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right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — baq3 Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3,
Ns, Ng, N7,
Ng, N1o, N11
N3, N1, Nis

N1, No, N3,
Ns, Ne, N7,
Ng, N1o, N11
N3, N1, N5




senerate (a,b).

Generate (a,b).

Is a — bm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.
senerate (a,b).|Generate (a,b).
Is a — bm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.
senerate (a, b).|Generate (a,b).
Is a — btm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.

senerate (a,b).|Generate (a,b).

Is a — 6m
smooth?
If so, store.

Repeat.

Is a — bm
smooth?

If so, store.

Repeat.

Is a — baq Is a — bas Is a — bas Is a — bay
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).

right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b). Send (a,¥b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqg Is a — baqy Is a — baqo
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bay3 Is a — baqa Is a — bais Is a — baig

smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, N Ns, Ng
No, N1o, N11, N12 Ny, N1o,
N13, N1g, Nis, Nie N13, N1g
N1, No, N3, Ny Ny, No
Ns, Ng, N7, Ng Ns, N
Ng, N1o, N11, N12 Ny, N1o,
N13, N14, Nis, Nie N1z, N1g
N1, No, N3, Ny N1, Vo
Ns, N, N7, Ng Ns, N
Ng, N1o, N11, N12 Ny, N1o,
N1z, N14, V15, Nig N1z, Ny
N1, No, N3, Ny Ny, No
Ns, N, N7, Ng Ns, N
Ng, N1o, N11, N2 Nog, N1o
N1z, N14, V15, Nig N1z, Ny
N1, No, N3, Ny N1, No
Ns, Ne, N7, Ng Ns, N
No, N1g, N11, N12 Ny, N1g
N13, N14, Nis, Nie N13, Nig




rerate (a,b).

Is a — bm
smooth?
5o, store.

Repeat.

erate (a,b).

Is a — bm
smooth?
50, store.

Repeat.

rerate (a,b).

Is a — bm
smooth?
5o, store.

Repeat.

rerate (a,b).

Is a — bm
smooth?
50, store.

Repeat.

Is a — baq Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,¥b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqp Is a — baqg Is a — baqo
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — baq3 Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

Ny, No, Ns, Ny Ny, No, N, Ny
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1o, N11, N12 Ng, N1o, N11, N12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, N1s, Nig N3,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1o, V11, N12 Ng, N1o, N11, N12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, Nis, Nig N3,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns
No, N1g, V11, N12 Ng, N1o, N11, V12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, Nis, Nig N13,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns
No, N1o, V11, N12 Ng, N1o, N11, V12 Ny,
N13, N14, N1s, Nig N13, N14, N1s, Nig N3,
Ny, No, N3, Ny Ny, No, N3, Ny N
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1g, N11, N12 Ng, N1g, N11, N12 No,
N13, N1g, N1s, N16 N13, N1g, N1s, N16 N3,




N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1a, N1s5, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N14, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1, N16

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N1z, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, V11, N12
N13, N1a, N1s5, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N1z, N14, N1s, N16

Is a — baq Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqg Is a — baqy Is a — baqo
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bay3 Is a — baqa Is a — bais Is a — baig
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N14, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16




N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Nie

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, Nis, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, V11, N12
N13, N1g, Nis, Nig

Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. [down. Repeat.
Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b).
left. Repeat. | left. Repeat. | left. Repeat.
Is a — baqp Is a — baqy Is a — baqo
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,®b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. [down. Repeat.
Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b).
left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N1a, N1, V16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis5, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, Mg

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N14, N1is, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, N1s, Nig




Is a — baj Is a — bay
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. [down. Repeat.
I Is a — bay Is a — bag
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,¥b).
left. Repeat. | left. Repeat.
I Is a — baqy Is a — baqo
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. [down. Repeat.
I Is a — bays Is a — bag
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
IIeft. Repeat. | left. Repeat.

Ny, No, N, Ny Ny, No, Ns, Ny Ny, No, N3, Ny Ny, No, N, Ny Ny, No, N3, A
Ns, Ng, N7, Ng Ns, Ne, N7, N Ns, N, N-, Ng Ns, Ng, N7, N Ns, Ng, N7, A
Ng, N1g, N11, N12 No, N1g, N11, N12 No, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, N1s, Nig N1z, N14, N1s, Nig N13, N14, N1s, Nig N1z, N14, Nis, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, Ng, N7, Ng Ns, Ng. N7, Ng Ns, Ng, N7, Ng Ns, Ng, N7, Ng Ns, N, N7,
Ng, N1g, N11, N12 Ng, N1g, N11, N1o Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N1z, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ng. N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N4, N1s, Nig N13, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, Ne, N7, Ng Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng, N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N1o Ng, N1g, N11, N1o Ng, N1g, N11, V1o No, N1g, N11, N1o Ng, N1g, N1,/
N1z, N4, N15, Nig N13, N14, N1s, V16 N1z, N4, N1s, Nig N3, N14, N15, Nig N1z, N4, N5,




s a— bay
smooth?

5o, store.

end (a,b).

vn. Repeat.

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

s a— bag
smooth?

~ so, store.
end (a,b).

ft. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Nie

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, Nie

s a — bayo
smooth?

5o, store.

end (a,b).

vn. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, V11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
Ni3, N14, N1s, Nie

s a — bayg
smooth?

- so, store.
end (a,b).

ft. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N1a, N15, V16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, Nis5, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
Ni3, N4, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie




N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, Nis, Nie

Ny, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N1z, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, V11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, N11, N12
N13, N14, N1s5, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1s5, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, N1is, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16




Linear algel

using con

(ab) (a.
(a.b) (a
(a.b) (a

Linear algel

using con

(a.b) (a,
(a,6) (a,
(a,6) (a,

Linear aIgeE
using con
(a,8) (a,
(a.8) (a,
(a.6) (e,

N Ny, No, N, Ny Ny, No, N, Ny Ny, No, N3, Ny Ny, No, N, Ny
Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, N11, N12 No, N1g, N11, N12 No, N1o, N11, N12
- Nig Ni3, N4, Nis, Nig N1i3, N1a, N5, Nis Nis3, N14, Nis, Nig N1i3, N4, Nis, Nig
Ny N1, No, N3, Ny N1, No, N3, Ny N1, N, N3, Ny N1, No, N3, Ny
Ng Ns, N, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, N, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, N11, N12 Ng, N1g, N11, N12 Ng, N1o, N11, N12
» Mg Ni3, N4, Nis, Nig N13, N1a, N1s, Nig Ni3, N14, Nis, Nig Ni3, N4, N1s, Nig
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, V12 Ng, N1o, V11, N12 No, N1g, V11, N12 No, N1o, N11, N12
» Vg N13, N4, V15, N1e N1z, N4, N1s, Nie N1z, N4, N1s, N1e N13, N4, N1s, Nie
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, V11, N12 Ng, N1g, N11, N12 No, N1o, N11, N12
- Vig N1z, V14, V15, N1e N1z, N4, N1s, Nie N1z, V14, N1s, N1e N13, V14, N1s, Nie
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng Ns, N, N7, Ng Ns, Ng, N7, Ng
, N12 Ng, N1g, N11, V1o Ng, N1g, N11, N12 Ng, N1g, N11, V1o Ng, N1g, N11, N12
» Mg N1z, N1a, Nis, Nig N1z, N1a, N1s, Nig N1z, N1a, Nis, Mg N13, N1a, Ni5, Nig

Linear algeb

using con

(a,b) (a,
(a.6) (a,
(a,b) (a,




Linear algebra for N

using congruences

(a,6) (a,b) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Ns
using congruences
(a,b) (ab) (a.b)
(a.6) (a.b) (a.b)
(a,b) (a,b) (a,b)

Linear algebra for Ny
using congruences
(a,) (a,6) (a,)
(a.6) (a.6) (a,)
(a,6) (ab) (a,b)

N3, N, Ny, No, N3, Ny Ny, No, N, Ny Ny, No, N, Ny
, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Ni1, N12 No, N1g, N11, N12 Ng, N1o, N11, N12 No, N1g, N11, N12
, N1s, N16 Ni3, N4, Nis, Nig N13, N4, N5, Nig Ni3, N1g, Nis, Nig
, N3, Ny N1, N, N3, Ny N1, Np, N3, Ny N1, N, N3, Ny
Nz, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
N11, N1o Ng, N1g, N11, N12 No, N1o, N11, N12 Ng, N1g, N11, N12
, N1s5, V16 Ni3, N1g, Nis, Nig N13, N4, N1, Nig Ni3, N1g, Nis, N1ig
, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Nz, Ng Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o No, N1g, N11, N12 Ng, N1o, V11, N12 No, N1g, N11, N12
, N1s5, N16 Ni3, N14, N1s, Nig N13, N4, N1, Nig Ni3, N1g, Nis, N1
, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny N1, N, N3, Ny
Nz, Ng Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o Ng, N1o, N11, N12 No, N1o, N11, N12 Ng, N1g, N11, N12
, N15, N16 N13, N1a, N1s, Ni6 N13, N1a, N5, Nig Ni3, N1a, Nis, V16
, V3, Vg N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o Ng, N1g, N11, N12 No, N1g, N11, N12 Ng, N1g, N11, N12
, V15, N16 N13, N14, N1s, N16 N13, N14, N1is, Nie N13, N1g, N1s, N16

Linear algebra for MNi3

using congruences
(a,6) (a,b) (a,b)
(a,8) (a,8) (a,b)
(a,8) (a,b) (a,b)




Linear algebra for N

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a.6) (a,8) (a,b)

Linear algebra for
using congruences
(a,6) (a,6) (a8
(a,6) (a,b) (a,b
(a,6) (a,b) (a,bjl

Linear algebra for A5

using congruences

(a.6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for
using congruences
(a,8) (ab) (a0
(a,6) (a,b) (a,0
(a,6) (a,b) (a,b:

Linear algebra for Mg
using congruences
(@) (a,6) (a,0)
(@) (a.6) (a,0)
(a,b) (a,b) (a,b)

Linear algebra for |
using congruences
(a6) (a,6) (a8
(a.6) (a.6) (a,
(a,6) (a,b) (a,b:

LNy, N3, Ny Ny, Ny, N3, Vg Ny, Na, Vs, N
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Nio, V11, N12 No, N1g, N11, N12 No, N1o, N11, N12
Nig, N5, Nig N1z, N4, V15, N1e N13, V14, V15, Nig
S No, N3, Ny N1, N, N3, Ny N1, No, N3, Ny
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, N, N7, Ng
N1o, V11, N12 Ng, N1g, N11, N12 Ng, N1o, N11, N12
Nig, N5, Nig N1z, N4, V15, N1e N1z, N4, N1s, Nie
Ny, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny
. Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
N1o, V11, N12 No, N1g, V11, N12 No, N1o, N11, N12
Nig, N5, Nig N1z, N4, N1s, N1e N13, N4, N1s, Nie
G No, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny
, Ne, N7, Vg Ns, Ng, N7, Ng Ns, Ne, N7, Ng
Nio, V11, V12 Ng, N1o, N11, N12 Ng, N1o, N11, N2
Nig, Nis, Nig N1z, V14, N1s, N1e N13, V14, N1s, Nie
S No, N3, Ny N1, No, N3, Ny N1, N, N3, Ny
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Nio, N11, N2 Ng, N1g, N11, N12 No, N1g, N11, N12
Nig, N5, Nig N13, N1g, N1s, N16 N13, N14, Nis, Nie

Linear algebra for Mi3

using congruences

(a,b6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(6,6) (a.8) (a.0)

Linear algebra for |
using congruences
(a,6) (a,b) (a,b
(a,6) (a,6) (a8
(a,6) (a,6) (a,b




N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N2
N13, N4, N1s, Nig

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N4, N1s, Nig

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N1g, N1s, N16

Linear algebra for N

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)

Linear algebra for A

using congruences

(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)
(3,8) (a,b) (a,0)

Linear aII
using
(ab)
(a )
(a,6)

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, V11, N12
N13, Nig4, N1s, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, N11, N12
N13, N14, N1s5, N16

Linear algebra for Nfg

using congruences
(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Mg
using congruences
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)
(a,6) (a,6) (a,b)

Linear aII
using
(a,6)
(a,6)
(a,6)

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, Nig, N1, V16

Linear algebra for Ny

using congruences
(a,6) (a,8) (a,b)
(a,8) (a,8) (a.b)
(a,8) (ab) (a,b)

Linear algebra for Mqg
using congruences
(@) (a,6) (a,0)
(@) (a.6) (a,0)
(a,b) (a,b) (a,b)

Linear al
using
(a,6)
(ab)
(a,b) :

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, N15, Nig

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

Linear algebra for MNi3
using congruences
(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Mqg
using congruences
(a,6) (a,6) (a,b)
(a,6) (a,8) (a,0)
(a,6) (a,6) (a,b)

Linear al
using
(a,6)
(a,6)
(a, )




N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, N1s5, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie

Linear algebra for N Linear algebra for N> Linear algebra for N3
using congruences using congruences using congruences
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,) (a.8) (a,0)
(a,6) (a.8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,b)

Linear algebra for A5 Linear algebra for Ng Linear algebra for A5
using congruences using congruences using congruences
(a,6) (a,8) (a,0) (a,6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,0)

Linear algebra for Ny Linear algebra for Ny Linear algebra for Niy
using congruences using congruences using congruences
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,) (a.8) (a,b)
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (@) (a.8) (a,b)
(a,) (a,6) (a,) (a,6) (a,6) (a,) (a,) (a,b) (a,8)

Linear algebra for Mq3 Linear algebra for Aqg Linear algebra for Misg
using congruences using congruences using congruences
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,0) (a,6) (a,6) (a,b) (a,b) (a,b) (a,b)
(a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a.8) (a,0)




Linear algebra for N Linear algebra for A Linear algebra for N3 Linear algebra fcl
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (c
(a,6) (a,6) (a,b) (a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (c
(a.6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (a.b) (a,6) (a.8) (¢

Linear algebra for Nfg Linear algebra for Mg Linear algebra for N Linear algebra fcl
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (c
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,8) (g

Linear algebra for Ng Linear algebra for Mqg Linear algebra for Ny Linear algebra fd
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (c
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,) (a,) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,8) (g

Linear algebra for MNi3 Linear algebra for Mq4 Linear algebra for N5 Linear algebra fd
using congruences using congruences using congruences using congruer
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (g
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (¢




Linear algebra for N

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a.6) (a.8) (a,b)

Linear algebra for N>

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear al

gebra for N3

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a,6) (a.8) (a,b)

Linear algebra for N,

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for A5

using congruences

(a.6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Ng

using congruences

(a.6) (a.b) (a.b)
(a.6) (a.6) (a.b)
(a,6) (a,b) (a,b)

Linear al

gebra for M5

using congruences

(a.6) (a.b) (a,b)
(a,6) (a,b) (a,b)
(a,b6) (a,b) (a,b)

Linear algebra for Ng

using congruences

(a.6) (a.6) (a.b)
(a.6) (a.6) (a.b)
(a,6) (a,b) (a,b)

Linear algebra for Ny

using congruences

Linear algebra for Ny

using congruences

Linear algebra for Niy

using congruences

Linear algebra for Ao

using congruences

(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a.6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a.6) (a,6) (a,b)
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,0) (a,6) (a,8) (a,b)
Linear algebra for Mq3 Linear algebra for Aqg Linear algebra for Misg Linear algebra for Mig
using congruences using congruences using congruences using congruences
(a.6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a,6) (a,8) (a,0) (a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (2,6) (a,b) (a,6) (a,6) (a,b)




Linear algebra for N; Linear algebra for A Linear algebra for N3 Linear algebra for N,
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (@) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (a.b) (a,6) (a.8) (a,b)

Linear algebra for Ns Linear algebra for Njg Linear algebra for N5 Linear algebra for Mg
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,) (a,6) (a,) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,8)

Linear algebra for Ng Linear algebra for Mqg Linear algebra for Ny Linear algebra for Mis
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,8)

Linear algebra for MNi3 Linear algebra for Mq4 Linear algebra for N5 Linear algebra for Mg
using congruences using congruences using congruences using congruences
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (a,6) (a,6) (a,0) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a,8) (a,b)




