and Q = QapQ, 10
—1

and g0 = oy "ay, oz3(9

General strategy: For many
factor O into products of |
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the

Exploiting factorization General strategy: For many a's,

Use LLL. BKZ. etc. to factor O into products of powers

generate rather short a € gO. of some primes and gO.
What happens if aO # gO?? Solve system of equations

Pure lattice approach: Discard a. to find generator for g0

Work much harder, find shorter a. as product of powers of the as.

Alternative: Gain information
from factorization of ideals.

e.g. |f 0110 — gO : P2 _ QQ
anc azO:g(’).p.QZ%
and a30 = gO - P - Q7 then

P=aja; 10 and Q = Qo ~10
—1

and g0 = o "ay, a3(9

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO??

Pure lattice approach: Discard «.

Work much harder, find shorter a.

Alternative: Gain information

from factorization of ideals.

e.g.

dNcG

dNcG

If €10 = g0 - P?. Q7
OzQOZgO-P-Q3
a30 = gO - P - Q? then

P=aja; 10 and Q = Q0 10

and g0 = o4

—1
a, oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO??

Pure lattice approach: Discard «.

Work much harder, find shorter a.

Alternative: Gain information

from factorization of ideals.

e.g.

dNcG

dNcG

f 110 = g0 - P?-Q°
OzQOZgO-P-Q3
30 = gO - P - Q% then

P=aja; 10 and Q = Q0 10

and g0 = o4

—1
a, oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

1g factorization

. BKZ, etc. to
' rather short o € g0O.
ppens if aO # gO7?

tice approach: Discard o.

uch harder, find shorter o.

ive: Gain information
torization of ideals.

1O:gO-P2-Q2

) =g0-P- Q3

) = g@ - P - Q% then
x_l(’) and Q—a2a3 Lo
—ozlloz2 oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restr
e.g., all

ation

c. to
ort a € g0.
xO £ g7

ach: Discard .

- find shorter a.

iInformation
of ideals.

. P2 . Q2

D Q3

> . Q2 then

R = 042043_10
20/3*(9.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a 1
e.g., all primes of

rd o,

rter c.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base
e.g., all primes of norm <y.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm <y.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from
“Index calculus’ DL methods,

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2) log x log log x.

strategy: For many a's,
O into products of powers
primes and gO.

stem of equations
renerator for g0
ct of powers of the a's.

e system be solved?”

mes increasingly

le to expect as the

of equations approaches
es the number of primes.

rimes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw It away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x|;

y-smoothness chance ~1/y
if logy ~ +/(1/2) log x log log x.

Variatiol
Generat:
factor o
After en
solve sys
obtain g

For many a's,
bducts of powers

d gO.

juations
or gO
ers of the a's.

e solved?”

singly
ct as the
ns approaches

mber of primes.

nfinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

Variation: lIgnore ,
Generate rather st
factor O into sm
After enough a's,
solve system of eq
obtain generator f

a's,
YOwers

ches
Imes.

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw It away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x|;

y-smoothness chance ~1/y

if logy ~ +/(1/2) log x log log x.

Variation: lgnore gO.
Generate rather short o € (
factor O into small primes
After enough a's,

solve system of equations;
obtain generator for each pr

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y

if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.
Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.

— Restrict to a “factor base’: Variation: lgnore gQ.
e.g., all primes of norm <y. Generate rather short o € O,

) . , factor o into small primes.
But what if a® doesn’t P

. . , After enough a's,
factor into those primes? 5

solve system of equations;
— Then throw it away. obtain generator for each prime.
But often it does factor. After this precomputation,

Familiar issue from factor one a©O C gO;

“index calculus” DL methods, obtain generator for gO.

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

— Restrict to a “factor base’: Variation: lgnore gQ.
e.g., all primes of norm <y. Generate rather short o € O,

) . , factor o into small primes.
But what if a® doesn’t P

. . , After enough a's,
factor into those primes? 5

solve system of equations;
— Then throw it away. obtain generator for each prime.
But often it does factor. After this precomputation,

Familiar issue from factor one a©O C gO;

“index calculus” DL methods, obtain generator for gO.

CFRAC, LS, Q5, NFS, etc. “Do all primes have generators?”
Model the norm of (a/g)O

as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol!

Modulo a few small primes, yes.

1ct to a ‘factor base’:
primes of norm <y.

at if O doesn't
to those primes?”

throw It away.
n it does factor.

Issue from
alculus” DL methods,

LS, QS, NFS, etc.
ne norm of (a/g)O
lom"” integer in [1, x];
hness chance ~1/y

~ 1/(1/2) log x log log x.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{princip.
kernel of
{nonzer
Cisatfi
the “cla:

Fundam
in algebl

-actor base’:
norm <y.

doesn't

rimes?’

away.
factor.

)
)L methods,
\FS, etc.
f (a/g)0
er in [1, x];
nce ~1/y

log x log log x.

Variation: Ignore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero
kernel of a semigr:
{nonzero ideals} -
C is a finite abelia
the “class group o

Fundamental obje
in algebraic numb

Variation: Ignore gO. {principal nonzero ideals} is

\v

Generate rather short o € O, kernel of a semigroup map
factor O into small primes. {nonzero ideals} — C where
After enough a's, C is a finite abelian group,
solve system of equations; the “class group of K.

obtain generator for each prime. .
& P Fundamental object of studh

After this precomputation, . .
P P in algebraic number theory.

factor one aO C gQO;
obtain generator for gO.

s,

“Do all primes have generators?”
| — Standard heuristics:
| For many (most?) number fields,
— yes; but for big cyclotomics, nol
g X. |

Modulo a few small primes, yes.

Variation: Ignore gO. {principal nonzero ideals} is

Generate rather short a € O, kernel of a semigroup map
factor O into small primes. {nonzero ideals} — C where
After enough a's, C is a finite abelian group,
solve system of equations; the “class group of K.

obtain generator for each prime. .
& P Fundamental object of study

After this precomputation, . .
in algebraic number theory.
factor one aO C gQ;

obtain generator for gO.
“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

1: lgnore gO.

> rather short o € O,

O into small primes.
ough a's,

tem of equations;
enerator for each prime.
S precomputation,

ne aO C g0O;

enerator for gQ.

primes have generators?”

lard heuristics:
y (most?) number fields,
for big cyclotomics, no!

a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note ¢

Smart-\
regardin
Buchma
complex

V/log(A

o).
ort o € O,
all primes.

uations;

or each prime.
yutation,

5O,

or gO.

/e generators?”

Stics:
number fields,
clotomics, no!

[l primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time an

Smart—Vercautere|
regarding similar 2
Buchmann: “This
complexity exp(O(
\/log(A) - log log(

Ime.

ors?”

lelds,
nol
yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time analysis

Smart—Vercauteren statemel
regarding similar algorithm |
Buchmann: “This method
complexity exp(O(Nlog N)
\/log(A) - log log(A)).”

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

— [citation needed]

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be
subexponential unless norms are
much worse than exponential.

|l nonzero ideals} is
- a semigroup map

> ideals} — C where
nite abelian group,
ss group of K.

ental object of study
alc number theory.

g many small aO
dard textbook method
uting class group
erators of ideals.

npute unit group OF
s of generators.

A note on time analysis

Smart—\Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
\/log(A) - log log(A)).”

— |citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.

The whole algorithm will be
subexponential unless norms are

much worse than exponential.

Big gene

Smart—\
this met
a genera
with larg
large, th
generatc
6 may t:

Indeed, ;
oroduct

Must be
DUt extr

ideals} is
OUpP map
» C where

n group,
f K"

ct of study
or theory.

nall aO®
yook method

5 group
ideals.

group OF
ators.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be

subexponential unless norms are

much worse than exponential.

Big generator

Smart—Vercautere
this method is like
a generator of larg

with large coetficie
large, that writing
generator down as
6 may take expone

Indeed, generator
oroduct of powers
Must be gu for so

out extremely unli

od

A note on time analysis

Smart—\Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
\/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be

subexponential unless norms are

much worse than exponential.

Big generator

Smart—Vercauteren: “Howes
this method is likely to prod
a generator of large height,

with large coefficients. Inde
large, that writing the obtal
generator down as a polynot
6 may take exponential time

Indeed, generator found for
oroduct of powers of various
Must be gu for some u € O

out extremely unlikely to be

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.
The whole algorithm will be

subexponential unless norms are

much worse than exponential.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

A note on time analysis

Smart—Vercauteren statement
regarding similar algorithm by
Buchmann: “This method has
complexity exp(O(Nlog N) -
V/log(A) - log log(A)).”

— [citation needed]

Did they mean ©7 And +7
exp(©(Nlog N)) factor

for short-vector enumeration?
Silly: BKZ works just fine.

The whole algorithm will be
subexponential unless norms are
much worse than exponential.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

How do we find g from gu?

on time analysis

/ercauteren statement
o similar algorithm by
nn: “This method has
ity exp(O(N log N) -

) - log log(A)).”

ion needed]

' mean ©7 And +7
/log \)) factor

-vector enumeration?
KZ works just fine.

le algorithm will be
nential unless norms are
orse than exponential.

Big generator

Smart—Vercauteren: “However
this method is likely to produce

a generator of large height, i.e.,
with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time.”

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There at

ring may

alysis

N statement
lgorithm by
method has
NlogN) -
A)).”

d]

' And +7
actor
umeration?
just fine.

m will be
less norms are
axponential.

Big generator

Smart—Vercauteren: “However

this method is
a generator of
with large coef

likely to produce
arge height, I.e.,

icients. Indeed so

large, that writing the obtained

generator down as a polynomial in

6 may take exponential time."

Indeed, generator found for gO is

oroduct of powers of various a's.
Must be gu for some u € OF,
out extremely unlikely to be g.

How do we find g from gu?

There are exactly
ring maps @1, ...,

Nt

Y
1as

, are
1}

Big generator

Smart—Vercauteren: “However
this method is likely to produce

a generator of large height, i.e.,
with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time.”

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps @1,...,9n: K —

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct

ring maps ¢1,...,9,: K — C.

Big generator There are exactly n distinct

Smart—Vercauteren: “However & Maps ¥1 Pn

this method is likely to produce Define Log : K* — R” by
a generator of large height, i.e., Log = (log |¢1],...,log|wnl|).
with large coefficients. Indeed so

large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.

Define Log : K* — R” by
Log = (log [p1], - - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.

Define Log : K* — R” by
Log = (log [p1], - - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢,¢3,¢2, ..., ¢
r1 =0; n =128; rank 127.

2rator

/ercauteren: “However
hod is likely to produce
tor of large height, i.e.,

re coefficients. Indeed so
at writing the obtained

r down as a polynomial in
ke exponential time.”

ocenerator found for gQO is
of powers of various a's.
gu for some u € O,
emely unlikely to be g.

we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.
Define Log : K* — R” by

Log = (log [p1], . .., log |wnl).

Log O* is a lattice

of rank r; + rn — 1 where
rn = #{i : pj(K) C R},

2ry = #{i 1 pi(K) £ R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢,¢3,¢2, ..., ¢
rr =0; n=128; rank 127.

Comput
as sum ¢
for the ¢

n: “"However

ly to produce

e height, 1.e.,
nts. Indeed so
the obtained

“a polynomial in

antial time.”

found for gO is
of various a's.
me u € OF,
kely to be g.

from gu?

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log|wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢, ¢3,¢°,.. ., el
ri =0; n =128; rank 127.

Compute Log gu
as sum of multiple
for the original o'

/er
uce
l.e.,
>d so
ned
mial In
g is
, QU'S.

5k

24

There are exactly n distinct
ring maps ©1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . .., log|wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢, ¢3, 82, ..., el
rn =0; n=128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem
(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem
(“bounded-distance decoding”).
"Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

e exactly n distinct

s a lattice

r1 + r» — 1 where
{71 9i(K) C R},
{7 9i(K) £ R}.

exp(mi/256), K = Q(¢):

ot ¢ under ring maps

C5 C511-
» = 128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfie

Say we |
for a prc

n distinct
wn: K — C.

» R by
., log |e¢nl).

| where
' C R}

Z R},
56), K = Q({):

ring maps
H11

rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfield-logarith

Say we know Log
for a proper subfie

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfield-logarithm attack

Say we know Lognormg.fF g
for a proper subfield F C K

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u
to a shifted sublattice of Log O*.
Number of independent

constraints: unit rank for F.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.
Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

e Log gu
f multiples of Log o
riginal a's.

ments of Log OF
Log gu.

 close-vector problem

ed-distance decoding”).

ding” heuristic:
fast as SVP.

Is Log u.
construct g

root of unity:.

of unity} is small.

A subfield-logarithm attack

Say we know Lognormk.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

Start by
Log norr
for each

Various
dependil

s of Log o

>.

og O*

tor problem

e decoding”).

ristic:
P.

8
Ity.
Is small.

A subfield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.fF u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

Start by recursivel
Log normy.F g via
for each F C K.

Various constraint
depending on subf

A subfield-logarithm attack Start by recursively computi

Log normy.F g via norm of ,

Say we know Log norm.
y 5 K:F 8 for each F C K.

for a proper subfield F C K.
Various constraints on Log ¢

We also know Log normy.F gu,

depending on subfield struct
so we know Log normg.fF u.

) This linearly constrains Log u
8") to a shifted sublattice of Log O*.
Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

A subftield-logarithm attack

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).
Degrees of subfields of K:

660
N
330 220 132 60

L AN

165 110 66 _ 44~30™ 20" 12
o 33 A T 10 4
Wz//

\\1//

|d-logarithm attack

<now Lognormy.F g
per subfield F C K.

know Log normg.F gu,
iow Lognormg.F u.

arly constrains Log u

ted sublattice of Log O*.

of independent
1ts: unit rank for F.

ments close to Log gu.

'mension lattice problem,

ink of F is positive.

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

X N

165 110 6m 20 12
5|5YW5
Wz//

\\1//

Most ex
Compos
K =Q(s
CVP be

m attack

normy .F g
Id FC K.

nNormMyg-F g U,
XMk -F U.

rains Log u

tice of Log O*.

ndent
ank for F.

e to Log gu.

attice problem,

5 positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

X N

165 110 6?% 20~ 12
o 33 A T 10 4
iEiFrgQﬁfééé//

\\1//

Most extreme case
Composite of quac

K=Q(v2,v3,V

CVP becomes triv

s u,

lem,

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

L T ATTIN

165 110 66 _ 44~30™ 20" 12
5|5YW5
Wz//

\\1//

Most extreme case:

Composite of quadratics, su

K=Q(v2 v3,V5,...,

CVP becomes trivial!

V2!

Start by recursively computing Most extreme case:

Log normy.F g via norm of gO Composite of quadratics, such as
for each F C K. K= Q(\/§ v3.4/5 ... v 29).

. . CVP becomes triviall
Various constraints on Log u,

depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).
Degrees of subfields of K:

660
N
330 220 132 60

T T AN

165 110 66 _ 44~30™ 20" 12
o 33 A T 10 4
Wz//

\\1//

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

T T AN

165 110 66 _ 44~30™ 20" 12
o 33 A T 10 4
Wz//

\\1//

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Many intermediate cases.

“Subexponential in cyclotomic
rings of highly smooth index":
It's much more general than that.

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

T T AN

165 110 66 _ 44~30™ 20" 12
o 33 A T 10 4
Wz//

\\1//

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Many intermediate cases.

“Subexponential in cyclotomic
rings of highly smooth index":
It's much more general than that.

For cyclotomics this approach
Is superseded by subsequent

Campbell-Groves—Shepherd
algorithm, using known (good)
basis for cyclotomic units.

