NaCl: a new crypto library

D. J. Bernstein, U. lllinois Chicago
& T. U. Eindhoven
Tanja Lange, T. U. Eindhoven

Joint work with:
Peter Schwabe, R. U. Nijmegen

A CRYPTO NERD'S WHAT WOULD

I MAGINATION & 1 ACTUALLY HAPPEN:

HIS LAPTDPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH

l:LuerR To CRACK \T- THIS $5 WRENCH UNTIL
Liﬂ""l!r ‘E‘:'IT REN GOT T,

xkcd.com/538/

AES-128, RSA-2048, etc.

are widely accepted standards.

Obviously infeasible to break

by best attacks in literature.

lm

N

blementations are avai

obublic cryptographic i

such as OpenSSL.

able

oraries

Common security practice is

to use those implementations.



NaCl: a new crypto library

D. J. Bernstein, U. lllinois Chicago
& T. U. Eindhoven
Tanja Lange, T. U. Eindhoven

Joint work with:
Peter Schwabe, R. U. Nijmegen

A CRYPTO NERD'S WHAT \WoULD

I MAGINATION & 1 ACTUALLY HAPPEN:

HIS LAFTOPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH

l:LuerR To CRACK \T- THIS $5 WRENCH UNTIL
U056 ‘E‘:'IT REN GOT T,

= “fﬂ‘% i

xkcd.com/538/

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.



new crypto library

rnstein, U. lllinois Chicago

Eindhoven

inge, T. U. Eindhoven

rk with:

hwabe, R. U. Nijmegen

_Ds

J

NCRYPTED.
NILLION-DOLLAR,
RACK \T.

{0 Goop! ITS
1096 -BIT RGAL

a4

1

WHAT WOULD

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HTT HIM WITH

THIS $5 WRENCH UNTIL
HE TEUS US THE PASSWORD.

\ GoT 1T,

O O)
M)

m/538/

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have
a new ci
NaCl ( *
the unde

nacl.cz

and exte

Acknowl
code cor
Matthev
Media),
Emilia K
Adam L.
Bo-Yin




o library

. lllinois Chicago
g

. Eindhoven

- U. Nijmegen

WHAT \WOULD
IJ"—".'CTL'HLL"'F HAPPEN:

HIS LAPTOP'S ENCRYPTED.

DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEUS US THE. PASSWORD.

GoT 1T,

O O)
M)

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed
a hew cryptograpr

NaCl (“salt”), to :
the underlying pro

nacl.cr.yp.to:

and

extensive doc

Acknowledgments

code contributions
Matthew Dempski

Mec

Emi

ia), Niels Duif
ia Kasper (Le

Adam Langley (G
Bo-Yin Yang (Aca



hicago

en

gen

]

(PTED.
HIM WITH
UNTIL
AGSWORD.

T,

)

AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed+impleme

a new cryptographic library,
NaCl ( “salt” ), to address
the underlying problems.

nacl.cr.yp.to: source

and extensive documentatio

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Mec

Emi

ia), Niels Duif (Eindhov
ia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sin



AES-128, RSA-2048, etc.
are widely accepted standards.

Obviously infeasible to break
by best attacks in literature.

Implementations are available

in public cryptographic libraries
such as OpenSSL.

Common security practice is
to use those implementations.

But cryptography is still
a disaster! Complete failures
of confidentiality and integrity.

We have designed+implemented

a new cryptographic library,
NaCl ( “salt” ), to address
the underlying problems.

nacl.cr.yp.to: source

and

extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Mec

Emi

ia), Niels Duif (Eindhoven),
ia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).



3, RSA-2048, etc.

ly accepted standards.

ly infeasible to break

attacks in literature.

ntations are aval
- cryptographic i
OpenSSL.

able

oraries

1 security practice Is

10se Implementations.

tography is still

rl Complete failures

lentiality and integrity.

We have designed+implemented

a new cryptographic library,
NaCl ( “salt” ), to address
the underlying problems.

nacl.cr.yp.to: source
and extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi
Media), Niels Duif (Eindhoven),

Emilia Kasper (Leuven),

Adam Langley (Google),

Bo-Yin Yang (Academia Sinica).

Most of
IS Ccryptc
Primary

Main ta
authent

Alice ha

Uses Bo
Alice's s
authenti
Sends ¢

Bob use
and Bok
to verity



A8, etc.
d standards.

le to break
literature.

re available

1phic libraries

practice Is
mentations.

Is still
ote failures
ind Integrity.

We have designed+implemented

a new cryptographic library,
NaCl ( “salt” ), to address
the underlying problems.

nacl.cr.yp.to: source
and extensive documentation.

Acknowledgments:
code contributions from
Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),
Emilia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).

Most of the Intern
Is cryptographicall
Primary goal of N

Main task: public
authenticated en

Alice has a messaj

Uses Bob's public
Alice’s secret key
authenticated cipt
Sends ¢ to Bob.

Bob uses Alice's p
and Bob's secret |
to verify and recoy



1s.

We have designec

+1mplemented

a hew cryptograp
NaCl (“salt”), to

nic library,

address

the underlying problems.

nacl.cr.yp.to:

source

and extensive documentation.

Acknowledgments:

code contributions from
Matthew Dempsky (Mochi

Media), Niels Dui

f (Eindhoven),

Emilia Kasper (Leuven),

Adam Langley (G

Bo-Yin Yang (Academia Sinica).

oogle),

Most of the Internet
Is cryptographically unprote
Primary goal of NaCl: Fix tl

Main task: public-key
authenticated encryption.

Alice has a message m for E

Uses Bob's public key and
Alice's secret key to comput
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’s public key
and Bob's secret key
to verify and recover m.



We have designed+implemented

a new cryptographic library,
NaCl ( “salt” ), to address
the underlying problems.

nacl.cr.yp.to: source

and extensive documentation.

Acknowledgments:
code contributions from
Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),
Emilia Kasper (Leuven),

Adam Langley (Google),
Bo-Yin Yang (Academia Sinica).

Most of the Internet
Is cryptographically unprotected.
Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.



 designed+implemented

yptographic library,

salt” ), to address
rlying problems.

".yp.to: source
nsive documentation.

edgments:

1tributions from

v Dempsky (Mochi

Niels Duif (Eindhoven),
asper (Leuven),

angley (Google),

Yang (Academia Sinica).

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice usi
typical c

Generate
Use AES
Hash en
Read RS
Use key
Read Bc
Use key
Convert

Plus mo
allocate
handle €



+Implemented
1c library,

address
blems.

source

imentation.

, from

/ (Mochi

- (Eindhoven),
uven),

bogle),

demia Sinica).

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptograp

Generate random
Use AES key to el
Hash encrypted p:
Read RSA key fro
Use key to sign hec
Read Bob's key fri
Use key to encryp
Convert to wire fa

Plus more code:
allocate storage,
handle errors, etc.



nted

Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptographic library

Generate random AES key.
Use AES key to encrypt pac
Hash encrypted packet.
Read RSA key from wire for
Use key to sign hash.

Read Bob's key from wire fc
Use key to encrypt signature
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.



Most of the Internet

Is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key
authenticated encryption.

Alice has a message m for Bob.

Uses Bob's public key and
Alice's secret key to compute
authenticated ciphertext c.
Sends ¢ to Bob.

Bob uses Alice’'s public key
and Bob's secret key
to verify and recover m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.
Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.



the Internet

graphically unprotected.

goal of NaCl: Fix this.

sk: public-key
icated encryption.

s a message m for Bob.

b's public key and
ecret key to compute

cated ciphertext c.
to Bob.

s Alice’s public key
's secret key
and recover m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice usi

C = CIYy]



et

y unprotected.

aCl: Fix this.

-key
cryption.

re m for Bob.

key and
[0 compute
ertext C.

ublic key

ey
/er m.

Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box (.



“ted.
nI1S.

ob.

Alice using a

typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
c = crypto_box(m,n,pk,s



Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box(m,n,pk,sk)



Alice using a
typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.
Hash encrypted packet.

Read RSA key from wire format.
Use key to sign hash.

Read Bob's key from wire format.

Use key to encrypt signature etc.
Convert to wire format.

Plus more code:
allocate storage,
handle errors, etc.

Alice using NaCl:
= crypto_box(m,n,pk,sk)

32-byte secret key sk.
32-byte public key pk.

24-byte nonce n.
c Is 16 bytes longer than m.

All objects are C
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Examples of applications
using NaCl's crypto_box:

DNSCurve and DNSCrypt,

high-security authenticated
encryption for DNS queries;

deployed by OpenDNS.
QUIC, Google's TLS replacement.

MinimaLT in Ethos OS,
faster TLS replacement.

Threema, encrypted-chat app.
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