NaCl: a new crypto library

D. J. Bernstein, U. lllinois Chicago
& T. U. Eindhoven
Tanja Lange, T. U. Eindhoven

Joint work with:
Peter Schwabe, R. U. Nijmegen

A CRYPTO NERD'S WHAT WOULD

I MAGINATION & 1 ACTUALLY HAPPEN:

HIS LAPTDPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH

l:LuerR To CRACK \T- THIS $5 WRENCH UNTIL
Liﬂ""l!r ‘E‘:'IT REN GOT T,

xkcd.com/538/

AES-128, RSA-2048, etc.

are widely accepted standards.

Obviously infeasible to break

by best attacks in literature.

lm

N

blementations are avai

obublic cryptographic i

such as OpenSSL.

able

oraries

Common security practice is

to use those implementations.

NaCl: a new crypto library

D. J. Bernstein, U. lllinois Chicago
& T. U. Eindhoven
Tanja Lange, T. U. Eindhoven

Joint work with:
Peter Schwabe, R. U. Nijmegen

A CRYPTO NERD'S WHAT \WoULD

I MAGINATION & 1 ACTUALLY HAPPEN:

HIS LAFTOPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH

l:LuerR To CRACK \T- THIS $5 WRENCH UNTIL
U056 ‘E‘:'IT REN GOT T,

= “fﬂ‘% i

xkcd.com/538/

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

new crypto library

rnstein, U. lllinois Chicago

Eindhoven

inge, T. U. Eindhoven

rk with:

hwabe, R. U. Nijmegen

_Ds

J

NCRYPTED.
NILLION-DOLLAR,
RACK \T.

{0 Goop! ITS
1096 -BIT RGAL

a4

1

WHAT WOULD

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HTT HIM WITH

THIS $5 WRENCH UNTIL
HE TEUS US THE PASSWORD.

\ GoT 1T,

O O)
M)

m/538/

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have
a new ci
NaCl (*
the unde

nacl.cz

and exte

Acknowl
code cor
Matthev
Media),
Emilia K
Adam L.
Bo-Yin

o library

. lllinois Chicago
g

. Eindhoven

- U. Nijmegen

WHAT \WOULD
IJ"—".'CTL'HLL"'F HAPPEN:

HIS LAPTOP'S ENCRYPTED.

DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEUS US THE. PASSWORD.

GoT 1T,

O O)
M)

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed
a hew cryptograpr

NaCl (“salt”), to :
the underlying pro

nacl.cr.yp.to:

and

extensive doc

Acknowledgments

code contributions
Matthew Dempski

Mec

Emi

ia), Niels Duif
ia Kasper (Le

Adam Langley (G
Bo-Yin Yang (Aca

hicago

en

gen

]

(PTED.
HIM WITH
UNTIL
AGSWORD.

T,

)

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed+impleme

a new cryptographic library,
NaCl (“salt”), to address
the underlying problems.

nacl.cr.yp.to: source

and extensive documentatio

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Mec

Emi

ia), Niels Duif (Eindhov
ia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sin

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed+implemented

a new cryptographic library,
NaCl (“salt”), to address
the underlying problems.

nacl.cr.yp.to: source

and

extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Mec

Emi

ia), Niels Duif (Eindhoven),
ia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).

3, RSA-2048, etc.

ly accepted standards.

ly infeasible to break

attacks in literature.

ntations are aval
- cryptographic i
OpenSSL.

able

oraries

1 security practice Is

10se Implementations.

tography is still

rl Complete failures

lentiality and integrity.

We have designed+implemented

a new cryptographic library,
NaCl (“salt”), to address
the underlying problems.

nacl.cr.yp.to: source
and extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi
Media), Niels Duif (Eindhoven),

Emilia Kasper (Leuven),

Adam Langley (Google),

Bo-Yin Yang (Academia Sinica).

Most of
IS Ccryptc
Primary

Main ta
authent

Alice ha

Uses Bo
Alice's s
authenti
Sends ¢

Bob use
and Bok
to verity

A8, etc.
d standards.

le to break
literature.

re available

1phic libraries

practice Is
mentations.

Is still
ote failures
ind Integrity.

We have designed+implemented

a new cryptographic library,
NaCl (“salt”), to address
the underlying problems.

nacl.cr.yp.to: source
and extensive documentation.

Acknowledgments:
code contributions from
Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),
Emilia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).

Most of the Intern
Is cryptographicall
Primary goal of N

Main task: public
authenticated en

Alice has a messaj

Uses Bob's public
Alice’s secret key
authenticated cipt
Sends ¢ to Bob.

Bob uses Alice's p
and Bob's secret |
to verify and recoy

1s.

We have designec

+1mplemented

a hew cryptograp
NaCl (“salt”), to

nic library,

address

the underlying problems.

nacl.cr.yp.to:

source

and extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Media), Niels Dui

f (Eindhoven),

Emilia Kasper (Leuven),

Adam Langley (G

Bo-Yin Yang (Academia Sinica).

oogle),

Most of the Internet
Is cryptographically unprote
Primary goal of NaCl: Fix tl

Main task: public-key
authenticated encryption.

Alice has a message m for E

Uses Bob's public key and
Alice's secret key to comput
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’s public key
and Bob's secret key
to verify and recover m.

We have designed+implemented

a new cryptographic library,
NaCl (“salt”), to address
the underlying problems.

nacl.cr.yp.to: source

and extensive documentation.

Acknowledgments:
code contributions from
Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),
Emilia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).

Most of the Internet
Is cryptographically unprotected.
Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

 designed+implemented

yptographic library,

salt”), to address
rlying problems.

".yp.to: source
nsive documentation.

edgments:

1tributions from

v Dempsky (Mochi

Niels Duif (Eindhoven),
asper (Leuven),

angley (Google),

Yang (Academia Sinica).

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice usi
typical c

Generate
Use AES
Hash en
Read RS
Use key
Read Bc
Use key
Convert

Plus mo
allocate
handle €

+Implemented
1c library,

address
blems.

source

imentation.

, from

/ (Mochi

- (Eindhoven),
uven),

bogle),

demia Sinica).

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptograp

Generate random
Use AES key to el
Hash encrypted p:
Read RSA key fro
Use key to sign hec
Read Bob's key fri
Use key to encryp
Convert to wire fa

Plus more code:
allocate storage,
handle errors, etc.

nted

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptographic library

Generate random AES key.
Use AES key to encrypt pac
Hash encrypted packet.
Read RSA key from wire for
Use key to sign hash.

Read Bob's key from wire fc
Use key to encrypt signature
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.
Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

the Internet

graphically unprotected.

goal of NaCl: Fix this.

sk: public-key
icated encryption.

s a message m for Bob.

b's public key and
ecret key to compute

cated ciphertext c.
to Bob.

s Alice’s public key
's secret key
and recover m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice usi

C = CIYy]

et

y unprotected.

aCl: Fix this.

-key
cryption.

re m for Bob.

key and
[0 compute
ertext C.

ublic key

ey
/er m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box (.

“ted.
nI1S.

ob.

Alice using a

typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
c = crypto_box(m,n,pk,s

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box(m,n,pk,sk)

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box(m,n,pk,sk)

32-byte secret key sk.
32-byte public key pk.

24-byte nonce n.
c Is 16 bytes longer than m.

All objects are C
std: :string variables

represented in wire format,
ready for storage/transmission.

C NaCl: similar, using pointers;
no memory allocation, no failures.

ng a Alice using NaCl: Bob veri

ryptographic library: c = crypto_box(m,n,pk,sk) m=Ccrypt
> random AES key. 32-byte secret key sk. Initial ke
> key to encrypt packet. 32-byte public key pk. pk = cr;
crypted packet. 24-byte nonce n.

A key from wire format. c is 16 bytes longer than m.

to sign hash.

All objects are C
std: :string variables

b’'s key from wire format.

to encrypt signature etc. . .
yPt Sls represented in wire format,

to wire format. .
ready for storage/transmission.

re code:
C NaCl: similar, using pointers;

storage, . .
no memory allocation, no failures.

rrors, etc.

hic library:

AES key.
\crypt packet.
1cket.

m wire format.
sh.

om wire format.

t signature etc.

rmat.

Alice using NaCl:
= crypto_box(m,n,pk,sk)

32-byte secret key sk.
32-byte public key pk.

24-byte nonce n.
c Is 16 bytes longer than m.

All objects are C
std: :string variables

represented in wire format,
ready for storage/transmission.

C NaCl: similar, using pointers;
no memory allocation, no failures.

Bob verifying, dec

m=crypto_box_oj

Initial key generat
pk = crypto_box

Alice using NaCl: Bob verifying, decrypting:

c = crypto_box(m,n,pk,sk) m=crypto_box_open(c,n,]
32-byte secret key sk. Initial key generation:

ket. 32-byte public key pk. pk = crypto_box_keypair
24-byte nonce n.

mat. c Is 16 bytes longer than m.
All objects are C

rmat. , .
std: :string variables

> etc.

represented in wire format,
ready for storage/transmission.

C NaCl: similar, using pointers;
no memory allocation, no failures.

Alice using NaCl: Bob verifying, decrypting:

= crypto_box(m,n,pk,sk) m=crypto_box_open(c,n,pk,sk)
32-byte secret key sk. Initial key generation:
32-byte public key pk. pk = crypto_box_keypair (&sk)

24-byte nonce n.
c Is 16 bytes longer than m.

All objects are C
std: :string variables

represented in wire format,
ready for storage/transmission.

C NaCl: similar, using pointers;
no memory allocation, no failures.

Alice using NaCl:
= crypto_box(m,n,pk,sk)

32-byte secret key sk.
32-byte public key pk.

24-byte nonce n.
c Is 16 bytes longer than m.

All objects are C
std: :string variables

represented in wire format,
ready for storage/transmission.

C NaCl: similar, using pointers;

no memory allocation, no failures.

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

ng NaCl:
oto_box(m,n,pk,sk)

secret key sk.
public key pk.
nonce n.

ytes longer than m.

ts are C

ring variables
ted in wire format,
r storage/transmission.

similar, using pointers;

ory allocation, no failures.

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
04-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sc
Don't aj

m,n,pk,sk)

sk.
pk.

r than m.

ables
> format,
transmission.

sing pointers;

lon, no failures.

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sounds too
Don't applications

on.

ers:
lures.

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sounds too simple!
Don't applications need mor

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sounds too simplel
Don't applications need more?”

Bob verifying, decrypting:
m=crypto_box_open(c,n,pk,sk)

Initial key generation:
pk = crypto_box_keypair (&sk)

Can instead use signatures
for public messages:

pk = crypto_sign_keypair (&sk)
64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sounds too simplel
Don't applications need more?”

Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,

high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.
QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.

fying, decrypting:

;0_box_open(c,n,pk,sk)

y generation:
ypto_box_keypair (&sk)

ead use signatures
C messages:

ypto_sign_keypair (&sk)
secret key,
public key.

ypto_sign(m, sk)
overhead.

pto_sign_open(sm,pk)

“This sounds too simple!
Don't applications need more?”

Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,
high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.

QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.

Related

Various
languag
github.

TweetN.
on the
Bernstel
Lange, S
tweetns:
twitter

Benchm
Impleme

bench. ¢

rypting:
ben(c,n,pk,sk)

on:
_keypair (&sk)

gnatures
S:

n_keypair (&sk)

n(m, sk)

_open(sm,pk)

“This sounds too simplel
Don't applications need more?”

Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,
high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.

QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.

Related projects

Various ports, rep:
language bindings.
github.com/jed:

TweetNaCl: NaCl
on the path towar

Bernstein, van Ga
Lange, Schwabe,
tweetnacl.cr.yj

twitter.com/twe

Benchmarking of :
Implementations u
bench.cr.yp.to

ok, sk)

(&sk)

r (&sk)

“This sounds too simple!
Don't applications need more?”

Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,
high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.

QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.

Related projects

Various ports, repackaging,
language bindings, etc.: e.g.
github.com/jedisct1/11il

TweetNaCl: NaCl in 100 tw
on the path towards full auc

Bernstein, van Gastel, Janss
Lange, Schwabe, Smetsers.
tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 cry
implementations using same

bench.cr.yp.to

“This sounds too simplel
Don't applications need more?”

Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,
high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.

QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.

Related projects

Various ports, repackaging,
language bindings, etc.: e.g.,
github.com/jedisctl/libsodium

TweetNaCl: NaCl in 100 tweets:
on the path towards full audit.

Bernstein, van Gastel, Janssen,
Lange, Schwabe, Smetsers.
tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 crypto
Implementations using same API:
bench.cr.yp.to

unds too simplel
plications need more?”

s of applications
1Cl's crypto_box:

ve and DNSCrypt,

urity authenticated
on for DNS queries;

| by OpenDNS.

oogle’'s TLS replacement.

T in Ethos OS,
| S replacement.

), encrypted-chat app.

Related projects

Various ports, repackaging,

language bindings, etc.: e.g.,

github.com/jedisctl/libsodium

TweetNaCl:

on the pat
Bernstein,

NaCl in 100 tweets:

n towards full audit.
van Gastel, Janssen,

Lange, Schwabe, Smetsers.

tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 crypto

iImplementations using same API:

bench.cr.yp.to

No secre

2005 Os
6bms to
used for
Attack g
but with

Almost :
use fast
Kernel's
influence

influenci
influenci
of the af
65ms to

simplel
"heed more?”’

-ations

to_box:

NSCrypt,

enticated

S queries;
DNS.

LS replacement.

s OS,

ment.

2d-chat app.

Related projects

Various ports, repackaging,
language bindings, etc.: e.g.,
github.com/jedisctl/libsodium

TweetNaCl: NaCl in 100 tweets:
on the path towards full audit.

Bernstein, van Gastel, Janssen,
Lange, Schwabe, Smetsers.
tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 crypto
Implementations using same API:
bench.cr.yp.to

No secret load ad«

2005 Osvik—=Sham
65ms to steal Lint
used for hard-disk

Attack process on

but without privile

Almost all AES in
use fast lookup ta

Kernel's secret AE

inf

inf

uences table-lo.
uencing CPU c

influencing measu

of the attack proc

6bms to compute

_e?”

ment.

Related projects

Various ports, repackaging,
language bindings, etc.: e.g.,
github.com/jedisctl/libsodium

TweetNaCl: NaCl in 100 tweets:
on the path towards full audit.

Bernstein, van Gastel, Janssen,
Lange, Schwabe, Smetsers.
tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 crypto
iImplementations using same API:
bench.cr.yp.to

No secret load addresses

2005 Osvik—Shamir—Tromer
65ms to steal Linux AES ke
used for hard-disk encryptiol
Attack process on same CPI
but without privileges.

Almost all AES implementat
use fast lookup tables.
Kernel's secret AES key
influences table-load addres:s

influencing CPU cache state
influencing measurable timir
of the attack process.

65ms to compute influence™

Related projects

Various ports, repackaging,
language bindings, etc.: e.g.,
github.com/jedisctl/libsodium

TweetNaCl: NaCl in 100 tweets:
on the path towards full audit.

Bernstein, van Gastel, Janssen,
Lange, Schwabe, Smetsers.
tweetnacl.cr.yp.to

twitter.com/tweetnacl

Benchmarking of >1000 crypto
iImplementations using same API:
bench.cr.yp.to

No secret load addresses

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

projects

ports, repackaging,
> bindings, etc.: e.g.,
com/jedisctl/libsodium

1Cl: NaCl in 100 tweets:
ath towards full audit.

n, van Gastel, Janssen,
ychwabe, Smetsers.
1Icl.cr.yp.to

~.com/tweetnacl

arking of >1000 crypto
ntations using same API:

r.yp.to

No secret load addresses

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

Most cn
still use
but add
intendec
upon th
Not con

ikely to

ackaging,
- etc.: e.g.,
isctl/1ibsodium

iIn 100 tweets;
ds full audit.
stel, Janssen,
>metsers.

). TO

bretnacl

>1000 crypto
sing same API:

No secret load addresses

2005 Osvik—Shamir—Tromer:
65ms to steal Linux AES key
used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel's secret AES key

inf

inf

uences table-load addresses,
uencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence™-.

1

Most cryptographi
still use secret loat
but add “counterr
Intended to obscul
upon the CPU cac
Not confidence-ins

ikely to be breaka

bsodium

eets:
it
en,

pto
API:

No secret load addresses

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

Most cryptographic libraries
still use secret load addresse
but add “countermeasures”

intended to obscure influenc
upon the CPU cache state.

Not confidence-inspiring;

ikely to be breakable.

No secret load addresses

2005 Osvik—Shamir—Tromer:
65ms to steal Linux AES key
used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel's secret AES key

inf

inf

uences table-load addresses,
uencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence™-.

1

Most cryptographic libraries
still use secret load addresses
but add “countermeasures”
intended to obscure influence
upon the CPU cache state.
Not confidence-inspiring;

Ikely to be breakable.

No secret load addresses

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

Most cryptographic libraries
still use secret load addresses
but add “countermeasures”
intended to obscure influence
upon the CPU cache state.
Not confidence-inspiring;

Ikely to be breakable.

NaCl systematically avoids

all loads from addresses
that depend on secret data.
Eliminates this type of disaster.

Timing attack-+defense tutorial:
Schwabe talk tomorrow 11:00.

t load addresses

vik—=Shamir—Tromer:

steal Linux AES key
hard-disk encryption.
yrocess on same CPU
out privileges.

all AES implementations
lookup tables.

secret AES key

s table-load addresses,
ng CPU cache state,

ng measurable timings
'tack process.

compute influence™!.

Most cryptographic libraries
still use secret load addresses
but add “countermeasures”
intended to obscure influence
upon the CPU cache state.
Not confidence-inspiring;

ikely to be breakable.

NaCl systematically avoids

all loads from addresses

that depend on secret data.
Eliminates this type of disaster.

Timing attack-+defense tutorial:
Schwabe talk tomorrow 11:00.

No secre

2011 Br
minutes
machine
Secret b
influence

Most cn
has man
variatior

e.g., mer

Iresses

r—Tromer:
Ix AES key
encryption.

same CPU
ges.

iplementations
bles.

S key

ad addresses,
ache state,
-able timings
ess.

influence™!.

Most cryptographic libraries

still use secret load addresses

but add “countermeasures’

iIntended to obscure influence

upon the CPU cache state.

NaCl systematical

all loads from add

Not confidence-inspiring;
Ikely to be breakable.

y avolds
resses

that depend on secret data.

Eliminates this type of disaster.

Timing attack-+defense tutorial:
Schwabe talk tomorrow 11:00.

No secret branch «

2011 Brumley—Tu
minutes to steal a
machine’'s OpenSS
Secret branch con
influence timings.

Most cryptographi
has many more sn
variations in timin

e.g., memcmp for Il

IONS

€S,

\gS

Most cryptographic libraries
still use secret load addresses
but add “countermeasures”
intended to obscure influence
upon the CPU cache state.
Not confidence-inspiring;

ikely to be breakable.

NaCl systematically avoids

all loads from addresses

that depend on secret data.
Eliminates this type of disaster.

Timing attack-+defense tutorial:
Schwabe talk tomorrow 11:00.

No secret branch conditions

2011 Brumley—Tuveri:
minutes to steal another
machine’'s OpenSSL ECDSA
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MAC

Most cryptographic libraries
still use secret load addresses
but add “countermeasures”
intended to obscure influence
upon the CPU cache state.
Not confidence-inspiring;

ikely to be breakable.

NaCl systematically avoids

all loads from addresses
that depend on secret data.
Eliminates this type of disaster.

Timing attack-+defense tutorial:
Schwabe talk tomorrow 11:00.

No secret branch conditions

2011 Brumley—Tuveri:

minutes to steal another
machine’'s OpenSSL ECDSA key.
Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

Most cryptographic libraries No secret branch conditions

still use secret load addresses 2011 Brumley—Tuveri

minutes to steal another

intended to obscure influence machine’s OpenSSL ECDSA key.
upon the CPU cache state.

but add “countermeasures’

Secret branch conditions

Not confidence-inspiring; influence timings

ikely to be breakable.

Most cryptographic software

NaCl systematically avoids
has many more small-scale

all loads from addresses o L.
variations in timing:

that depend on secret data. e.g., memcmp for IPsec MACs.

Eliminates this type of disaster.

. | NaCl systematically avoids
Timing attack-+defense tutorial:

Schwabe talk tomorrow 11:00.

all branch conditions
that depend on secret data.
Eliminates this type of disaster.

/ptographic libraries
secret load addresses
“countermeasures’

| to obscure influence
> CPU cache state.
fidence-inspiring;

be breakable.

stematically avoids

- from addresses

end on secret data.

es this type of disaster.

attack-+defense tutorial:
> talk tomorrow 11:00.

No secret branch conditions

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

NaCl systematically avoids

all branch conditions

that depend on secret data.
Eliminates this type of disaster.

No padc

1998 Bl
Decrypt

by obser
to ~10°

SSL firs
then che
(which r

Subsequ
more sel

Server r
Dattern

pDattern

c libraries
1 addresses
neasures’
re influence
he state.
pIring;

ble.

y avoids
resses

cret data.

e of disaster.

fense tutorial:
orrow 11:00.

No secret branch conditions

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

NaCl systematically avoids

all branch conditions

that depend on secret data.
Eliminates this type of disaster.

No padding oracle

1998 Bleichenbact
Decrypt SSL RSA
by observing serve
to ~10° variants ¢

SSL first inverts R
then checks for “F
(which many forge

Subsequent proces
more serious Integ

Server responses r
nattern of PKCS f
nattern reveals ple

ter.

»rial:

)0.

No secret branch conditions

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

NaCl systematically avoids

all branch conditions

that depend on secret data.
Eliminates this type of disaster.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertex
by observing server response
to ~210° variants of cipherte

SSL first inverts RSA,

then checks for “PKCS pad«
(which many forgeries have)

Subsequent processing appli
more serious integrity check

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

No secret branch conditions

2011 Brumley—Tuveri:
minutes to steal another

machine’'s OpenSSL ECDSA key.

Secret branch conditions
influence timings.

Most cryptographic software
has many more small-scale
variations in timing:

e.g., memcmp for IPsec MACs.

NaCl systematically avoids

all branch conditions

that depend on secret data.
Eliminates this type of disaster.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext
by observing server responses
to ~210° variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”
(which many forgeries have).

Subsequent processing applies
more serious integrity checks.

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

t branch conditions

umley—Tuveri:

to steal another

's OpenSSL ECDSA key.
ranch conditions

> timings.

/ptographic software
y more small-scale
S In timing:

icmp for IPsec MACGs.

stematically avoids

“h conditions

end on secret data.

es this type of disaster.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses
to ~210° variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies
more serious integrity checks.

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

Typica
try to

ol

between

subseq

Li¢

But har
see, e.g.

conditions

/erl:
nother

L ECDSA key.
ditions

c software
1all-scale

g

Osec MACGs.

y avoids

NS

cret data.

e of disaster.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext
by observing server responses
to ~210° variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”
(which many forgeries have).

Subsequent processing applies
more serious integrity checks.

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

Typica
try to

defense st

nide differer

between padding ¢

subsequent integri

But hard to get tt
see, e.g., Lucky 1:

 key.

ter.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses
to ~210° variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies
more serious integrity checks.

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks anc
subsequent integrity checks.

But hard to get this right:
see, e.g., Lucky 13 and POC

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext
by observing server responses
to ~210° variants of ciphertext.

SSL first inverts RSA,
then checks for “PKCS padding”
(which many forgeries have).

Subsequent processing applies
more serious integrity checks.

Server responses reveal
nattern of PKCS forgeries;

pattern reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:
see, e.g., Lucky 13 and POODLE.

No padding oracles

1998 Bleichenbacher:
Decrypt SSL RSA ciphertext

by
to

SS

then checks for “PKCS padding”

(w

Su

observing server responses
~10° variants of ciphertext.

L first inverts RSA,

nich many forgeries have).

nsequent processing applies

more serious integrity checks.

Server responses reveal

nattern of PKCS forgeries;
pattern reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:
see, e.g., Lucky 13 and POODLE.

NaCl does not decrypt

unless message Is authenticated.
Verification procedure rejects
all forgeries in constant time.
Attacks are further constrained
by per-nonce key separation

and standard nonce handling.

ing oracles

sichenbacher:
SSL RSA ciphertext

VINg Server responses
variants of ciphertext.

- inverts RSA,

cks for “PKCS padding”

nany forgeries have).
ent processing applies
lous Integrity checks.

esponses reveal
of PKCS forgeries;
reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:

see, e.g., Lucky 13 and POODLE.

NaCl does not decrypt

unless message Is authenticated.
Verification procedure rejects
all forgeries in constant time.
Attacks are further constrained
by per-nonce key separation

and standard nonce handling.

Centrali;

2008 Be

OpenSS
had only

Debian «
a subtle
randomr

S

er:
ciphertext
r responses
f ciphertext.

SA,

ries have).
sing applies
rity checks.

eveal
orgeries;
1ntext.

’KCS padding”

Typical defense strategy:

try to hide differences

between pac

subsequent |

But hard to

see, e.g., Lucky 13 and POODLE.

ding checks and
ntegrity checks.

get this right:

NaCl does not decrypt

unless message Is authenticated.

Verification procedure rejects

all forgeries In constant time.

Attacks are further constrained

by per-nonce key separation

and standard nonce handling.

Centralizing rando

2008 Bello: Debia
OpenSSL keys for
had only 15 bits o

Debian developer
a subtle line of O
randomness-gener.

ling

€S

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:

see, e.g., Lucky 13 and POODLE.

NaCl does not decrypt

unless message Is authenticated.
Verification procedure rejects
all forgeries in constant time.
Attacks are further constrained
by per-nonce key separation

and standard nonce handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years
had only 15 bits of entropy.

Debian developer had remo\
a subtle line of OpenSSL
randomness-generating code

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:

see, e.g., Lucky 13 and POODLE.

NaCl does not decrypt

unless message Is authenticated.
Verification procedure rejects
all forgeries in constant time.
Attacks are further constrained
by per-nonce key separation
and standard nonce handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years
had only 15 bits of entropy.

Debian developer had removed
a subtle line of OpenSSL
randomness-generating code.

Typical defense strategy:

try to hide differences

between padding checks and
subsequent integrity checks.

But hard to get this right:

see, e.g., Lucky 13 and POODLE.

NaCl does not decrypt

unless message Is authenticated.
Verification procedure rejects
all forgeries in constant time.
Attacks are further constrained
by per-nonce key separation

and standard nonce handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years

had only 15 bits of entropy.

Debian developer had removed

a subtle line of OpenSSL

randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.

Reviewing this kernel code

Is much more tractable t

nan

reviewing separate RNG code

In every security library.

defense strategy:
de differences

padding checks and
2nt Integrity checks.

1 to get this right:

, Lucky 13 and POODLE.

es not decrypt

lessage Is authenticated.
lon procedure rejects
ries In constant time.
are further constrained
once key separation
idard nonce handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years

had only

Debian ¢

15 bits of entropy.

eveloper had removed

a subtle

ine of OpenSSL

randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.
Reviewing this kernel code

IS much more tractable than

reviewing separate RNG code

In every security library.

Centrali:
merge
pool fee

Merging
auditabl
bad /faill
if there

rategy:
1CEeS

“hecks and
ty checks.

1S right:

} and POODLE.

rypt
authenticated.
lure rejects
stant time.

r constrained
separation

e handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years
had only 15 bits of entropy.

Debian developer had removed
a subtle line of OpenSSL
randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.

Reviewing this kernel code

Is much more tractable than
reviewing separate RNG code
In every security library.

Centralization allo

merge many entro

pool feeding many

Me

auo
baag

rging 1s determ
itable. Can su

/failing /malici

if t

nere IS one goo

)DLE.

ted.

ed

UM

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years

had only

Debian ¢

15 bits of entropy.

eveloper had removed

a subtle

ine of OpenSSL

randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.
Reviewing this kernel code

IS much more tractable than

reviewing separate RNG code

In every security library.

Centralization allows OS to

merge many entropy sources

pool feeding many applicati

Merging Is deterministic anc

auo
bad

itab
/fai

if t

NEre

e. Can survive man
ing/malicious source
Is one good source.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years
had only 15 bits of entropy.

Debian developer had removed
a subtle line of OpenSSL
randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.

Reviewing this kernel code

Is much more tractable than
reviewing separate RNG code
In every security library.

Centralization allows OS to
merge many entropy sources into
pool feeding many applications.

Merging 1s deterministic and
auditable. Can survive many

bad /failing /malicious sources

if there is one good source.

Centralizing randomness

2008 Bello: Debian/Ubuntu
OpenSSL keys for 1.5 years
had only 15 bits of entropy.

Debian developer had removed
a subtle line of OpenSSL
randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.

Reviewing this kernel code

Is much more tractable than
reviewing separate RNG code
In every security library.

Centralization allows OS to

merge many entropy sources into

pool feeding many applications.

Merging 1s deterministic and

auditable. Can survive many

bad /failing /malicious sources

if there is one good source.

Huge step backwards:
Intel's RDRAND in applications.

Single entro
likely to be

0y source; no backup;

noorly cloned;

backdoorable (CHES 2013);
non-auditable. Not used in NaCl.

zing_ randomness

llo: Debian/Ubuntu

L keys for 1.5 years
15 bits of entropy.

leveloper had removed
ine of OpenSSL
1ess-generating code.

os /dev/urandomn,

‘andom-number generator.

1g this kernel code

more tractable than
o separate RNG code
security library.

Centralization allows OS to

merge many entropy sources Into

pool feeding many applications.

Merging Is deterministic and

auditab
bad /fai
If there

e. Can survive many
ing/malicious sources
Is one good source.

Huge step backwards:
Intel’'s RDRAND in applications.
Single entropy source; no backup;

likely to be poorly cloned;
backdoorable (CHES 2013);

non-auditable. Not used in NaCl.

Avoiding

2010 Bu
Sven: S
requiren

for each
leaked F

mness

n/Ubuntu

1.5 years
f entropy.

had removed
yenSSL
ating code.

random,

Imber generator.

Nnel Ccode

table than
| RNG code
brary.

Centralization allows OS to
merge many entropy sources into
pool feeding many applications.

Merging 1s deterministic and
auditable. Can survive many

bad /failing /malicious sources

if there is one good source.

Huge step backwards:
Intel's RDRAND in applications.
Single entropy source; no backup;

likely to be poorly cloned;
backdoorable (CHES 2013);

non-auditable. Not used in NaCl.

Avoliding unnecess

2010 Bushing—Ma
Sven: Sony ignore
requirement of ne
for each signature

leaked PS3 code-s

red

erator.

Centralization allows OS to

merge many entropy sources Into

pool feeding many applications.

Me

auo
bad

rging Is deterministic and
itable. Can survive many

/failing /malicious sources

if t

nere 1s one good source.

Huge step backwards:
Intel’'s RDRAND in applications.
Single entropy source; no backup;

like

ly to be poorly cloned;

backdoorable (CHES 2013);
non-auditable. Not used in NaCl.

Avoliding unnecessary randol

2010 Bushing—Marcan—Segh
Sven: Sony ignored ECDSA
requirement of new randomi
for each signature. = Signa
leaked PS3 code-signing key

Centralization allows OS to
merge many entropy sources into
pool feeding many applications.

Merging 1s deterministic and
auditable. Can survive many

bad /failing /malicious sources

if there is one good source.

Huge step backwards:
Intel's RDRAND in applications.
Single entropy source; no backup;

likely to be poorly cloned;
backdoorable (CHES 2013);

non-auditable. Not used in NaCl.

Avoiding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

Centralization allows OS to
merge many entropy sources Into
pool feeding many applications.

Merging 1s deterministic and
auditable. Can survive many

bad /failing /malicious sources

if there is one good source.

Huge step backwards:
Intel's RDRAND in applications.
Single entropy source; no backup;

likely to be poorly cloned;

backdoorable (CHES 2013);
non-auditable. Not used in NaCl.

Avoiding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

zation allows OS to
1any entropy sources into
ding many applications.

is deterministic and

e. Can survive many
ng/malicious sources
s one good source.

2p backwards:
DRAND in applications.
1tropy source; no backup;

be poorly cloned;
rable (CHES 2013);

itable. Not used in NaCl.

Avoliding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding

2008 St
Appelba
Osvik—d
MD5 =

ws OS to
py sources Into
- applications.

Inistic and
VIVE many
OUS sources
d source.

rds:

n applications.
rce; no backup;
cloned;

ES 2013);

t used in NaCl.

Avoliding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding pure cryj

2008 Stevens—Soti
Appelbaum—Lenst
Osvik—de Weger e
MD5 = rogue CA

5 Into
NSs.

'S

onSs.

ckup;

NaCl.

Avoliding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding pure crypto failure

2008 Stevens—Sotirov—
Appelbaum—-Lenstra—Molnar
Osvik—de Weger exploited
MD5 = rogue CA cert.

Avoiding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding pure crypto failures

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

Avoiding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding pure crypto failures

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MDb) attack.

Avoiding unnecessary randomness

2010 Bushing—Marcan—Segher—
Sven: Sony ignored ECDSA
requirement of new randomness
for each signature. = Signatures
leaked PS3 code-signing key.

NaCl has deterministic
crypto_box and crypto_sign.
Randomness only for keypair.
Eliminates this type of disaster.

Also simplifies testing. NaCl uses
automated test battery from
bench.cr.yp.to.

Avoiding pure crypto failures

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MDb) attack.

Fact: By 1996, a few years
after the introduction of MD5,
Preneel and Dobbertin were
calling for MD5 to be scrapped.

NaCl pays attention to
cryptanalysis and makes
very conservative choices
of cryptographic primitives.

T unnecessary randomness

Avoiding pure crypto failures

shing—Marcan—Segher—
ony ignored ECDSA

lent of new randomness
signature. = Signatures
S3 code-signing key.

s deterministic

box and crypto_sign.
ness only for keypair.

es this type of disaster.

plifies testing. NaCl uses
ed test battery from
r.yp.to.

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years
after the introduction of MD5,
Preneel and Dobbertin were

calling for MD5 to be scrapped.

NaCl pays attention to
cryptanalysis and makes
very conservative choices
of cryptographic primitives.

Speed

Crypto |
often lec

cryptogr
or give L

Example
used RS

Security
Analyses

that RS,
e.g., 20(
estimate
RSA Lal

Move to

ary randomness

rcan—Segher—
d ECDSA

N randomness

- = Signatures

igning key.
1StIC
crypto_sign.

for keypair.
ye of disaster.

ing. NaCl uses
ttery from

Avoiding pure crypto failures

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years
after the introduction of MD5,
Preneel and Dobbertin were

calling for MD5 to be scrapped.

NaCl pays attention to
cryptanalysis and makes
very conservative choices
of cryptographic primitives.

Speed

Crypto performan
often lead users tc
cryptographic sect
Or give up on cryp

Example 1: Googl
used RSA-1024 ur

Security note:

Analyses in 2003 ¢
that RSA-1024 we
e.g., 2003 Shamir-
estimated 1 year,
RSA Labs and NI
Move to RSA-204

nness

Avoiding pure crypto failures

er—

1ESS
tures

1gn.
1r.

ter.

| uses

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years
after the introduction of MD5,
Preneel and Dobbertin were

calling for MD5 to be scrapped.

NaCl pays attention to
cryptanalysis and makes
very conservative choices
of cryptographic primitives.

Speed

Crypto performance problen
often lead users to reduce

cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakab
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USL
RSA Labs and NIST respon:
Move to RSA-2048 by 2010

Avoiding pure crypto failures

2008 Stevens—Sotirov—
Appelbaum—Lenstra—Molnar—
Osvik—de Weger exploited
MD5 = rogue CA cert.

2012 Flame: new MD5) attack.

Fact: By 1996, a few years
after the introduction of MD5,
Preneel and Dobbertin were

calling for MD5 to be scrapped.

NaCl pays attention to
cryptanalysis and makes
very conservative choices
of cryptographic primitives.

Speed

Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

r pure crypto failures

svens—Sotirov—
um—Lenstra—Molnar—

e Weger exploited
rogue CA cert.

me: new MDb) attack.

y 1996, a few years
» Introduction of MD5,
and Dobbertin were

or MD5 to be scrapped.

ys attention to
1lysis and makes
servative choices
bgraphic primitives.

Speed

Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example
until 20:

Example
1024:

risk of k
perform:

Example
uses sec

Example
https:/,
IS protec
https:/,
turns ofl
http://

bto failures

rov—
ra—Molnar—
xploited

. cert.

MDb5 attack.

few years
1lon of MD5,
ertin were

) be scrapped.

n to
makes
~hoices

rimitives.

Speed

Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example 2: Tor us
until 2013 switch

Example 3: DNSS
1024: “tradeoff be
risk of key comprc
performance...”

Example 4: Open:
uses secret AES Ic

Example 5:

https://sourcefo
Is protected by SS
https://sourcefo
turns off crypto: r

http://sourcefor

)5,

ved.

Speed

Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.

Example 2: Tor used RSA-1
until 2013 switch to Curve2

Example 3: DNSSEC uses F
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on AF
uses secret AES load addres

Example 5:
https://sourceforge.net/a
is protected by SSL but
https://sourceforge.net/d
turns off crypto: redirects tc

http://sourceforge.net/de

Speed

Crypto performance problems
often lead users to reduce
cryptographic security levels
or give up on cryptography.

Example 1: Google SSL
used RSA-1024 until 2013.

Security note:
Analyses in 2003 concluded

that RSA-1024 was breakable:

e.g., 2003 Shamir—Tromer
estimated 1 year, ~10" USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor used RSA-1024
until 2013 switch to Curve255109.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

yerformance problems
\d users to reduce
aphic security levels
Ip on cryptography.

' 1: Google SSL
A-1024 until 2013.

note:

 In 2003 concluded
A-1024 was breakable;
)3 Shamir—Tromer

d 1 year, ~107 USD.
>s and NIST response:
'RSA-2048 by 2010.

Example 2: Tor used RSA-1024
until 2013 switch to Curve25519.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl ha

e.g. Cry
enc

e.g. no
not

“e problems
) reduce
Irity levels
tography.

e SSL
til 2013.

oncluded

s breakable;
-Tromer
~10" USD.
> | response:
3 by 2010.

Example 2: Tor used RSA-1024
until 2013 switch to Curve255109.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl has no low-s
e.g. crypto_box
encrypts and
e.g. no RSA-1024
not even RSA

1S

Example 2: Tor used RSA-1024
until 2013 switch to Curve25519.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl has no low-security op
e.g. crypto_box always

encrypts and authentic.
e.g. no RSA-1024;
not even RSA-2048.

Example 2: Tor used RSA-1024
until 2013 switch to Curve255109.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl has no low-security options.
e.g. crypto_box always

encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Example 2: Tor used RSA-1024
until 2013 switch to Curve255109.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl has no low-security options.
e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

Example 2: Tor used RSA-1024
until 2013 switch to Curve255109.

Example 3: DNSSEC uses RSA-
1024: “tradeoff between the
risk of key compromise and
performance...”

Example 4: OpenSSL on ARM
uses secret AES load addresses.

Example 5:
https://sourceforge.net/account
is protected by SSL but
https://sourceforge.net/develop
turns off crypto: redirects to

http://sourceforge.net/develop.

NaCl has no low-security options.
e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

' 2: Tor used RSA-1024
|3 switch to Curve25519.

' 3: DNSSEC uses RSA-
‘radeoff between the

ey compromise and
ance. ..

' 4: OpenSSL on ARM
ret AES load addresses.

20}
/sourceforge.net/account
ted by SSL but
/sourceforge.net/develop
- crypto: redirects to

sourceforge.net/develop.

NaCl has no low-security options.

e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

NaCl op

for any «
using Al
CPU ($:

crypto.
crypto.
Crypto.

crypto.

sed RSA-1024
to Curve25519.

EC uses RSA-
tween the
mise and

5SL on ARM
ad addresses.

rge.net/account
L but
rge.net/develop
edirects to

ge.net/develop.

NaCl has no low-security options.

e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

NaCl operations p

for any common p
using AMD Phenc

CPU ($190 in 201
crypto_box: >3l
crypto_box_oper
crypto_sign_op¢

crypto_sign: >

024
H519.

SA-

M
ses.

ccount

evelop

velop.

NaCl has no low-security options.

e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

NaCl operations per second

for any common packet size
using AMD Phenom Il X6 1

CPU ($190 in 2011):
crypto_box: >80000.
crypto_box_open: >8000(
crypto_sign_open: >700(

crypto_sign: >130000.

NaCl has no low-security options.

e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

NaCl operations per second
for any common packet size,

using AMD Phenom |l X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.

crypto_sign: >130000.

NaCl has no low-security options.

e.g. crypto_box always
encrypts and authenticates.
e.g. no RSA-1024;
not even RSA-2048.

Remaining risk:

Users find NaCl too slow =
switch to low-security libraries
or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.
Keeps up with the network.

NaCl operations per second
for any common packet size,

using AMD Phenom |l X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.
crypto_sign: >180000.

Handles arbitrary packet floods
up to ~30 Mbps per CPU,
depending on protocol detalls.

s no low-security options.

pto_box always

rypts and authenticates.
RSA-1024:

even RSA-2048.

ng risk:

\d NaCl too slow =

o low-security libraries
e crypto entirely.

Cl avoids this risk:
exceptionally fast.

ster than other libraries.
p with the network.

NaCl operations per second

for any common packet size,
using AMD Phenom Il X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.
crypto_sign: >180000.

Handles arbitrary packet floods
up to ~30 Mbps per CPU,
depending on protocol detalls.

But wall

1. Pure
for any |

80000 1.
fill up a

2. Pure

for man
from sar
if applic
Crypto.
Crypto.
crypto.

ecurity options.

always
authenticates.

\-2043.

o slow =
rity libraries
ntirely.

this risk:

ly fast.

other libraries.
' network.

NaCl operations per second

for any common packet size,
using AMD Phenom |l X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.
crypto_sign: >180000.

Handles arbitrary packet floods
up to ~30 Mbps per CPU,
depending on protocol detalls.

But wait, it's even

1. Pure secret-key
for any packet size

80000 1500-byte
fill up a 1 Gbps lir

2. Pure secret-key
for many packets
from same public
if application split:
crypto_box into
crypto_box_bef«
crypto_box_afte

tions.

ates.

€S

|ries.

NaCl operations per second

for any common packet size,
using AMD Phenom Il X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.
crypto_sign: >180000.

Handles arbitrary packet floods
up to ~30 Mbps per CPU,
depending on protocol detalls.

But wait, it's even faster!

1. Pure secret-key crypto
for any packet size:

80000 1500-byte packets/se
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box Iinto
crypto_box_beforenm anc

crypto_box_afternm.

NaCl operations per second

for any common packet size,
using AMD Phenom |l X6 1100T
CPU ($190 in 2011):

crypto_box: >80000.
crypto_box_open: >80000.
crypto_sign_open: >70000.
crypto_sign: >180000.

Handles arbitrary packet floods
up to ~30 Mbps per CPU,
depending on protocol detalls.

But wait, it's even faster!

1. Pure secret-key crypto

for any packet size:

80000 1500-byte packets/second
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box into
crypto_box_beforenm and

crypto_box_afternm.

erations per second

“ommon packet size,
VID Phenom |l X6 1100T

190 in 2011):

‘box: >30000.
box_open: >80000.
sign_open: >70000.
sign: >180000.

arbitrary packet floods
30 Mbps per CPU,
1g on protocol detalls.

But wait, it's even faster!

1. Pure secret-key crypto
for any packet size:

80000 1500-byte packets/second
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box into
crypto_box_beforenm and

crypto_box_afternm.

3. Very
of forgec
under kr
no time

(This dc
for forge
but floo
continue
to know

4. Fast
doubling
crypto.
for valid

er second

acket size,
m |l X6 1100T

1):

)000.

1: >30000.
n: > 70000.
130000.

packet floods
yer CPU,
ocol detalils.

But wait, it's even faster!

1. Pure secret-key crypto
for any packet size:

80000 1500-byte packets/second
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box into
crypto_box_beforenm and

crypto_box_afternm.

3. Very fast reject
of forged packets

under known publ
no time spent on

(This doesn't help
for forgeries under
but flooded server
continue providing
to known keys.)

4. Fast batch veri
doubling speed of
crypto_sign_ops¢
for valid signature

100T

)0.

Ods

But wait, it's even faster!

1. Pure secret-key crypto
for any packet size:

80000 1500-byte packets/second
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box Iinto
crypto_box_beforenm and

crypto_box_afternm.

3. Very fast rejection

of forged packets
under known public keys:
no time spent on decryption

(This doesn’t help much

for forgeries under new keys
but flooded server can
continue providing fast servi
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

But wait, it's even faster!

1. Pure secret-key crypto
for any packet size:

80000 1500-byte packets/second
fill up a 1 Gbps link.

2. Pure secret-key crypto
for many packets

from same public key,

if application splits
crypto_box into
crypto_box_beforenm and

crypto_box_afternm.

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn't help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

-, It's even faster! 3. Very fast rejection Also fas
secret-key crypto of ;Corgic packet;. y “NEON
backet size: o e.r nown pu |dc eys.- on 1GH:
500-byte packets/second no Lime spent on decryption. 493349
1 Gbps link. (This doesn't help much + 7.78 «
for forgeries under new keys, for box;
secret-key crypto
but flooded server can 624846 .
/ packets . L .
. continue providing fast service
ne public key,
. . to known keys.)
ation splits
box Into 4. Fast batch verification,
box_beforenm and doubling speed of
_box_afternm. crypto_sign_open
for valid signatures.

faster!

- crypto

ackets /second
K.

- Crypto

key,
5

yrenm and

2T,

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn't help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

Also fast on small

“NEON crypto” (!
on 1GHz ARM Co
498349 cycles (20
+ 7.78 cycles/byt
for box: and for v.

624846 cycles (16

cond

3. Very fast rejection

of forged packets
under known public keys:
no time spent on decryption.

(This doesn’t help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

Also fast on small devices.

“NEON crypto” (CHES 201
on 1GHz ARM Cortex-A8 c
498349 cycles (2000 /second
+ 7.78 cycles/byte (1 Gbps
for box; and for verify:

624846 cycles (1600 /second

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn't help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn't help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,
Samsung Exynos 3110 (Galaxy S);
TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn't help much

for forgeries under new keys,
but flooded server can
continue providing fast service
to known keys.)

4. Fast batch verification,
doubling speed of
crypto_sign_open

for valid signatures.

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,
Samsung Exynos 3110 (Galaxy S);
TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).
2013: Allwinner A13, $5 in bulk.

fast rejection

1 packets
wown public keys:
spent on decryption.

esn' t help much

ries under new keys,
ded server can
 providing fast service
n keys.)

batch verification,
- speed of
Sign_open

signatures.

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end
smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid
X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

Cryptog

The mai

achieve
without

ECC, no
much st
Curve25
curves:

Salsa20,
much la
Poly130!
informat
EdDSA,

collision

on

Cc keys:
decryption.

“much
“new keys,
can

- fast service

fication,

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end
smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid
X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

Cryptographic det

The main NaCl we
achieve very high
without compromi

ECC, not RSA:

much stronger sec
Curve25519, not |
curves. safecurv
Salsa20, not AES:
much larger securi
Poly1305, not HV
information-theore
EdDSA, not ECD!

collision-resilience

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end
smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid
X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

Cryptographic details

The main NaCl work we did

achieve very high speeds
without compromising secur

ECC, not RSA:

much stronger security recot
Curve25519, not NSA/NIST
curves: safecurves.cr.yp
Salsa20, not AES:

much larger security margin
Poly1305, not HMAC.:
information-theoretic securit
EdDSA, not ECDSA:

collision-resilience et al.

Also fast on small devices.

“NEON crypto” (CHES 2012)
on 1GHz ARM Cortex-A8 core:
498349 cycles (2000 /second)
+ 7.78 cycles/byte (1 Gbps)
for box; and for verify:
624846 cycles (1600/second).

1GHz Cortex-A8 was high-end
smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid
X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

Cryptographic details

The main NaCl work we did:

achieve very high speeds
without compromising security.

ECC, not RSA:

much stronger security record.
Curve25519, not NSA/NIST
curves: safecurves.cr.yp.to
Salsa20, not AES:

much larger security margin.
Poly1305, not HMAC.:
information-theoretic security.
EADSA, not ECDSA:

collision-resilience et al.

- on small devices.

crypto” (CHES 2012)
> ARM Cortex-A8 core:
cycles (2000 /second)
ycles/byte (1 Gbps)
and for verify:
cycles (1600 /second).

ortex-A8 was high-end
one core In 2010: e.g.,

s Exynos 3110 (Galaxy S);

P3630 (Motorola Droid
le A4 (iPad 1/iPhone 4).

llwinner A13, $5 in bulk.

Cryptographic details

The main NaCl work we did:

achieve very high speeds
without compromising security.

ECC, not RSA:

much stronger security record.
Curve25519, not NSA/NIST
curves: safecurves.cr.yp.to
Salsa20, not AES:

much larger security margin.
Poly1305, not HMAC.:
information-theoretic security.

EdDSA, not ECDSA:
collision-resilience et al.

Case stu

1985 El
(R,S) is
if BH(M

and R, £

Here g |
B 1s stal
A Is sigr
H(M) is
Signer g

as secref
easlily so

devices.

CHES 2012)
rtex-A8 core:
00/second)

= (1 Gbps)
erify:
00/second).

vas high-end
n 2010: e.g.,

3110 (Galaxy S);

lotorola Droid
d 1/iPhone 4).

13, $5 in bulk.

Cryptographic details

The main NaCl work we did:

achieve very high speeds
without compromising security.

ECC, not RSA:

much stronger security record.
Curve25519, not NSA/NIST
curves: safecurves.cr.yp.to
Salsa20, not AES:

much larger security margin.
Poly1305, not HMAC.:
information-theoretic security.
EdDSA, not ECDSA:

collision-resilience et al.

Case study: EdDS

1985 ElGamal sigr
(R,S) is signature
if BHIM) = ARRS

and R, S €{0,1,.

Here g Is standard
B I1s standard base
A 1s signer’s public
H(M) is hash of n

Signer generates /
as secret powers o
easily solves for S.

nd

Xy S);

roid
e 4).

bulk.

Cryptographic details

The main NaCl work we did:
achieve very high speeds
without compromising security.

ECC, not RSA:

much stronger security record.
Curve25519, not NSA/NIST
curves: safecurves.cr.yp.to
Salsa20, not AES:

much larger security margin.
Poly1305, not HMAC.:
information-theoretic security.
EdDSA, not ECDSA:

collision-resilience et al.

Case study: EdDSA

1985 ElGamal signatures:
(R, S) is signature of M
if BHIM) = ARRS (mod g
and R, 5€4{0,1,...,9— 2}

Here g iIs standard prime,
B 1s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

Cryptographic details

The main NaCl work we did:

achieve very high speeds
without compromising security.

ECC, not RSA:

much stronger security record.
Curve25519, not NSA/NIST
curves: safecurves.cr.yp.to
Salsa20, not AES:

much larger security margin.
Poly1305, not HMAC:
information-theoretic security.
EdDSA, not ECDSA:

collision-resilience et al.

Case study: EdDSA

1985 ElGamal signatures:
(R,S) is signature of M
if BHIM) = ARRS (mod q)
and R,5€{0,1,...,qg—2}.

Here g Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

raphic detalls

n NaCl work we did:
very high speeds
compromising security.

t RSA:

ronger security record.
519, not NSA/NIST
safecurves.cr.yp.to
not AES:

rger security margin.

5, not HMAC:
1on-theoretic security.
not ECDSA:

resilience et al.

Case study: EdDSA

1985 ElGamal signatures:
(R, S) is signature of M
if BHIM) = ARRS (mod q)
and R,5€{0,1,...,9g—2}.

Here g iIs standard prime,
B 1s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

1990 Sc

1. Hash
BH(M) -

Reduces

2. Replz

with twc
BH(M)/!

Saves ti

3. Simp
BH(M)/!

Saves ti

4. Merg
BgH(R.M

= Resil

ails

rk we did:

speeds
sing security.

urity record.
NSA/NIST

es.Cr.yp.to

ty margin.
AC:

tic security.
>A:

et al.

Case study: EdDSA

1985 ElGamal signatures:
(R, S) is signature of M
if BHIM) = ARRS (mod q)
and R,5€{0,1,...,qg—2}.

Here g Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

1990 Schnorr imp

1. Hash R in the
BH(M) — AH(R)RJ

Reduces attacker «

2. Replace three ¢

with two exponent
BH(M)/H(R) = AR

Saves time in veri

3. Simplify by relc
BH(M)/H(R) = AR

Saves time in veri

4. Merge the hast
BHRM) = ARS.

= Resilient to H

.to

Case study: EdDSA

1985 ElGamal signatures:
(R, S) is signature of M
if BHIM) = ARRS (mod q)
and R, 5€{0,1,...,g—2}.

Here g iIs standard prime,
B 1s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

1990 Schnorr improvements

1. Hash R in the exponent:
BHIM) = AH(RIRS.

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHIM)/H(R) = ARS.

Saves time in verification.

4. Merge the hashes:
BH(RM) = ARS

= Resilient to H collisions.

Case study: EdDSA

1985 ElGamal signatures:
(R,S) is signature of M
if BHIM) = ARRS (mod q)
and R,5€{0,1,...,qg—2}.

Here g Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Signer generates A and R
as secret powers of B;
easily solves for S.

1990 Schnorr improvements:

1. Hash R in the exponent:
BHM) = AH(RIRS.

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

dy: EADSA

samal signatures:
, signature of M
) = ARR®> (mod q)
 €4{0,1,...,9g— 2}

s standard prime,
1dard base,

er's public key,
“hash of message.

enerates A and R
- powers of B;
lves for S.

1990 Schnorr improvements:

1. Hash R in the exponent:
BH(M) — AH(R)RS.

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = ARS.

Saves time in verification.

4. Merge the hashes:
BH(RM) = AR>.

= Resilient to H collisions.

5. Elimi
B> =R
Simpler,

6. Com;
Saves sr

(. Use |
Saves sf

A

1atures:

of M
(mod q)
.., q— 2}

| prime,
3

- key,
nessage.

land R
f B;

1990 Schnorr improvements:

1. Hash R in the exponent:
BHM) = AH(RIRS.

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR>

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

5. Eliminate inver
B> = RAH(RM)

Simpler, faster.

6. Compress R to
Saves space in sig

(. Use half-size H
Saves space in sig

1990 Schnorr improvements:

1. Hash R in the exponent:
BHM) = AH(R)RS

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHIM)/H(R) = ARS.

Saves time in verification.

4. Merge the hashes:
BHRM) = AR>.

= Resilient to H collisions.

5. Eliminate inversions for s
B> = RAH(R.M)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

1990 Schnorr improvements:

1. Hash R in the exponent:
BH(M) = AH(R)RS

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR>

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

5. Eliminate inversions for signer:
B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

1990 Schnorr improvements:

1. Hash R in the exponent:
BH(M) = AH(R)RS

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR>

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

5. Eliminate inversions for signer:
B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr's system.

1990 Schnorr improvements:

1. Hash R in the exponent:
BH(M) = AH(R)RS

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR>

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

5. Eliminate inversions for signer:
B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr's system.

But patented. = DSA, ECDSA
avoided most improvements.

1990 Schnorr improvements:

1. Hash R in the exponent:
BH(M) = AH(R)RS

Reduces attacker control.

2. Replace three exponents

with two exponents:
BHM)/H(R) = ARS/H(R)

Saves time in verification.

3. Simplify by relabeling S:
BHM)/H(R) = AR>

Saves time in verification.

4. Merge the hashes:
BH(R.M) = ARS.

= Resilient to H collisions.

5. Eliminate inversions for signer:
B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr's system.

But patented. = DSA, ECDSA
avoided most improvements.

Patent expired in 2008.

hnorr Improvements:

R In the exponent:
= AH(R)RS

attacker control.

ice three exponents

) exponents:
1(R) = ARS/H(R)

me in verification.

lify by relabeling S:
1(R) = AR,

me in verification.

e the hashes:
= AR°.
ent to H collisions.

5. Eliminate inversions for signer:

B> = RAH(R.M)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr’s system.

But patented. = DSA, ECDSA
avoided most improvements.

Patent expired in 2008.

EdDSA
Duif—La

Use ellip
—1-twis
= very
natural :
no excef

Skip sigl
Support

Use dou
and incl

Generate
as a sec
= AvoiIc

‘ovements:

exponent:
5

~ontrol.

Xponents
S:
S/H(R)

1cation.

beling S:
&

1cation.

1ES.

collisions.

5. Eliminate inversions for signer:

B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr's system.

But patented. = DSA, ECDSA
avoided most improvements.

Patent expired in 2008.

EdDSA (CHES 20
Duif-Lange—Schw.

Use elliptic curves
—1-twisted Edwar
= very high speec
natural side-chann
no exceptional cas

Skip signature cor
Support batch ver

Use double-size H
and include A as |

Generate R deterr
as a secret hash o
— Avoid PlayStat

5. Eliminate inversions for signer:
B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr’s system.

But patented. = DSA, ECDSA
avoided most improvements.

Patent expired in 2008.

EdDSA (CHES 2011 Bernst
Duif-Lange—Schwabe—Yang

Use elliptic curves in “comp
—1-twisted Edwards” form.

= very high speed,

natural side-channel protect
no exceptional cases.

Skip signature compression.
Support batch verification.

Use double-size H output,
and include A as input.

Generate R deterministically
as a secret hash of M.
= Avoid PlayStation disast:

5. Eliminate inversions for signer:

B> = RAHRM)

Simpler, faster.

6. Compress R to H(R, M).
Saves space in signatures.

7. Use half-size H output.
Saves space in signatures.

Subsequent research:
extensive theoretical study of
security of Schnorr's system.

But patented. = DSA, ECDSA
avoided most improvements.

Patent expired in 2008.

EdDSA (CHES 2011 Bernstein—
Duif-Lange—Schwabe—Yang):

Use elliptic curves in “complete
—1-twisted Edwards” form.

= very high speed,

natural side-channel protection,

no exceptional cases.

Skip signature compression.
Support batch verification.

Use double-size H output,
and include A as input.

Generate R deterministically
as a secret hash of M.
= Avoid PlayStation disaster.

