Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe
Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection

against quantum computers.

Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

Efficient implementation of
code-based cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

. all of the above at once.

implementation of
sed cryptography

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

rk with:

10U

he Universiteit Eindhoven

hwabe

1 University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

. at a high security level.

. Including protection

against quantum computers.

. Including full protection

against cac

branch-prediction attacks, etc.

ne-timing attacks,

. using code-based crypto

with a solid track record.

. all of the above at once.

T he trac

1978 Mc
public-k

Has helc
optimiza
1962 Pr.
1988 Le
1989 Kr
1989 D
1990 Co
1990 val
1991 Co
1993 Ch
1993 Ch

tation of
graphy

is at Chicago &

siteit Eindhoven

siteit Eindhoven

y Nijmegen

Objectives

Set new speed records

for public-key cryptography.

. at a high security level.

. Including protection

against quantum computers.

. Including full protection

against cac

branch-prediction attacks, etc.

ne-timing attacks,

. using code-based crypto

with a solid track record.

. all of the above at once.

The track record

1978 McEliece prc
public-key code-bz:

Has held up well ¢
optimization of at
1962 Prange. 198
1988 Lee—Brickell.
1989 Krouk. 1989
1989 Dumer.
1990 Coffey—Good
1990 van Tilburg.
1991 Coffey—Gooca
1993 Chabanne-C
1993 Chabaud.

g0 &
hoven

hoven

N

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

. all of the above at once.

The track record

1978 McEliece proposed
public-key code-based crypt:

Has held up well after exten

optimization of attack algor
1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Lec
1989 Krouk. 1989 Stern.
1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg. 1991 Dun
1991 Coffey—Goodman—Farr

1993 C
1993 C

d

Nd

hanne—Courteau.

haud.

Objectives

Set new speed records

for public-key cryptography.

. at a high security level.

. Including protection

against quantum computers.

. Including full protection

against cac

branch-prediction attacks, etc.

ne-timing attacks,

. using code-based crypto

with a solid track record.

. all of the above at once.

The track record

1978 McEliece proposed
public-key code-based crypto.

Has held up well after extensive
optimization of attack algorithms:
1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

€S

speed records

c-key cryptography.

high security level.

iding protection

quantum computers.

iding full protection

_dC

yrediction attacks, etc.

ne-timing attacks,

o code-based crypto

olid track record.

f the above at once.

The track record

1978 McEliece proposed
public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

1994 val
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be
Peters—\
2009 Be
2009 Fir
2010 Be
2011 M:
2011 Be
2012 Be
2013 Be
Meurer |

ords
tography.

rity level.

action
omputers.

rotection
ng attacks,

attacks, etc.

sed crypto
record.

/e at once.

The track record

1978 McEliece proposed
public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.
1994 Canteaut—Ck
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz
2009 Bernstein—Lz
Peters—van Tilbor;
2009 Bernstein (p
2009 Finiasz—Senc
2010 Bernstein—Lz
2011 May—Meurer
2011 Becker—Coro
2012 Becker—Joux
2013 Bernstein—Je
Meurer (post-quar

[C.

The track record

1978 McEliece proposed
public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coffey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Pete
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantl
2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Pete
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.
2012 Becker—Joux—May—Me
2013 Bernstein—Jeffery—Lan;g
Meurer (post-quantum).

The track record

1978 McEliece proposed
public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.
1988 Lee—Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg. 1991 Dumer.
1991 Coftfey—Goodman—Farrell.
1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantum).
2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.
2013 Bernstein—Jetfery—Lange—
Meurer (post-quantum).

'k record

“Eliece proposed
2y code-based crypto.

| up well after extensive

tion of attack algorithms:

ange. 1981 Omura.
e—Brickell. 1988 Leon.

ouk. 1989 Stern.

mer.

ffey—Goodman.

1 Tilburg. 1991 Dumer.
ffey—Goodman—Farrell.
abanne—Courteau.

abaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jetfery—Lange—
Meurer (post-quantum).

Example

Some cy
(Intel Cc
from be:

mceliec
(2008 B
gls2b4
(binary ¢
kummer
(hyperel
curve2t
(conserv
mceliec

ronald]

posed
ised crypto.

fter extensive

tack algorithms:

1 Omura.
1988 Leon.

 Stern.

'man.

1991 Dumer.
'man—Farrell.
ourteau.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jetfery—Lange—
Meurer (post-quantum).

Examples of the ¢

Some cycle counts
(Intel Core i5-321(

from bench.cr.y

mceliece encrypt
(2008 Biswas—Sen
gls254 DH
(binary elliptic cur
kummer DH
(hyperelliptic; Asic
curve25519 DH
(conservative ellip
mceliece decryp
ronald1024 decn

sive

thmes:

n.

ner.

ell.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jetfery—Lange—
Meurer (post-quantum).

Examples of the competitior

Some cycle counts on h9ivs
(Intel Core i5-3210M, Ivy Bi
from bench.cr.yp.to:

mceliece encrypt

(2008 Biswas—Sendrier, ~23
gls254 DH

(binary elliptic curve; CHES
kummer DH

(hyperelliptic; Asiacrypt 201
curve25519 DH 1
(conservative elliptic curve)
mceliece decrypt 11
ronald1024 decrypt 13

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—
Peters—van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jetfery—Lange—
Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~=2%0)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908
ronald1024 decrypt 1313324

1 Tilburg.
nteaut—Chabanne.

nteaut—Chabaud.
nteaut—Sendrier.
rnstein—Lange—Peters.
rnstein—Lange—

an Tilborg.

rnstein (post-quantum).

1lasz—Sendrier.
rnstein—Lange—Peters.
y—Meurer—Thomae.
cker—Coron—Joux.

cker—Joux—May—Meurer.

rnstein—Jeffery—Lange—
(post-quantum).

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~280)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
1130908
1313324

mceliece decrypt
ronald1024 decrypt

New dec

~2128 ¢

1dDaNNeE.

1abaud.
ndrier.
inge—Peters.
nge—

)
5 -

ost-quantum).

rier.
inge—Peters.
—Thomae.

n—Joux.

—May—Meurer.

ffery—Lange—

1itum).

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt
(2008 Biswas—Sendrier, ~2%9)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
334438
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
1130908
1313324

kummer DH

mceliece decrypt
ronald1024 decrypt

New decoding spe

%2128

security (n,

S.

m).

S.

urer.

Je—

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~280)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (409

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~=2%0)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~=2%0)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):
60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~=2%0)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):
60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

Examples of the competition

Some cycle counts on h9ivy
(Intel Core i5-3210M, lvy Bridge)
from bench.cr.yp.to:

mceliece encrypt 73092
(2008 Biswas—Sendrier, ~=2%0)
g1s254 DH 76212
(binary elliptic curve; CHES 2013)
kummer DH 88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH 182708
(conservative elliptic curve)
mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):
60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

s of the competition

cle counts on h9ivy
ore 15-3210M, Ivy Bridge)
nch.cr.yp.to:

e encrypt 73092
iswas—Sendrier, ~280)

DH 716212
lliptic curve; CHES 2013)
DH 334438
liptic; Asiacrypt 2014)
519 DH 182708
ative elliptic curve)

e decrypt 1130908

1024 decrypt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constan

The extl
to elimir
Handle :
using on
XOR (=

ompetition

> on h9ivy
)M, Ivy Bridge)
p.to:

. 73092
drier, ~280)
76212
ve; CHES 2013)
33448
crypt 2014)
182708
tic curve)
t 1130908
/pt 1313324

New decoding speeds

~2128 security (n, t) = (4096, 41):

60493 lvy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fan

The extremist's ag
to eliminate timin;
Handle all secret ¢
using only bit ope
XOR (7), AND (&

idge)

73092
76212
2013)
38448

82708

30908
13324

New decoding speeds

~2128 security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load /store addresses

and al

are pub

Dranc

ic. E

n conditions

Iminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

New decoding speeds

~2128 security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

New decoding speeds

~2128 security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

~2%0 security (n, t) = (2048, 32):
26544 vy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

New decoding speeds Constant-time fanaticism

~2128 security (n, t) = (4096, 41): The extremist’s approach
60493 Ivy Bridge cycles. to eliminate timing attacks:
Talk will focus on this case. Handle all secret data

using only bit operations—

Decryption is slightly slower:
(Decryp Tt XOR (), AND (&), etc.

includes hash, cipher, MAC.)

~280 security (n, t) = (2048, 32): Ve take this approach.

26544 vy Bridge cycles. "How can this be

competitive in speed?
All load/store addresses P P

. Are vou really simulatin
and all branch conditions Y y g

. L fleld multiplication with
are public. Eliminates

. hundreds of bit operations
cache-timing attacks etc.

instead of simple log tables?”
Similar improvements for CFS.

oding speeds

curity (n, t) = (4096, 41):

vy Bridge cycles.
' focus on this case.

tion is slightly slower:
hash, cipher, MAC.)

curity (n, t) = (2048, 32):
vy Bridge cycles.

/store addresses
yranch conditions

ic. Eliminates
ming attacks etc.

mprovements for CFS.

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we

Not as s
On a tyj
the XOF
Is actual
operatin
on vectc

eds

t) = (4096, 41):

cycles.
this case.

htly slower:
er, MAC.)

) = (2048, 32):
cycles.

resses
ditions
ytes
ks etc.

nts for CFS.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as It s
On a typical 32-bi
the XOR instructic
Is actually 32-bit 7
operating In parall

on vectors of 32 b

), 41):

,32):

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

t-time fanaticism

emist’'s approach
1ate timing attacks:
|| secret data

ly bit operations—
), AND (&), etc.

this approach.

in this be

tive In speed?
really simulating
ltiplication with

s of bit operations

of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not imn
that this
saves tir
multiplic

aticism

yproach

r attacks:
lata
rations—
), etc.

vach.

ed?

ulating

' with
erations

og tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately ¢
that this “bitslicin
saves time for, e.g

multiplication in F

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Yes, we are. Not immediately obvious

Not as slow as it sounds! that this “bitslicing

On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR, But quite obvious that it
operating in parallel saves time for addition in F51z.

saves time for, e.g.,
multiplication in F,12.

on vectors of 32 bits. Typical decoding algorithms

Low-end smartphone CPU: have add, mult roughly balanced.

128-bit XOR every cycle. Coming next: how to save

lvy Bridge: many adds and most mults.
256-bit XOR every cycle, Nice synergy with bitslicing.
or three 128-bit XORs.

dre.

low as it

sounds!

vical 32-bit CPU,
 Instruction

ly 32-bit

g In para

rs of 32

smartphone CPU:

XOR,
lel

DItS.

XOR every cycle.

e

XOR every cycle,
128-bit XORs.

Not immec

that this

oitslicing”

saves time for, e.g.,

multiplication in F,12.

lately obvious

But quite obvious that it

saves time for addition In F212.

Typical decoding algorit

have adc

Coming next:
many adds anc

, mult roughly

NMS

NOW tO save
most mults.

Nice synergy with bitslicing.

halanced.

The add

Fix n =

Big final
is to finc
of f =c

For eackh

compute
41 adds,

ounds!
t CPU,
on
COR,

el

Its.

ne CPU:
/ cycle.

/ cycle,
ORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that it
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 2!

Big final decoding
is to find all roots
of f = cax™ + -

For each a € F212
compute f(a) by
41 adds, 41 mults

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that it
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of f = C41X41 + -+ C0XO.

For each o € F212,

compute f(a) by Horner's r
41 adds, 41 mults.

Not immediately obvious The additive FFT

that this “bitslicing” Fix n— 4006 — 212 + — 41

saves time for, e.g.,
multiplication in F,12. Big tinal decoding step
Is to find all roots In Fsi0

But quite obvious that it
d Off:C41X41—|—---—|—C0XO.

saves time for addition in F212.

For each ¢ € F212,

Typical decoding algorithms compute f(a) by Horner's rule:

41 adds, 41 mults.

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of f = C41X41 i C()XO.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Not immediately obvious
that this “bitslicing”
saves time for, e.g.,

multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of f = C41X41 i C()XO.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

1ediately obvious

, “bitslicing”

ne for, e.g.,
ation In F212.

e obvious that It
ne for addition in F212.

decoding algorithms

next: how to save

|[ds and most mults.
ergy with bitslicing.

The additive FFT

1, mult roughly balanced.

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of f = C41X41 + -+ C0XO.

For each o € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptc
normally
so Horne

O(nt) =

Ybvious

that It
Ition In F212.

lgorithms

ughly balanced.

/ to save
ost mults.
bitslicing.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of f = C41X41 i C()XO.

For each o € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/
so Horner's rule cc

O(nt) = O(n?/Ig

212-

nced.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of f = C41X41 + -+ C0XO.

For each o € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of f = C41X41 i C()XO.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of f = C41X41 i C()XO.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig?, cig3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

itive FFT

4006 = 212 + =41

decoding step
1 all roots in Fy10

'41X41 + o T C()XO.

NeoAS F212,
 f(a) by Horner's rule:
41 mults.

_hien search: compute

:2i, c;g3i, etc. Cost per

gain 41 adds, 41 mults.

- 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standarce

Want to
f = co -
at all th

Write f
Observe
fla) =
f(—a) =

fo has n
evaluate
by same
Similarly

2+ — 41

step

- C()XO.

Horner's rule:

“h: compute
etc. Cost per
lds, 41 mults.

ds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standard radix-2 |

Want to evaluate
f=cg+ cyx+--
at all the nth root

Write f as fo(x?) -
Observe big overl:
f(a) = fo(a®) + ¢
f(—a) = fo(a®) -

fo has n/2 coeffs;
evaluate at (n/2)r
by same idea recu
Similarly fq.

ule:

Ite
per
1lts.

nults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standard radix-2 FFT:

Want to evaluate
f=c+cx+ -+ ch_1x
at all the nth roots of 1.

Write f as fo(x?) + xf1(x?).
Observe big overlap betweer
f(a) = fo(a®) + afi(a?),

f(—a) = fo(a®) — af(a?).

fo has n/2 coeffs;

evaluate at (n/2)nd roots of
by same idea recursively.
Similarly f;.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standard radix-2 FFT:

Want to evaluate
f=co+cx+- - 4+cp_1x""
at all the nth roots of 1.

Write f as fo(x?) + xfi(x?).
Observe big overlap between
f(a) = fo(a®) + afi(a?),

f(—a) = fo(a®) — af(a?).

fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1
by same idea recursively.
Similarly fq.

tics:
't € O(n/lgn),
ar's rule costs

- O(n?/Ign).

ninute.
/e learn in school
| evaluates

ff polynomial

NS

+o(1) operations?

5 better than n?/Ig n?

Standard radix-2 FFT:

Want to evaluate
f=c+cx+-+cp_1x""

at all the nth roots of 1.

Write f as fo(x?) + xf1(x?).

Observe big overlap between

f(er) = fo(a®)

f(—a) = fo(a?) — afi(a?).

ozfl(ozz),

fo has n/2 coeffs;
evaluate at (n/2)nd roots of 1
by same idea recursively.

Similarly f;.

1

Useless |
Standarc
FFT cor

19388 W.

indepenc
“additivi
Still quit

1996 vo

some Im

2010 Ga
much be

We use
plus son

g n),
)StES

n).

school
S

nial

ations?
an n°/lgn?

Standard radix-2 FFT:

Want to evaluate

f=c+cix+---

+ cp—1x""

at all the nth roots of 1.

Write f as fo(x?) + xf1(x?).

Observe big overla
f(@) = fo(a®)
f(—a) = fo(a®) —

fo has n/2 coeffs;

b between

ozfl(ozz),

afi(a?).

evaluate at (n/2)nd roots of 1
by same idea recursively.

Similarly fq.

1

Useless in char 2:

Standard workarot
FFT considered in

1988 Wang—Zhu,
independently 198
“additive FFT" In

Still quite expensi

1996 von zur Gatl
some Improvemen

2010 Gao—Mateer:
much better addit

We use Gao—Mate

plus some new Im

Standard radix-2 FFT:

Want to evaluate
f=co+cix+ -+ cp_1x""
at all the nth roots of 1.

1

Write f as fo(x?) + xf1(x?).
Observe big overlap between
f(a) = fo(a®) + afi(a?),

f(—a) = fo(a®) — af(a?).

fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1
by same idea recursively.
Similarly f;.

Useless in char 2: o = —«.
Standard workarounds are p
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerha
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvement

Standard radix-2 FFT:

Want to evaluate
f=co+cx+- 4+ cp_1x""
at all the nth roots of 1.

Write f as fo(x?) + xf1(x?).
Observe big overlap between
f(a) = fo(a®) + afi(a?),

f(—a) = fo(a®) — af(a?).

fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1
by same idea recursively.
Similarly fq.

1

Useless in char 2: o = —a.
Standard workarounds are painful.
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

1 radix-2 FFT:

“evaluate
_ C]_X _|_ . _|_ Cn—].Xn_
e nth roots of 1.

1

as fo(x?) + xfi(x?).
big overlap between
fo(a?) + afi(a?),

- fo(a?) — afi(a?).

/2 coeffs;
at (n/2)nd roots of 1

idea recursively.
£

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and
f = co -
on a Slz¢

Their m
fo(X2 +

Big over
fo(a?
and f(a
fo(a2 +

“Twist”

Then {c
size-(n/:
Apply sc

-FT:

] _|_ Cn—]_Xn_l

s of 1.

+ xf1(x?).
p between
f (a?),
afi(a?).

\d roots of 1
rsively.

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer e
f=cyp+ c1x—+ -
on a size-n Fo-line

Their main idea: \
fo(x2 + x) 4+ xFf (»

Big overlap betwe:
fo(a? + o) + afi(
and f(a+1) =

fo(a® + o) + (o A

“Twist” to ensure
Then {oz2 + oz} 1S
size-(n/2) Fo-line:
Apply same idea r

1—1

1

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
f=c+cix+ -+ cp_1x
on a size-n Fo-linear space.

Their main idea: Write f as
fo(x? + x) + xf(x% + x).

Big overlap between f(a) =
fo(a? + o) + afi(a? + o)
and f(a+1) =

fo(a® + @) + (a + 1)fi(a” -

“Twist” to ensure 1 € space
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
f=co+cx+- 4+ cp_1x""
on a size-n Fo-linear space.

1

Their main idea: Write f as
fo(x2 + x) + xfl(x2 + X).

Big overlap between f(a) =
fo(a? + o) + afi(a® + a)
and f(a+1) =

fo(a? + a) + (o + 1)fi(a? +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

n char 2: oo = —a.

1 workarounds are painful.

isidered impractical.

ang—/hu,
lently 1989 Cantor:
= FFT" in char 2.

e expensive.

n zur Gathen—Gerhard:
provements.

o—Mateer:
tter additive FFT.

Gao—Mateer,
1e new Improvements.

Gao and Mateer evaluate
f=c+cix+- -+ cp_1x""
on a size-n Fo-linear space.

1

Their main idea: Write f as
fo(x2 + x) 4+ xh (X2 + X).

Big overlap between f(a) =
fo(a? + o) + afi(a? + a)

and f(a+1) =

fo(a? + a) + (o + 1)fi(a? +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Results

60493 |\

8622 fc
20846 fc
7714 fc
14794 fc
8520 fc

Code wi
We're st

Also 10

More Inf

Cr.yp.1

o — —O.

Inds are painful.

\practical.

O Cantor:
char 2.

/€.

1en—Gerhard:
LS.

ive FFT.

er,
provements.

Gao and Mateer evaluate
f=c+cax+ -+ C,7_1X”_1
on a size-n Fo-linear space.

Their main idea: Write f as
fo(x2 + x) + Xfl(x2 + X).

Big overlap between f(a) =
fo(a? + o) + afi(a® + a)

and f(a+1) =

fo(a? + a) + (o + 1)fi(a? +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Results

60493 lvy Bridge «

8622 for permuts
20846 for syndron

7714 for BM.
14794 for roots.

8520 for permutz

Code will be publi
We're still speedin

Also 10x speedup

More information:
cr.yp.to/paper:

qinful.

rd:

Gao and Mateer evaluate
f=c+cx+-+cp_1x""
on a size-n Fo-linear space.

1

Their main idea: Write f as
fo(x2 + x) 4+ xh (X2 + X).

Big overlap between f(a) =
fo(a? 4+ o) + afi(a? + a)

and f(a+1) =

fo(a? + a) + (o + 1)fi(a? +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:
cr.yp.to/papers.html#m

Gao and Mateer evaluate
f=c+cax+ -+ C,7_1X”_1
on a size-n Fo-linear space.

Their main idea: Write f as
fo(x2 + x) + Xfl(x2 + X).

Big overlap between f(a) =
fo(a? + o) + afi(a’® + a)

and f(a+1) =

fo(a? + a) + (o + 1)fi(a? +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

Mateer evaluate
_ C]_X _|_ C . _|_ Cn—].Xn—
-n Fo-linear space.

1

ain idea: Write f as
x) 4+ xfi(x% + x).

lap between f(a) =

o) + afi(a’® + a)

+1) =

a) + (a+ 1) (a? + a).

to ensure 1 € space.
x° + a}is a

2) Fo-linear space.
ime idea recursively.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What yc

Cryptosy

Our spe
(We nov

Cr.yp.t

Fast syn
without
Importal

Fast sec
using bl
sorting r
permuta

valuate
-+ cp—1x"
ar space.

1

Nrite f as
2+ x).

en f(a) =

o + a)

1) (a? + o).

1 € space.
A

Ir space.
ecursively.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in |
Cryptosystem spec

Our speedups to 2

(We now have mo

cr.yp.to/paper:

Fast syndrome cor
without big precol
Important for lighs

Fast secret permu
using bit operatior
sorting networks,

permutation netw

1—1

- o).

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in paper:
Cryptosystem specification.

Our speedups to additive FF

(We now have more speedu
cr.yp.to/papers.html#a

Fast syndrome computation

without big precomputed m
Important for lightweight!

Fast secret permutation
using bit operations:
sorting networks,
permutation networks.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

Also 10x speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in paper:
Cryptosystem specification.

Our speedups to additive FFT.

(We now have more speedups:
cr.yp.to/papers.html#auth256.)

Fast syndrome computation

without big precomputed matrix.
Important for lightweight!

Fast secret permutation
using bit operations:
sorting networks,
permutation networks.

