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Clock(R): the commutative group
{(x,y) ERxR:x*+y?=1}
under the operations

“0": () — (0, 1)

= (xy) = (=xy);

=+ (xLyn) (k2 y2) &

(x1y2 + y1x2, y1y2 — x1x2).

Y

} neutral = (0, 1)
P = (x1, 1)
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More clock perspectives:

“A parametrized clock™:

t — (sint, cost)

is a group hom R — Clock(R)
inducing R/27Z — Clock(R).

“Complex numbers of norm 1":
{ue C:uu=1}is a group under
1; u— u; uy, up — uiun.

(x,y)— y+ixis a group hom
Clock(R) = {uv e C: vu =1}

“2-dimensional rotations”:
(x,y) — (_)/X;) IS a
group hom Clock(R) < SO»(R).



Clocks over finite fields

Clock(F7) =
{(X,y)EF7><F7:X2—|—y2:1}.
Group operations as before.

Diagram plots F7 as
-3,—2,—1,0,1, 2, 3.
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Larger example: Clock(F1000003)-

Examples of addition

in Clock(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) — (863970, 18817).
16(1000, 2) = (549438, 156853)
17(1000, 2) = (951405, 877356).

“Scalar multiplication” maps

Z x Clock(F,) — Clock(Fg)
by n, P — nP.

We'll build cryptography
from scalar multiplication.
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take 0 if n = 0;

negate (—n)P if n < 0;

double (n/2)P if n € 2Z;

add Pto (n—1)Pif n—1 € 4Z,
else subtract P from (n+ 1)P.



A fast method to compute nP:
take 0 if n = 0;

negate (—n)P if n < 0;

double (n/2)P if n € 2Z;

add Pto (n—1)Pif n—1 € 4Z,
else subtract P from (n+ 1)P.

But figuring out n
given P and nP
is much more difficult.

30 clock additions produce
n(1000, 2) = (947472,736284)
for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize odd prime power g
and (x, y) € Clock(Fg)
of large prime order.

Alice chooses big secret a.
Computes her public key a(x, y).

Bob chooses big secret b.
Computes his public key b(x, y).

Alice computes a(b(x, y)).
Bob computes b(a(x, y)).

They use this shared secret
to encrypt with “AES-GCM" etc.
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Alice's Bob's

secret key a secret key b
Alice’s Bob's
public key public key

a(x, y) >< b(x, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(x, y) ba(x, y)

Need surprisingly large g
to avoid state-of-the-art attacks.
Recommendation: g > 21200,

Better: Switch to elliptic curves.



Addition on an elliptic curve

™

\V4

} neutral = (0, 1)

//‘\

P = (x1, y1)
Pz = (X2 ¥)
P; = (X3 ¥3)

x? 4+ y? =1 —30x°y?

Sum of (x1, y1) and (xo, y2) is
(x1y2+y1x2)/(1=30x1x21y2),
(Y1y2—x1x2)/(14+30x1x2y1y2)).



The clock again, for comparison:

y

} neutral = (0, 1)

Pr = (x1,y1)

x? 4+ y? =1.

Sum of (x1, y1) and (xo, y2) is
(x1y2 + y1x0,

y1y2 — X1X2).



More elliptic curves

Choose an odd prime power g.

Choose a non-square d € Fy.

{(x,y) € Fg X Fg:
x° + y? =1+ dx’y?}
Is a “complete Edwards curve’.

“The Edwards addition law" :

(x1,¥1) + (x2, y2) = (x3, ¥3)
where

X1y2 + Y1X2
X3: ,
1 +dxixoy1yo
O Y1Y2 — X1X2
V3 =

1 —dxixoy1yr
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“What if denominators are 07"

Answer: They aren't!

If X7 + y? = 1+ dxjy;

and X22 +y22 =1+ dx22y22
then dx;xoy1y» can't be £1.

Main steps in proof:
|f (dX1X2y1y2)2 — 1 then
curve equation implies

(x1 + dx1xoy1y051)% =
dxiyi(xo + y2)°.

Conclude that d is a square.
But d is not a square! Q.E.D.
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“Doesn’t this contradict

standard structure theorems?”

e.g. "Every affine algebraic group

Is linear.”

eg. T
cardina

neorem 1. The smallest

ity of a complete system

of addition laws on E equals
two.” (1995 Bosma—Lenstra)

The way out: Don't confuse

geometry with arithmetic.
The Edwards addition law Is
complete for Fg, not Fq(+/d).



Safe, conservative crypto:
Choose prime g = 2%°° — 19.
Choose d = 121665/121666;
this is non-square in Fg.

Use x2 4+ y? = 1 + dx?y?.




Safe, conservative crypto:
Choose prime g = 2%°° — 19.
Choose d = 121665/121666;
this is non-square in Fg.

Use x2 4+ y? = 1 + dx?y?.

Rest of this talk
will switch to square g.



Safe, conservative crypto:
Choose prime g = 2%°° — 19.
Choose d = 121665/121666;
this is non-square in Fg.

Use x2 4+ y? = 1 + dx?y?.

Rest of this talk
will switch to square g.

Disadvantage:
Maybe attacker can exploit
nontrivial subfield of Fg.



Safe, conservative crypto:

C
C

hoose prime g = 22°° — 19.
noose d = 121665/121666;

this is non-square in Fg.

L

se x° + y? =1+ dx?y?.

Rest of this talk
will switch to square g.

Disadvantage:

Maybe attacker can exploit

n

ontrivial subfield of Fyg.

Advantage:

Will speed up scalar mult.



A class group of a quadratic field

Fix prime p € 344Z with p > 19.
e.g. p =27 _ 309

Define C as the curve y? =

6t(t —1)(t —10)(t —5/8)(t — 25)
over F, where § = —2/3°5%,

with specified point 0.

Define J as “JacC":

surface defined by equation

ét(t —1)(t —10)(t —5/8)(t — 25)
— (vt + v)?

mod t2+u1t+uo =0

in variables (ug, u1, vo, v1).



View J projectively,
handling oo carefully.
Define rational operations
0, —, + making J a group.
J is an “Abelian variety".

Rationally map C to J,
taking oo to O.

J is a “C-Abelian variety".
J is initial;

maps uniquely to

any C-Abelian variety.



Kummer coordinates

J has coordinates (x : y : z : t)
supporting very fast computation
of Ps =P34+ P and Py = 2P
given P3 and P, and P; = P3—P.
(1986 Chudnovsky—Chudnovsky,
2006 Gaudry)

Linear combinations of

1, ug, uz, u%, uguy, u%, uou%, Vo V1:

X = 16u0u% — 8u8 + 573uguy —
5u? — 1215000vgvq + 2460ug —
175u1 —1250, etc. Warning: many
wrong formulas in literature;

always use a computer!



Xo Vo Zop 1o X3 y3 Z3
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These coordinates

induce coordinates on J/{+1},
so they don't support

rational group operations,

but they do support
rational scalar multiplication.

Coefficients in computation
are all small, saving time:
(a%: b%: c?: d?)

= (20:1:20:40),
(A% : B%:C?: D?)

= (81:—-39:—1:39).



A Kummer-friendly Scholten curve

If y2 =

6t(t —1)(t—10)(t —5/8)(t — 25)

then
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A Kummer-friendly Scholten curve

If y2 =

6t(t —1)(t—10)(t —5/8)(t — 25)

then

(v(z4+2)3)? = (z—1)(z+1)(z+2)
(z—-1/2)(z+3/2)(z—2/3)

where z = (5 — 2t) /(5 + t).

Define sz — Fp[i]/(i2 + 1);
r = (7 + 4i)? = 33 + 561
s = 159 4+ 56/; w = /—384.

Then (wy(z +2)3/(1 — iz)3)?
= rx3 +sx? +35x+ 7
where x = (14 iz)?/(1 — iz)?.
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Map (x,wy(z +2)3/(1 — iz)3)
to an Edwards curve E over Fpg
by chain of “2-isogenies’ .

View two coordinates over sz
as four coordinates over F;
view curve E as surface W.
Have now mapped C rationally
to this Abelian variety W'.

Compute formulas for

the unique map J — W

of C-Abelian varieties

and a “dual i1sogeny” W — J.
Composition has small kernel.



Cryptographic consequences

Speed records for high-security
a — aP use Edwards coords.

Speed records for high-security
a, P — aP use Kummer coords
for Jacobians of genus-2 curves
with small Kummer coefficients.

"Hyper-and-elliptic-curve”
groups support Edwards coords
and support Kummer coords
with small coefficients.

3 independent constraints

on 2 degrees of freedom,

but everything lifts to Q.



