D. J. BernsteinUniversity of Illinois at Chicago &Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

<u>Objectives</u>

Set new speed records for public-key cryptography.

D. J. BernsteinUniversity of Illinois at Chicago &Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

D. J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

D. J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

D. J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

... using code-based crypto with a solid track record.

D. J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Joint work with:

Tung Chou Technische Universiteit Eindhoven

Peter Schwabe Radboud University Nijmegen

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

... using code-based crypto with a solid track record.

... all of the above *at once*.

implementation of sed cryptography

rnstein

ty of Illinois at Chicago & the Universiteit Eindhoven

ork with:

ou

che Universiteit Eindhoven

hwabe

d University Nijmegen

<u>Objectives</u>

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

... using code-based crypto with a solid track record.

... all of the above at once.

The trac

1978 Mo

Has held optimiza

1962 Pr

1988 Le

1989 Kr

1989 Du

1990 Co

1990 vai

1991 Co

1993 Ch

1993 Ch

itation of graphy

is at Chicago & siteit Eindhoven

siteit Eindhoven

y Nijmegen

<u>Objectives</u>

Set new speed records for public-key cryptography.

- ... at a high security level.
- ... including protection against quantum computers.
- ... including full protection against cache-timing attacks, branch-prediction attacks, etc.
- ... using code-based crypto with a solid track record.
- ... all of the above *at once*.

The track record

1978 McEliece propublic-key code-ba

Has held up well a optimization of at

1962 Prange. 198 1988 Lee–Brickell.

1989 Krouk. 1989

1989 Dumer.

1990 Coffey-Good

1990 van Tilburg.

1991 Coffey-Good

1993 Chabanne-C

1993 Chabaud.

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

... using code-based crypto with a solid track record.

... all of the above at once.

The track record

1978 McEliece proposed public-key code-based crypto

Has held up well after exten optimization of attack algor 1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Led

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dur

1991 Coffey-Goodman-Farr

1993 Chabanne–Courteau.

1993 Chabaud.

hoven

ago &

hoven

n

Objectives

Set new speed records for public-key cryptography.

... at a high security level.

... including protection against quantum computers.

... including full protection against cache-timing attacks, branch-prediction attacks, etc.

... using code-based crypto with a solid track record.

... all of the above *at once*.

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey-Goodman-Farrell.

1993 Chabanne-Courteau.

1993 Chabaud.

es

speed records c-key cryptography.

high security level.

ding protection quantum computers.

iding full protection cache-timing attacks, orediction attacks, etc.

g code-based crypto olid track record.

f the above at once.

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey-Goodman-Farrell.

1993 Chabanne-Courteau.

1993 Chabaud.

1994 va

1994 Ca

1998 Ca

1998 Ca

2008 Be

2009 Be

Peters-v

2009 Be

2009 Fir

2010 Be

2011 Ma

2011 Be

2012 Be

2013 Be

Meurer

ords otography.

rity level.

ection computers.

protection

ng attacks,

attacks, etc.

sed crypto record.

re at once.

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey-Goodman-Farrell.

1993 Chabanne-Courteau.

1993 Chabaud.

1994 van Tilburg. 1994 Canteaut–Ch

1998 Canteaut-Ch 1998 Canteaut-Se

2008 Bernstein-La

2009 Bernstein-La

Peters-van Tilborg

2009 Bernstein (p

2009 Finiasz-Send

2010 Bernstein-La

2011 May-Meurer

2011 Becker-Coro

2012 Becker-Joux

2013 Bernstein-Je

Meurer (post-quar

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

tc.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey-Goodman-Farrell.

1993 Chabanne-Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut-Chabanne.

1998 Canteaut-Chabaud.

1998 Canteaut-Sendrier.

2008 Bernstein-Lange-Peter

2009 Bernstein-Lange-

Peters-van Tilborg.

2009 Bernstein (post-quanti

2009 Finiasz–Sendrier.

2010 Bernstein-Lange-Peter

2011 May-Meurer-Thomae.

2011 Becker-Coron-Joux.

2012 Becker–Joux–May–Me

2013 Bernstein-Jeffery-Lang

Meurer (post-quantum).

The track record

1978 McEliece proposed public-key code-based crypto.

Has held up well after extensive optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee-Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey-Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey-Goodman-Farrell.

1993 Chabanne-Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut-Chabanne.

1998 Canteaut-Chabaud.

1998 Canteaut-Sendrier.

2008 Bernstein-Lange-Peters.

2009 Bernstein-Lange-

Peters-van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz-Sendrier.

2010 Bernstein-Lange-Peters.

2011 May-Meurer-Thomae.

2011 Becker-Coron-Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein-Jeffery-Lange-

Meurer (post-quantum).

ck record

- Eliece proposed ey code-based crypto.
- d up well after extensive ation of attack algorithms:
- ange. 1981 Omura.
- e-Brickell. 1988 Leon.
- ouk. 1989 Stern.
- ımer.
- ffey-Goodman.
- n Tilburg. 1991 Dumer.
- ffey-Goodman-Farrell.
- abanne-Courteau.
- abaud.

- 1994 van Tilburg.
- 1994 Canteaut-Chabanne.
- 1998 Canteaut-Chabaud.
- 1998 Canteaut-Sendrier.
- 2008 Bernstein-Lange-Peters.
- 2009 Bernstein-Lange-
- Peters-van Tilborg.
- 2009 Bernstein (post-quantum).
- 2009 Finiasz-Sendrier.
- 2010 Bernstein-Lange-Peters.
- 2011 May-Meurer-Thomae.
- 2011 Becker-Coron-Joux.
- 2012 Becker–Joux–May–Meurer.
- 2013 Bernstein-Jeffery-Lange-
- Meurer (post-quantum).

Example

Some cy (Intel Co from be:

mcelied (2008 B

gls254

(binary

kummer (hyperel

curve25

(conserv

mcelied

ronaldi

posed sed crypto.

fter extensive tack algorithms:

1 Omura.

1988 Leon.

Stern.

lman.

1991 Dumer.

lman–Farrell.

ourteau.

1994 van Tilburg.

1994 Canteaut-Chabanne.

1998 Canteaut-Chabaud.

1998 Canteaut-Sendrier.

2008 Bernstein-Lange-Peters.

2009 Bernstein-Lange-

Peters-van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz-Sendrier.

2010 Bernstein-Lange-Peters.

2011 May-Meurer-Thomae.

2011 Becker-Coron-Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein-Jeffery-Lange-

Meurer (post-quantum).

Examples of the c

Some cycle counts (Intel Core i5-3210 from bench.cr.y

mceliece encrypt (2008 Biswas-Sen gls254 DH (binary elliptic curkummer DH (hyperelliptic; Asia

curve25519 DH (conservative ellipted) mceliece decryp

ronald1024 decry

	1994 van Tilburg.
	1994 Canteaut–Chabanne.
	1998 Canteaut-Chabaud.
Ο.	1998 Canteaut-Sendrier.
sive	2008 Bernstein-Lange-Peters.
ithms:	2009 Bernstein-Lange-
	Peters-van Tilborg.
n.	2009 Bernstein (post-quantum).
	2009 Finiasz–Sendrier.
	2010 Bernstein-Lange-Peters.
	2011 May-Meurer-Thomae.
mer.	2011 Becker-Coron-Joux.
ell.	2012 Becker–Joux–May–Meurer.
	2013 Bernstein-Jeffery-Lange-
	Meurer (post-quantum).

Some cycle counts on h9ivg (Intel Core i5-3210M, Ivy Br from bench.cr.yp.to:

mceliece encrypt (2008 Biswas-Sendrier, $\approx 2^8$ gls254 DH (binary elliptic curve; CHES kummer DH (hyperelliptic; Asiacrypt 201 curve25519 DH 1

mceliece decrypt 1

(conservative elliptic curve)

ronald1024 decrypt 13

- 1994 van Tilburg.
- 1994 Canteaut-Chabanne.
- 1998 Canteaut-Chabaud.
- 1998 Canteaut-Sendrier.
- 2008 Bernstein-Lange-Peters.
- 2009 Bernstein-Lange-
- Peters-van Tilborg.
- 2009 Bernstein (post-quantum).
- 2009 Finiasz-Sendrier.
- 2010 Bernstein-Lange-Peters.
- 2011 May-Meurer-Thomae.
- 2011 Becker-Coron-Joux.
- 2012 Becker–Joux–May–Meurer.
- 2013 Bernstein-Jeffery-Lange-

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt 73092 (2008 Biswas-Sendrier, $\approx 2^{80}$) gls254 DH 76212 (binary elliptic curve; CHES 2013) kummer DH 88448 (hyperelliptic; Asiacrypt 2014) curve25519 DH 182708

(conservative elliptic curve)

mceliece decrypt 1130908

ronald1024 decrypt 1313324

n Tilburg.

nteaut-Chabanne.

nteaut-Chabaud.

nteaut-Sendrier.

rnstein-Lange-Peters.

rnstein-Lange-

an Tilborg.

rnstein (post-quantum).

niasz-Sendrier.

rnstein-Lange-Peters.

ay-Meurer-Thomae.

cker-Coron-Joux.

cker–Joux–May–Meurer.

rnstein-Jeffery-Lange-

(post-quantum).

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

73092 mceliece encrypt (2008 Biswas–Sendrier, $\approx 2^{80}$) gls254 DH 76212 (binary elliptic curve; CHES 2013) kummer DH 88448 (hyperelliptic; Asiacrypt 2014) curve25519 DH 182708 (conservative elliptic curve) mceliece decrypt 1130908 ronald1024 decrypt 1313324 New dec

 $pprox 2^{128}$ se

nabanne.

nabaud.

ndrier.

nge-Peters.

inge-

ζ.

ost-quantum).

lrier.

nge-Peters.

Thomae.

n-Joux.

–May–Meurer.

ffery-Lange-

ntum).

Examples of the competition

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

73092 mceliece encrypt (2008 Biswas–Sendrier, $\approx 2^{80}$) gls254 DH 76212 (binary elliptic curve; CHES 2013) kummer DH 88448 (hyperelliptic; Asiacrypt 2014) curve25519 DH 182708 (conservative elliptic curve) mceliece decrypt 1130908 ronald1024 decrypt 1313324

New decoding spe

 $\approx 2^{128}$ security (*n*,

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

mceliece encrypt 73092 (2008 Biswas–Sendrier, $\approx 2^{80}$) gls254 DH 76212 (binary elliptic curve; CHES 2013)

kummer DH 88448

(hyperelliptic; Asiacrypt 2014)

curve25519 DH 182708

(conservative elliptic curve)

mceliece decrypt 1130908

ronald1024 decrypt 1313324

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096)

ſS.

ım).

ſS.

urer.

ge-

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

```
73092
mceliece encrypt
(2008 Biswas–Sendrier, \approx 2^{80})
gls254 DH
                           76212
(binary elliptic curve; CHES 2013)
kummer DH
                           88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH
                          182708
(conservative elliptic curve)
mceliece decrypt
                        1130908
ronald1024 decrypt
                        1313324
```

New decoding speeds

$$\approx 2^{128}$$
 security $(n, t) = (4096, 41)$:

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

```
73092
mceliece encrypt
(2008 Biswas–Sendrier, \approx 2^{80})
gls254 DH
                           76212
(binary elliptic curve; CHES 2013)
kummer DH
                           88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH
                          182708
(conservative elliptic curve)
mceliece decrypt
                        1130908
ronald1024 decrypt
                        1313324
```

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41): **60493** Ivy Bridge cycles. Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

```
73092
mceliece encrypt
(2008 Biswas–Sendrier, \approx 2^{80})
gls254 DH
                           76212
(binary elliptic curve; CHES 2013)
kummer DH
                           88448
(hyperelliptic; Asiacrypt 2014)
curve25519 DH
                          182708
(conservative elliptic curve)
mceliece decrypt
                        1130908
ronald1024 decrypt
                        1313324
```

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41): **60493** Ivy Bridge cycles. Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32): **26544** Ivy Bridge cycles.

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge) from bench.cr.yp.to:

73092 mceliece encrypt (2008 Biswas–Sendrier, $\approx 2^{80}$) gls254 DH 76212 (binary elliptic curve; CHES 2013) kummer DH 88448 (hyperelliptic; Asiacrypt 2014) curve25519 DH 182708 (conservative elliptic curve) mceliece decrypt 1130908 ronald1024 decrypt 1313324

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41): **60493** Ivy Bridge cycles. Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32): **26544** Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

es of the competition

cle counts on h9ivy ore i5-3210M, Ivy Bridge)

nch.cr.yp.to:

iswas–Sendrier, \approx 2 80)

elliptic curve; CHES 2013)

liptic; Asiacrypt 2014)

ative elliptic curve)

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

$$\approx 2^{80}$$
 security $(n, t) = (2048, 32)$:

26544 Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constan

The extito eliminary Handle a using on XOR (^)

<u>ompetition</u>

on h9ivy OM, Ivy Bridge) p.to:

73092 drier, $\approx 2^{80}$) 76212

ve; CHES 2013)

88448

acrypt 2014)

182708

tic curve)

t 1130908

/pt 1313324

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32):

26544 Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fan

The extremist's apton to eliminate timing Handle all secret of using only bit open XOR (^), AND (&

<u>1</u>

ridge)

73092 ⁰)

76212

2013)

88448

4)

82708

30908

13324

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32):

26544 Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32): **26544** Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32): **26544** Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

New decoding speeds

 $\approx 2^{128}$ security (n, t) = (4096, 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower: includes hash, cipher, MAC.)

 $\approx 2^{80}$ security (n, t) = (2048, 32):

26544 Ivy Bridge cycles.

All load/store addresses and all branch conditions are public. Eliminates cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

coding speeds

ecurity (n, t) = (4096, 41):

vy Bridge cycles.

focus on this case.

tion is slightly slower:

hash, cipher, MAC.)

curity (n, t) = (2048, 32):

vy Bridge cycles.

store addresses

oranch conditions

ic. Eliminates

ming attacks etc.

mprovements for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we

Not as some on vectors

<u>eds</u>

t) = (4096, 41): cycles.

this case.

htly slower:

ner, MAC.)

$$(2048, 32)$$
:

cycles.

resses

ditions

ates

cks etc.

ents for CFS.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.

Not as slow as it so On a typical 32-bit the XOR instruction is actually 32-bit appearing in parall on vectors of 32 bit Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

, 32):

5, 41):

S.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach to eliminate timing attacks: Handle all secret data using only bit operations—XOR (^), AND (&), etc.

We take this approach.

"How can this be competitive in speed? Are you really simulating field multiplication with hundreds of bit operations instead of simple log tables?"

Yes, we are.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs.

t-time fanaticism

remist's approach nate timing attacks: all secret data ly bit operations—), AND (&), etc.

this approach.

an this be
tive in speed?
really simulating
ltiplication with
s of bit operations
of simple log tables?"

Yes, we are.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle, or three 128-bit XORs.

Not immediately that this saves times multiplicately

<u>aticism</u>

proach g attacks:

data rations—

), etc.

oach.

ed? ulating with erations

og tables?"

Yes, we are.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs. Not immediately of that this "bitslicin saves time for, e.g. multiplication in **F**

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in $\mathbf{F}_{2^{12}}$.

77

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212} .

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in $\mathbf{F}_{2^{12}}$.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Not as slow as it sounds! On a typical 32-bit CPU, the XOR instruction is actually 32-bit XOR, operating in parallel on vectors of 32 bits.

Low-end smartphone CPU: 128-bit XOR every cycle.

Ivy Bridge: 256-bit XOR every cycle, or three 128-bit XORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in \mathbf{F}_{212} .

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

are.

How as it sounds! bical 32-bit CPU, instruction by 32-bit XOR, g in parallel ors of 32 bits.

smartphone CPU: XOR every cycle.

ge:

XOR every cycle, 128-bit XORs. Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in $\mathbf{F}_{2^{12}}$.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The add

Fix n =

Big final is to find of f = c

For each compute

41 adds,

sounds! t CPU, on KOR, el its.

cycle, ORs.

Not immediately obvious that this "bitslicing" saves time for, e.g., multiplication in $\mathbf{F}_{2^{12}}$.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^1$$

Big final decoding is to find all roots of $f = c_{41}x^{41} + \cdots$

For each $\alpha \in \mathbf{F}_{2^{12}}$ compute $f(\alpha)$ by 41 adds, 41 mults

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's r 41 adds, 41 mults.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

But quite obvious that it saves time for addition in $\mathbf{F}_{2^{12}}$.

Typical decoding algorithms have add, mult roughly balanced.

Coming next: how to save many adds and *most* mults. Nice synergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

hediately obvious "bitslicing" he for, e.g., cation in \mathbf{F}_{212} .

te obvious that it ne for addition in ${f F}_{2^{12}}$.

decoding algorithms d, mult roughly balanced.

next: how to save lds and *most* mults. ergy with bitslicing.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

normally so Horne $\Theta(nt) =$

Asympto

bvious

g''

. 2¹² -

that it ition in $\mathbf{F}_{2^{12}}$.

algorithms ughly balanced.

to save ost mults. bitslicing.

The additive FFT

Fix $n = 4096 = 2^{12}$, t = 41.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n/n)$ so Horner's rule co $\Theta(nt) = \Theta(n^2/\lg n)$

The additive FFT

Big final decoding step is to find all roots in \mathbf{F}_{212} of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n/\lg n)$, Fix $n = 4096 = 2^{12}$, t = 41. so Horner's rule costs $\Theta(nt) = \Theta(n^2/\lg n).$

12 -

nced.

The additive FFT

Fix
$$n = 4096 = 2^{12}$$
, $t = 41$.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n/\lg n)$, so Horner's rule costs $\Theta(nt) = \Theta(n^2/\lg n)$.

The additive FFT

Fix $n = 4096 = 2^{12}$, t = 41.

Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $f = c_{41}x^{41} + \cdots + c_0x^0$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $f(\alpha)$ by Horner's rule: 41 adds, 41 mults.

Or use Chien search: compute $c_i g^i$, $c_i g^{2i}$, $c_i g^{3i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics: normally $t \in \Theta(n/\lg n)$, so Horner's rule costs

 $\Theta(nt) = \Theta(n^2/\lg n).$

Wait a minute.

Didn't we learn in school that FFT evaluates an n-coeff polynomial at n points using $n^{1+o(1)}$ operations? Isn't this better than $n^2/\lg n$?

itive FFT

$$4096 = 2^{12}$$
, $t = 41$.

decoding step

d all roots in $\mathbf{F}_{2^{12}}$

$$c_{41}x^{41} + \cdots + c_0x^0$$
.

$$lpha \in \mathsf{F}_{2^{12}}$$
 ,

 $f(\alpha)$ by Horner's rule:

41 mults.

Chien search: compute g^{2i} , $c_i g^{3i}$, etc. Cost per gain 41 adds, 41 mults.

:: **6.01** adds, **2.09** mults.

Asymptotics:

normally $t \in \Theta(n/\lg n)$, so Horner's rule costs $\Theta(nt) = \Theta(n^2/\lg n)$.

Wait a minute.

Didn't we learn in school that FFT evaluates an n-coeff polynomial at n points using $n^{1+o(1)}$ operations? Isn't this better than $n^2/\lg n$?

Standard

Want to $f = c_0 + c_0$

at all th

Write f

Observe $f(\alpha) =$

$$f(-\alpha) =$$

f₀ has n₁evaluateby same

Similarly

$$t^{2}$$
, $t = 41$.

step

in
$$\mathbf{F}_{2^{12}}$$

 $\cdot + c_0 x^0$.

Horner's rule:

ch: compute etc. Cost per lds, 41 mults.

ds, **2.09** mults.

Asymptotics:

normally
$$t \in \Theta(n/\lg n)$$
,
so Horner's rule costs
 $\Theta(nt) = \Theta(n^2/\lg n)$.

Wait a minute. Didn't we learn in school that FFT evaluates an n-coeff polynomial at n points using $n^{1+o(1)}$ operations? Isn't this better than $n^2/\lg n$?

Standard radix-2 F

Want to evaluate $f = c_0 + c_1 x + \cdots$ at all the *n*th root

Observe big overlapped of
$$f(\alpha) = f_0(\alpha^2) + c$$

 $f(-\alpha) = f_0(\alpha^2) - c$

Write f as $f_0(x^2)$

 f_0 has n/2 coeffs; evaluate at (n/2)r by same idea recursives. Similarly f_1 .

Asymptotics: normally $t \in \Theta(n/\lg n)$, so Horner's rule costs $\Theta(nt) = \Theta(n^2/\lg n)$.

Wait a minute. Didn't we learn in school that FFT evaluates an n-coeff polynomial at n points using $n^{1+o(1)}$ operations? Isn't this better than $n^2/\lg n$?

ule:

ite per ilts.

nults.

Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^n$ at all the nth roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of by same idea recursively. Similarly f_1 .

Asymptotics:

normally $t \in \Theta(n/\lg n)$, so Horner's rule costs $\Theta(nt) = \Theta(n^2/\lg n)$.

Wait a minute.

Didn't we learn in school that FFT evaluates an n-coeff polynomial at n points using $n^{1+o(1)}$ operations? Isn't this better than $n^2/\lg n$?

Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all the *n*th roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of 1 by same idea recursively. Similarly f_1 . otics:

$$t \in \Theta(n/\lg n),$$

er's rule costs

$$\Theta(n^2/\lg n)$$
.

ninute.

*r*e learn in school

T evaluates

eff polynomial

nts

$$+o(1)$$
 operations?

s better than $n^2/\lg n$?

Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all the *n*th roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of 1 by same idea recursively. Similarly f_1 . Useless in Standard

FFT cor

1988 Waindepend

"additive Still quit

1996 vo

2010 Gamuch be

We use plus som

' lg *n*), osts *n*).

school s nial

rations? an $n^2/\lg n$? Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all the nth roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of 1 by same idea recursively. Similarly f_1 .

Useless in char 2: Standard workarou FFT considered in 1988 Wang-Zhu, independently 198 "additive FFT" in Still quite expensive

1996 von zur Gath some improvemen

2010 Gao-Mateer: much better addit

We use Gao-Mate plus some new imp

Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all the *n*th roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of 1 by same idea recursively. Similarly f_1 . Useless in char 2: $\alpha = -\alpha$. Standard workarounds are p FFT considered impractical.

1988 Wang–Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerha some improvements.

2010 Gao–Mateer: much better additive FFT.

We use Gao-Mateer, plus some new improvement

n?

Standard radix-2 FFT:

Want to evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all the *n*th roots of 1.

Write f as $f_0(x^2) + x f_1(x^2)$. Observe big overlap between $f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2)$, $f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$.

 f_0 has n/2 coeffs; evaluate at (n/2)nd roots of 1 by same idea recursively. Similarly f_1 . Useless in char 2: $\alpha = -\alpha$. Standard workarounds are painful. FFT considered impractical.

1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer: much better additive FFT.

We use Gao-Mateer, plus some new improvements.

d radix-2 FFT:

evaluate

$$-c_1x + \cdots + c_{n-1}x^{n-1}$$

e *n*th roots of 1.

as
$$f_0(x^2) + x f_1(x^2)$$
.

big overlap between

$$f_0(\alpha^2) + \alpha f_1(\alpha^2)$$
,

$$= f_0(\alpha^2) - \alpha f_1(\alpha^2).$$

/2 coeffs;

at (n/2)nd roots of 1

idea recursively.

$$f_1$$
.

Useless in char 2: $\alpha = -\alpha$.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer: much better additive FFT.

We use Gao–Mateer, plus some new improvements.

Gao and $f = c_0 + c_0$ on a size $f_0(x^2 + c_0)$

Big over $f_0(\alpha^2 +$ and $f(\alpha$

 $f_0(\alpha^2 +$

"Twist"

Then $\{c\}$ size-(n/2)

Apply sa

FT:

$$\cdot + c_{n-1} x^{n-1}$$
s of 1.

$$+xf_1(x^2)$$
.

In positive entropy, $\alpha f_1(\alpha^2)$, $\alpha f_1(\alpha^2)$.

nd roots of 1 rsively.

Useless in char 2: $\alpha = -\alpha$. Standard workarounds are painful. FFT considered impractical.

1988 Wang–Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer: much better additive FFT.

We use Gao-Mateer, plus some new improvements.

Gao and Mateer examples $f = c_0 + c_1 x + \cdots$ on a size-n \mathbf{F}_2 -line

Their main idea: $f_0(x^2 + x) + xf_1(x^2 + x)$

Big overlap between $f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) + \alpha f_0(\alpha^2 + \alpha) + \alpha f$

"Twist" to ensure Then $\{\alpha^2 + \alpha\}$ is size-(n/2) \mathbf{F}_2 -linear Apply same idea re

Useless in char 2: $\alpha = -\alpha$. Standard workarounds are painful. FFT considered impractical.

1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer: much better additive FFT.

We use Gao—Mateer, plus some new improvements.

Gao and Mateer evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x'$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$

"Twist" to ensure $1 \in \text{space}$ Then $\{\alpha^2 + \alpha\}$ is a size-(n/2) \mathbf{F}_2 -linear space. Apply same idea recursively. Useless in char 2: $\alpha = -\alpha$. Standard workarounds are painful. FFT considered impractical.

1988 Wang-Zhu, independently 1989 Cantor: "additive FFT" in char 2. Still quite expensive.

1996 von zur Gathen-Gerhard: some improvements.

2010 Gao-Mateer: much better additive FFT.

We use Gao–Mateer, plus some new improvements.

Gao and Mateer evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$.

"Twist" to ensure $1 \in \text{space}$. Then $\{\alpha^2 + \alpha\}$ is a size-(n/2) \mathbf{F}_2 -linear space. Apply same idea recursively. In char 2: $\alpha = -\alpha$.

If workarounds are painful.

sidered impractical.

ang–Zhu, dently 1989 Cantor:

e FFT" in char 2.

te expensive.

n zur Gathen-Gerhard:

provements.

o-Mateer:

etter additive FFT.

Gao-Mateer, ne new improvements. Gao and Mateer evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$.

"Twist" to ensure $1 \in \text{space}$.

Then $\{\alpha^2 + \alpha\}$ is a

size-(n/2) **F**₂-linear space.

Apply same idea recursively.

Results

60493 Iv

8622 fc

20846 fc

7714 fc

14794 fc

8520 fc

Code wi

We're st

Also 10

More inf

cr.yp.t

lpha=-lpha. unds are painful. practical.

9 Cantor: char 2. ve.

nen-Gerhard: ts.

ive FFT.

er, provements. Gao and Mateer evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$.

"Twist" to ensure $1 \in \text{space}$. Then $\{\alpha^2 + \alpha\}$ is a size-(n/2) \mathbf{F}_2 -linear space. Apply same idea recursively.

Results

60493 Ivy Bridge

8622 for permuta

20846 for syndrom

7714 for BM.

14794 for roots.

8520 for permuta

Code will be publi We're still speedin

Also $10\times$ speedup

More information:

cr.yp.to/papers

ainful.

Gao and Mateer evaluate $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$.

"Twist" to ensure $1 \in \text{space}$.

Then $\{\alpha^2 + \alpha\}$ is a size-(n/2) **F**₂-linear space.

Apply same idea recursively.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain. We're still speeding it up.

Also $10\times$ speedup for CFS.

More information:

cr.yp.to/papers.html#me

rd:

Gao and Mateer evaluate $f = c_0 + c_1x + \cdots + c_{n-1}x^{n-1}$ on a size-n \mathbf{F}_2 -linear space.

Their main idea: Write f as $f_0(x^2 + x) + xf_1(x^2 + x)$.

Big overlap between $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$.

"Twist" to ensure $1 \in \text{space}$.

Then $\{\alpha^2 + \alpha\}$ is a size-(n/2) **F**₂-linear space.

Apply same idea recursively.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We're still speeding it up.

Also $10\times$ speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

Mateer evaluate

$$-c_1x+\cdots+c_{n-1}x^{n-1}$$

e-n \mathbf{F}_2 -linear space.

ain idea: Write f as

$$x)+xf_1(x^2+x).$$

Tap between $f(\alpha) =$

$$\alpha) + \alpha f_1(\alpha^2 + \alpha)$$

$$+1) =$$

$$(\alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha).$$

to ensure $1 \in \text{space}$.

$$\{\alpha^2 + \alpha\}$$
 is a

2) \mathbf{F}_2 -linear space.

me idea recursively.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We're still speeding it up.

Also $10\times$ speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What yo

Cryptosy

Our spectors (We now

cr.yp.t

without Importan

Fast secusing bit sorting repermuta

valuate

$$\cdot + c_{n-1}x^{n-1}$$

ear space.

Write f as $(x^2 + x)$.

en
$$f(lpha) = lpha^2 + lpha$$

$$-1)f_1(\alpha^2+\alpha).$$

$$1\in\mathsf{space}.$$

a

ar space.

ecursively.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We're still speeding it up.

Also $10\times$ speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in I

Cryptosystem spec

Our speedups to a (We now have mo cr.yp.to/papers

Fast syndrome con without big precon Important for light

Fast secret permutusing bit operation sorting networks, permutation networks

 $+ \alpha$).

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We're still speeding it up.

Also $10 \times$ speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in paper:

Cryptosystem specification.

Our speedups to additive FF (We now have more speeduj cr.yp.to/papers.html#an

Fast syndrome computation without big precomputed m Important for lightweight!

Fast secret permutation using bit operations: sorting networks, permutation networks.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We're still speeding it up.

Also $10\times$ speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits

What you find in paper:

Cryptosystem specification.

Our speedups to additive FFT. (We now have more speedups: cr.yp.to/papers.html#auth256.)

Fast syndrome computation without big precomputed matrix. Important for lightweight!

Fast secret permutation using bit operations: sorting networks, permutation networks.