Batch NFS

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

In this talk log L means

(1 + o(1))(log N)/3(log log N)?/3.

L is often written
“Ly(1/3)" or “Ly(1/3)tFod),

Exponents of L in this talk
are limited to 107°Z.

Rigorously proven? Ha ha ha.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelzl-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

Batch NFS

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

In this talk log L means

(1 + o(1))(log N)/3(log log N)?/3.

L is often written
“Ly(1/3)" or “Ly(1/3)tFod),

Exponents of L in this talk
are limited to 107°Z.

Rigorously proven? Ha ha ha.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelzl-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Batch NFS

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

In this talk log L means

(1 + o(1))(log N)/3(log log N)?/3.

L is often written
“Ly(1/3)" or “Ly(1/3)tFod),

Exponents of L in this talk
are limited to 107°Z.

Rigorously proven? Ha ha ha.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelzl-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

FS

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

inge
he Universiteit Eindhoven

alk log L means

))(log N)/3(log log N)?/3.

n written

3)" or “Lp(1/3)11Ho1)"

ts of L in this talk
ed to 107 °Z.

ly proven? Ha ha ha.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelzl-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example
dnssec-

IS signed

is at Chicago &
siteit Eindhoven

siteit Eindhoven

N€ANS

/3(Ioglog N)2/3.

/(1/3)1+0(1)" |

this talk
4

’ Ha ha ha.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelzl-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |P

dnssec—-deployme
is signed by an RS

g0 &
hoven

hoven

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
s signed by an RSA-1024 ke

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signed by an RSA-2048 key

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of
dnssec—-deployment.org

is signed by an RSA-1024 key
signed by an RSA-2048 key

signed by org’'s RSA-1024 key

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signed by an RSA-2048 key
signed by org’'s RSA-1024 key
signed by an RSA-2048 key

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec

signec

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key

oy a root RSA-1024 key

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec
signec

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key
oy a root RSA-1024 key

signec

oy an RSA-2048 key.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec
signec

signec

Most “

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key
oy a root RSA-1024 key

oy an RSA-2048 key.
DNSSEC" signatures

follow a similar pattern.

2003 Shamir—Tromer, 2003
Lenstra—Tromer—Shamir—
Kortsmit—Dodson—Hughes—
Leyland, 2005 Geiselmann—
Shamir—Steinwandt—Tromer, 2005
Franke—Kleinjung—Paar—Pelz|-
Priplata—Stahlke, etc.: RSA-1024
Is breakable in a year by an attack
machine costing < 107 dollars.

So the Internet switched to
RSA-2048, and we no longer care
about RSA-1024 security, right?

Wrong]!

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec
signec

signec

Most “

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key
oy a root RSA-1024 key

oy an RSA-2048 key.
DNSSEC" signatures

follow a similar pattern.

Another example: SSL has used
many millions of RSA-1024 keys.
Imagine that an attacker has
recorded tons of SSL traffic.

amir—Tromer, 2003
-Tromer—Shamir—
'—Dodson—Hughes—

2005 Geiselmann-—
Steinwandt—Tromer, 2005
Kleinjung—Paar—Pelzl-
-Stahlke, etc.: RSA-1024
\ble In a year by an attack
costing < 10 dollars.

nternet switched to

18, and we no longer care
SA-1024 security, right?

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec
signec

signec

Most “

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key
oy a root RSA-1024 key

oy an RSA-2048 key.
DNSSEC" signatures

follow a similar pattern.

Another example: SSL has used

many millions of RSA-1024 keys.

Imagine that an attacker has
recorded tons of SSL traffic.

Users se

1. “The
more th:

2. “The
off-the-s
attacker

3. For s
switch k
the atta

ner, 2003
hamir—
-Hughes—
selmann—
t—Tromer, 2005
-Paar—Pelzl-
otc.: RSA-1024

ear by an attack
- 10? dollars.

itched to
> no longer care
ecurity, right?

Example: The |IP address of

dnssec—-deployment.org
is signed by an RSA-1024 key

signec
signec
signec
signec

signec

Most “

oy an RSA-2048 key
oy org's RSA-1024 key
oy an RSA-2048 key
oy a root RSA-1024 key

oy an RSA-2048 key.
DNSSEC" signatures

follow a similar pattern.

Another example: SSL has used

many millions of RSA-1024 keys.

Imagine that an attacker has
recorded tons of SSL traffic.

Users seem uncon

1. “The attack m.
more than this RS

2. "“The attack m
off-the-shelf: it's c
attackers building

3. For signatures:
switch keys every
the attack machin

- 2005
|—
-1024
attack
rS.

r care
yht?

Example: The |IP address of

dnssec—-deployment.org

is signed by an RSA-1024 key
signed by an RSA-2048 key
signed by org’'s RSA-1024 key
signed by an RSA-2048 key
signed by a root RSA-1024 key
signed by an RSA-2048 key.

Most “DNSSEC" signatures
follow a similar pattern.

Another example: SSL has used

many millions of RSA-1024 keys.

Imagine that an attacker has
recorded tons of SSL traffic.

Users seem unconcerned:

1. “The attack machine cos
more than this RSA key is v

2. "The attack machine isn
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: “We
switch keys every month, an
the attack machine takes a-

Example: The |IP address of

dnssec—-deployment.org

is signed by an RSA-1024 key
signed by an RSA-2048 key
signed by org’'s RSA-1024 key
signed by an RSA-2048 key
signed by a root RSA-1024 key
signed by an RSA-2048 key.

Most “DNSSEC" signatures
follow a similar pattern.

Another example: SSL has used

many millions of RSA-1024 keys.

Imagine that an attacker has
recorded tons of SSL traffic.

Users seem unconcerned:

1. “The attack machine costs
more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: "We
switch keys every month, and
the attack machine takes a year.”

Example: The |IP address of

dnssec—-deployment.org

is signed by an RSA-1024 key
signed by an RSA-2048 key
signed by org’'s RSA-1024 key
signed by an RSA-2048 key
signed by a root RSA-1024 key
signed by an RSA-2048 key.

Most “DNSSEC" signatures
follow a similar pattern.

Another example: SSL has used

many millions of RSA-1024 keys.

Imagine that an attacker has
recorded tons of SSL traffic.

Users seem unconcerned:

1. “The attack machine costs
more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: "We
switch keys every month, and
the attack machine takes a year.”

Real quote: “DNSSEC signing
keys should be large enough to
avoid all known cryptographic
attacks during the effectivity
period of the key."

: The IP address of
-deployment.org

| by an RSA-1024 key
y an RSA-2048 key

y org's RSA-1024 key
y an RSA-2048 key

y a root RSA-1024 key
y an RSA-2048 key.

INSSEC" signatures
similar pattern.

example: SSL has used

illions of RSA-1024 keys.

that an attacker has
tons of SSL traffic.

Users seem unconcerned:

1. “The attack machine costs

more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: “We
switch keys every month, and

the attack machine takes a year.”

Real quote: “DNSSEC signing
keys should be large enough to
avoid all known cryptographic
attacks during the effectivity
period of the key."

Continu:
despite |
broken ¢
fact, the
estimate
of a 700
breaking
would n
amounts
power In
be detec

single ke
estimate
safely us
least the

address of

nt.org
A-1024 key

2048 key
SA-1024 key
2048 key
SA-1024 key
2048 key.

signatures
ttern.

SSL has used

SA-1024 keys.

ttacker has
SL traffic.

Users seem unconcerned:

1. “The attack machine costs

more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: "We
switch keys every month, and

the attack machine takes a year.”

Real quote: “DNSSEC signing
keys should be large enough to
avoid all known cryptographic
attacks during the effectivity
period of the key."

Continuation of q
despite huge effor
broken a regular 1
fact, the best com
estimated to be tt

of a 700-bit key. /
breaking a 1024-b

would need to exp

amounts of netwo
power in a way th.
be detected in ord

single key. Becaus
estimated that mc

safely use 1024-b
least the next ten

Y

key

1sed

keys.

Users seem unconcerned:

1. “The attack machine costs

more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: “We
switch keys every month, and

the attack machine takes a year.”

Real quote: “DNSSEC signing
keys should be large enough to
avoid all known cryptographic
attacks during the effectivity
period of the key."

Continuation of quote: “To
despite huge efforts, no one
broken a regular 1024-bit ke
fact, the best completed att
estimated to be the equivale
of a 700-bit key. An attacke
breaking a 1024-bit signing

would need to expend phenc
amounts of networked comp
power in a way that would r
be detected in order to brea

single key. Because of this,
estimated that most zones ¢
safely use 1024-bit keys for .
least the next ten years.”

Users seem unconcerned:

1. “The attack machine costs

more than this RSA key is worth."

2. "The attack machine isn't
off-the-shelf; it's only for
attackers building ASICs.”

3. For signatures: "We
switch keys every month, and

the attack machine takes a year.”

Real quote: “DNSSEC signing
keys should be large enough to
avoid all known cryptographic
attacks during the effectivity
period of the key."

Continuation of quote: “To date,
despite huge efforts, no one has
broken a regular 1024-bit key; in
fact, the best completed attack is
estimated to be the equivalent

of a 700-bit key. An attacker
breaking a 1024-bit signing key

would need to expend phenomenal

amounts of networked computing
power in a way that would not
be detected in order to break a

single key. Because of this, it is
estimated that most zones can
safely use 1024-bit keys for at
least the next ten years.”

em unconcerned:

attack machine costs

an this RSA key is worth.”

attack machine isn't
helf; it's only for
s building ASICs.”

ignatures: “We
eys every month, and

ck machine takes a year.”

te: “DNSSEC signing

uld be large enough to
known cryptographic

during the effectivity

f the key."

Continuation of quote: “To date,
despite huge efforts, no one has
broken a regular 1024-bit key; in
fact, the best completed attack is
estimated to be the equivalent

of a 700-bit key. An attacker
breaking a 1024-bit signing key

would need to expend phenomenal
amounts of networked computing
power in a way that would not

be detected In order to break a

single key. Because of this, it is
estimated that most zones can
safely use 1024-bit keys for at
least the next ten years.”

Goal of
analyze
specifica
ratio, of

HMany”

"Price-p
area-tin

"RAM”

bit integ
accessin
realistic;

"Asymp’
SUPPress
speedup

cerned:

achine costs

A key 1s worth.”

achine isn't
»nly fOF
ASICs.”

“We
month, and

e takes a year.”

SEC signing
ve enough to
yptographic
“effectivity

Continuation of quote: “To date,

despite huge efforts, no one has

broken a regular 1024-bit key; in

fact,
estimatec

of a

would need to expenc
amounts of networkeo

the best completed attack is

to be the equivalent

700-bit key. An attacker
breaking a 1024-bit signing key

phenomenal
computing

power in a way that would not

be C

sing

etected In order to
e key. Because of t

break a

nis, 1t 1s

estimated that most zones can
safely use 1024-bit keys for at
least the next ten years.”

Goal of our paper:
analyze the asymg

specifically price-p
ratio, of breaking

"Many": e.g. milli

“Price-performanc
area-time produc

"RAM" metric (ac
bit integers has sa
accessing array of
realistic: “"AT" me

“"Asymptotic”: W
suppress polynomi
speedups are supe

TS
jorth.”

year."

Continuation of quote: “To date,
despite huge efforts, no one has
broken a regular 1024-bit key; in
fact, the best completed attack is
estimated to be the equivalent

of a 700-bit key. An attacker
breaking a 1024-bit signing key

would need to expend phenomenal
amounts of networked computing
power in a way that would not

be detected In order to break a

single key. Because of this, it is
estimated that most zones can
safely use 1024-bit keys for at
least the next ten years.”

Goal of our paper:
analyze the asymptotic cost

specifically price-performanc
ratio, of breaking many RS/

"Many": e.g. millions.

“Price-performance ratio":
area-time product for chip:

"RAM"” metric (adding two
bit integers has same cost a
accessing array of size 204)
realistic: “AT" metric is rea

"Asymptotic’: We systemat
suppress polynomial factors.
speedups are superpolynomi

Continuation of quote: “To date,
despite huge efforts, no one has
broken a regular 1024-bit key; in
fact, the best completed attack is
estimated to be the equivalent

of a 700-bit key. An attacker
breaking a 1024-bit signing key

would need to expend phenomenal

amounts of networked computing
power in a way that would not
be detected in order to break a

single key. Because of this, it is
estimated that most zones can
safely use 1024-bit keys for at
least the next ten years.”

Goal of our paper:
analyze the asymptotic cost,

specifically price-performance
ratio, of breaking many RSA keys.

“"Many": e.g. millions.

“Price-performance ratio" :
area-time product for chips.

"RAM" metric (adding two 64-
bit integers has same cost as
accessing array of size 2°%) is not
realistic; “AT" metric Is realistic.

“"Asymptotic’: We systematically
suppress polynomial factors. Our
speedups are superpolynomial.

ytion of quote: “To date,
1uge efforts, no one has
 regular 1024-bit key; in
 best completed attack iIs
d to be the equivalent

-bit key. An attacker

a 1024-bit signing key
2ed to expend phenomenal
, of networked computing
' a way that would not
ted In order to break a

y. Because of this, it is
d that most zones can

e 1024-bit keys for at
' next ten years.”

Goal of our paper:
analyze the asymptotic cost,

specifically price-performance

ratio, of breaking many RSA keys.

"Many": e.g. millions.

“Price-performance ratio":
area-time product for chips.

"RAM" metric (adding two 64-
bit integers has same cost as
accessing array of size 2°4) is not
realistic; “AT" metric Is realistic.

"Asymptotic’: We systematically
suppress polynomial factors. Our
speedups are superpolynomial.

Best res
time L1
using ch
AT is L-

Our mai
a batch
time L1
using ch
AT per

This pay
at Lo(1),
speedup
Results
guess fre

1ote: “To date,
S, no one has
024-bit key; In
pleted attack is
e equivalent

\n attacker

it signing key
end phenomenal

‘ked computing
at would not
er to break a

e of this, It is
st zones can
- keys for at
years."

Goal of our paper:
analyze the asymptotic cost,

specifically price-performance

ratio, of breaking many RSA keys.

"Many": e.g. millions.

“Price-performance ratio":
area-time product for chips.

"RAM" metric (adding two 64-
bit integers has same cost as
accessing array of size 2°%) is not
realistic; “AT" metric Is realistic.

“"Asymptotic’: We systematically
suppress polynomial factors. Our
speedups are superpolynomial.

Best result known

time

J 1.185632

using chip area LY
AT is L1'976O52.

Our main result fc

a batch of L9 ke
time L1.0224OO

using chip area L1
AT per key is L1

This paper a
at L°(1) ana

speedup from earl
Results are not wkt

so lo
yzing

guess from 1982 F

date,
has
y; In
ack is
Nt

r

key
ymenal
uting
101

k a

It 1S
an

at

Goal of our paper:
analyze the asymptotic cost,

specifically price-performance

ratio, of breaking many RSA keys.

"Many": e.g. millions.

“Price-performance ratio":
area-time product for chips.

"RAM" metric (adding two 64-
bit integers has same cost as
accessing array of size 2°%) is not
realistic; “AT" metric Is realistic.

"Asymptotic’: We systematically
suppress polynomial factors. Our
speedups are superpolynomial.

Best result known for one ki

time J 1.185632

using chip area
AT is L1'976O52.

J 0-790420.

Our main result for
a batch of L9 keys:

time J 1.022400

using chip area L1'1816OO;
AT per key is L1-704000

This paper also looks more

at L°1) analyzing asymptos

speedup from ear
Results are not w

y-abort E(

nat one wc

guess from 1982 Pomerance

Goal of our paper:
analyze the asymptotic cost,

specifically price-performance

ratio, of breaking many RSA keys.

"Many": e.g. millions.

“Price-performance ratio" :
area-time product for chips.

"RAM" metric (adding two 64-
bit integers has same cost as
accessing array of size 2°%) is not
realistic; “AT" metric Is realistic.

“"Asymptotic’: We systematically
suppress polynomial factors. Our
speedups are superpolynomial.

Best result known for one key

time J 1.185632

using chip area L9-790420.

AT is L1'976O52.

Our main result for

a batch of L9 keys:
time L1.0224OO

using chip area L1'1816OO;
AT per key is j 1.704000

This paper also looks more closely

at L°1) analyzing asymptotic
speedup from early-abort ECM.

Results are not what one would
guess from 1982 Pomerance.

our paper:
the asymptotic cost,

lly price-performance

breaking many RSA keys.

- e.g. millions.

erformance ratio’ :
1e product for chips.

metric (adding two 64-

ers has same cost as

s array of size 2°%) is not
“AT" metric is realistic.

totic” : We systematically
polynomial factors. Our
s are superpolynomial.

Best result known for one key

time J 1.185632

using chip area
AT is L1'976O52.

J 0-790420.

Our main result for
a batch of L9 keys:

time J 1.022400

using chip area L1'1816OO;
AT per key is L1-704000

This paper also looks more closely

at L°1) analyzing asymptotic

speedup from ear
Results are not w

y-abort ECM.

nat one would

guess from 1982 Pomerance.

Asymptc

1. Attac
IS reduce
can targ

2. Prim.

memory
for off-tl

3. Attac
(and car
breaking

totic cost,
erformance

many RSA keys.

ons.

e ratio”:

t for chips.
lding two 64-
me cost as

size 2°4) is not

tric 1s realistic.

> systematically
al factors. Our
rpolynomial.

Best result known for one key

time J 1.185632

using chip area L9-790420.

AT is L1'976O52.

Our main result for

a batch of LY keys:
time L1.0224OO

using chip area L1'1816OO;
AT per key is j 1.704000

This paper also looks more closely

at L°1) analyzing asymptotic
speedup from early-abort ECM.

Results are not what one would
guess from 1982 Pomerance.

Asymptotic consec

1. Attack cost pel
Is reduced, so atta
can target lower-v

2. Primary bottler
memory factorizat
for off-the-shelf gr

3. Attack time is
(and can be reduc
breaking key rotat

S.

64-

S

S not
listic.

Ically
Our

al.

\ keys.

Best result known for one key

time J 1.185632

using chip area
AT is L1'976O52.

J 0-790420.

Our main result for
a batch of L9 keys:

time J 1.022400

using chip area L1'1816OO;
AT per key is L1-704000

This paper also looks more closely

at L°1) analyzing asymptotic

speedup from ear
Results are not w

y-abort ECM.

nat one would

guess from 1982 Pomerance.

Asymptotic consequences:

1. Attack cost per key
Is reduced, so attacker
can target lower-value keys.

2. Primary bottleneck is low
memory factorization—well
for off-the-shelf graphics car

3. Attack time is reduced
(and can be reduced more),
breaking key rotation.

Best result known for one key

time J 1.185632

using chip area L9-790420.

AT is L1'976O52.

Our main result for

a batch of L9 keys:
time L1.0224OO

using chip area L1'1816OO;
AT per key is j 1.704000

This paper also looks more closely

at L°1) analyzing asymptotic
speedup from early-abort ECM.

Results are not what one would
guess from 1982 Pomerance.

Asymptotic consequences:

1. Attack cost per key
Is reduced, so attacker
can target lower-value keys.

2. Primary bottleneck is low-
memory factorization—well suited
for off-the-shelf graphics cards.

3. Attack time is reduced
(and can be reduced more),
breaking key rotation.

Best result known for one key

time J 1.185632

using chip area L9-790420.
AT is L1'976O52.

Our main result for

a batch of L9 keys:

time J 1.022400

using chip area L1'1816OO;

AT per key is L1-704000

This paper also looks more closely

at L°1) analyzing asymptotic
speedup from early-abort ECM.

Results are not what one would
guess from 1982 Pomerance.

Asymptotic consequences:

1. Attack cost per key
Is reduced, so attacker
can target lower-value keys.

2. Primary bottleneck is low-
memory factorization—well suited
for off-the-shelf graphics cards.

3. Attack time is reduced
(and can be reduced more),
breaking key rotation.

"Do the asymptotics really kick In
before 1024 bits?” — Maybe not,
but no basis for confidence.

ult known for one key
185632

ip area LO'790420;

1976052

n result for

of L9 keys:
022400

ip area L1.1816OO;

key is 11704000

ver also looks more closely

analyzing asymptotic

from early-abort ECM.

are not what one would

m 1982 Pomerance.

Asymptotic consequences:

1. Attack cost per key
Is reduced, so attacker
can target lower-value keys.

2. Primary bottleneck is low-
memory factorization—well suited
for off-the-shelf graphics cards.

3. Attack time is reduced
(and can be reduced more),
breaking key rotation.

"Do the asymptotics really kick in
before 1024 bits?” — Maybe not,
but no basis for confidence.

Eratosth
Sieving :
using pr
1
2(2
3 3
4(22
5
6]2 3
)
8222
9 3
10(2
11
12[22 3
13
14[2
15 3
16[2222
17
18]2 3
19
20[22

etc.

for one key Asymptotic consequences: Eratosthenes for s
200420 1. Attack cost per key Sieving small integ
’ Is reduced, so attacker using primes 2, 3,
can target lower-value keys. 1
2|2
r . . 3 3
2. Primary bottleneck is low- 2|00
YS: L . 5 5
memory factorization—well suited 6o 3
- 7 7
181600, for off-the-shelf graphics cards. g 599 N
04000 3. Attack time is reduced 102 >
(and can be reduced more), -
oks more closely . . e 7
| breaking key rotation. T -
, asymptotic 16(222°2
/-abort ECM. “Do the asymptotics really kick in aly aa
1at one would before 1024 bits?” — Maybe not, 20loo ;
omerance. but no basis for confidence. ote

oy Asymptotic consequences: Eratosthenes for smoothnes:

1. Attack cost per key Sieving small integers 2 > 0
Is reduced, so attacker using primes 2, 3,5, 7:
can target lower-value keys. 1
2|2
2. Primary bottleneck is low- 222 >
memory factorization—well suited 2, 7
for off-the-shelf graphics cards. ; 559 !
9 33
3. Attack time is reduced ° >
(and can be reduced more), =
closely . . 1209 .
| breaking key rotation. T -
1C 16[2222
"M “Do the asymptotics really kick in g 5 aa
uld before 1024 bits?” — Maybe not, ;g - ;

but no basis for confidence.
etc.

Asymptotic consequences: Eratosthenes for smoothness

1. Attack cost per key Sieving small integers 1 > 0
Is reduced, so attacker using primes 2, 3,5, 7:
can target lower-value keys. 1
2|2
2. Primary bottleneck is low- 222 3
memory factorization—well suited 2 > 3 ’
for off-the-shelf graphics cards. ; 299 !
9 33
3. Attack time is reduced %(1) 3 °
(and can be reduced more), -
breaking key rotation. }‘5‘ . 3 57
162222
“Do the asymptotics really kick in aly aa
before 1024 bits?” — Maybe not, 022 s

but no basis for confidence.
etc.

tIC consequences:

'k cost per key
d, so attacker
et lower-value keys.

ary bottleneck is low-
factorization—well suited
1e-shelf graphics cards.

'k time Is reduced
1 be reduced more),
key rotation.

asymptotics really kick In
024 bits?” — Maybe not,
asis for confidence.

Eratosthenes for smoothness

Sieving small integers 7 > 0
using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
6|2 3

I I
8222

9 33
10|12 5
11

12122 3
13

14|2 I
15 3 5
1612222

17

18|2 33
19

20({22 5
etc.

The Q s
Sieving -
using pr
1
2(2
3 3
422
5
62 3
>
8222
9 3
102
11
12]22 3
13
142
15 3
16(2222
17
18]2 3
19
2022

etc.

JUences:

- key
cker
alue keys.

1eck 1s low-
lon—well suited
aphics cards.

reduced
ed more),
on.

ics really kick In
— Maybe not,
ynfidence.

Eratosthenes for smoothness

Sieving small integers 7 > 0
using primes 2, 3,5, 7:

The Q sieve

22

222

2222

NRRRRFRRRPRRFRRFRRRF
QUOWAONOOITPA,PWLWDNRPFRPOOOOONOOTA~WDN

Sieving 17 and 611

using primes 2, 3, !

22

222

2222

NRRRRFRRRRRRFRRRF
QUOWAONOOITPA,PWLWDNRPFRPOOOOONOOTPA~WN

etc.

etc.

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

>
2
2

Eratosthenes for smoothness The Q sieve

Sieving small integers 7 > 0 Sieving 7 and 611 + 2 for smr

using primes 2, 3,5, 7: using primes 2, 3,5, 7:

1 1 61222 33
22 72 613
3 3 3 3 6142
/- 4(22 4(22 615 3
- 5 5 6162 2 2
suited 62 3 62 3 617
4 7 7 6182 3
S. 8|222 8|222 619
9 33 9 33 620(2 2
102 10(2 621 333
11 11 6222
1222 3 1222 3 623
13 13 624(2 22723
142 142 625
15 3 15 3 626/2
16/2222 16/2222 627 3
AP 17 17 628(2 2
ick in 18l 33 18l 33 629
19 19 630/2 33
€ hot, 20(22 20(22 631

etc.

etc.

Eratosthenes for smoothness The Q sieve

Sieving small integers 7 > 0 Sieving 4+ and 611 + % for small 2
using primes 2, 3,5, 7: using primes 2, 3,5, 7:

1 1 612[22 33
2(2 2(2 613

3 3 3 3 6142

4|22 4|22 615 3 5
5 5 5 5 | |616]2 22

62 3 62 3 617

7 7 7 7| |618/2 3
8|222 8|222 619

9 33 9 33 6202 2 5
102 5 102 5 | [621 333
11 11 6222

12(22 3 12(22 3 623

13 13 62422223

142 7 142 7| 1625 5555
15 3 5 15 3 5 | (6262

16(2222 16(2222 627 3

17 17 6282 2

18|12 33 18|12 33 629

19 19 630|2 33 5
2022 5 2022 5 | 1631

etc. etc.

enes for smoothness

small integers 2 > 0
mes 2,3,5,7:

The Q sieve

Sieving 7 and 611 + ¢ for small 2
using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
6|2 3

I I
8222

9 33
10|12 5
11

12122 3

13

14|2 I
15 3 5
1612222

17

18|2 33
19

20({22 5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
623
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have co
the cong
for some

14 - 625
64 - 675
/5 - 636

14 - 64 -
— 28345

gcd{611
= 47.

611 =4

moothness

rers 12 > 0
), [

The Q sieve

Sieving 7 and 611 + ¢ for small 2

using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
62 3

I I
3222

9 33
10|2 5
11

12122 3

13

14|2 I
15 3 5
1612222

17

18|2 33
19

20(22 5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have complete fac
the congruences 1
for some 1's.

14 - 625 = 213054
64 - 675 = 203352
75 - 686 = 213152

14 - 64 - 75 - 625 - ¢
— 28345374 — (2°

gcd{611,14-64 -
= 47.

611 =47 -13.

The Q sieve

Sieving 7 and 611 + ¢ for small 2

using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
6|2 3

I I
8222

9 33
10|12 5
11

12122 3

13

14|2 I
15 3 5
1612222

17

18|2 33
19

20({22 5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
623
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

Have complete factorization
the congruences 1 = 611 + +
for some 1's.

14 - 625 = 21305471

64 - 675 = 26335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686
— 28345874 = (24325472)2,
gcd{611,14 - 64 - 75 — 2432
— 47,

611 =47 -13.

The Q sieve

Sieving 7 and 611 + ¢ for small 2
using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
62 3

I I
3222

9 33
10|2 5
11

12122 3

13

14|2 I
15 3 5
1612222

17

18|2 33
19

20(22 5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have complete factorization of
the congruences 1 = 611 + ¢
for some 1's.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{611,14 - 64 - 75 — 24325472}
— 47,

611 =47 -13.

leve

, and 611 + 2 for small 2

mes 2,3, 5,7:

612(2 2
613
6142
615
5 616(2 2 2
617
7| (618|2
619
3 620|2 2

5 621
6222
623

7| 1625
5 | 6262
627
6282 2
3 629
630(2
5 | [631

624(122223

Have complete factorization of
the congruences 2 = 611 + ¢
for some 1's.

14 - 625 = 21305471

64 - 675 = 26335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2,
gcd{611,14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.

The nun

Generali
— A = (
— a—b1
for root
of nonze

For any
so that 1

produce:

Optimal
(u+o(1

+ 1 for small 2

), [

) 33

2 2

Have complete factorization of
the congruences 1 = 611 + ¢
for some 1's.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2.
gcd{611,14 - 64 - 75 — 24325472}
— 47,

611 =47 -13.

The

number-field

Generalize 1 =1 +
—a=a+ 6N (
— a—bm = a— b«
for root aa € C

of nonzero integer

For
so t

any m can fin
nat factoring 7

Proc

uces factoriza

Optimal choice of
(1 +0(1))(log V)3

all 2

555

Have complete factorization of
the congruences 1 = 611 + ¢
for some 1's.

14 - 625 = 21305471

64 - 675 = 26335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2,
gcd{611,14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.

The number-field sieve

Generalize 1 =14+ N (moc
—a=a+bN (mod NV)
— a—bm =a—ba (mod :
for root a € C

of nonzero integer poly.

For any m can find
so that factoring m — a

produces factorization of V.

Optimal choice of logm is
(4 +0(1))(log N)?/3(log log

Have complete factorization of
the congruences 1 = 611 + ¢
for some 1's.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2,
gcd{611,14 - 64 - 75 — 24325472}
— 47,

611 =47 -13.

The number-field sieve

Generalizes =1+ N (mod N)
—a=a+bN (mod NV)

— a—bm =a—ba (mod m—a)
for root a € C

of nonzero integer poly.

For any m can find
so that factoring m — a

produces factorization of V.

Optimal choice of logm is
(1 +0(1))(log N)2/3(log log N)1/3.

mplete factorization of
ruences 1 = 611 + ¢
1S,

= 21305471,

= 20335270,

= 21315273,
75625675636

874 _ (24325472)2_

,14-64 - 75 — 243254721

/- 13.

The

number-field sieve

Generalizet =1+ N (mod N)
—a=a+bN (mod NV)

— a—bm =a—ba (mod m—a)
for root a € C

of nonzero integer poly.

For
so t

any m can find a
nat factoring m — a

Proc

uces factorization of V.

Optimal choice of logm is
(1 +0(1))(log N)2/3(log log N)1/3.

RAM co

1993 Bu
Smoothi
Sieve L}
Find L

with a —
Total R/

1993 Co
Total R/

using m

(Multipl
don't se
with AT

torization of
=611+

The

number-field sieve

Generalizee =1+ N (mod N)
—a=a+bN (mod NV)

— a—bm =a—ba (mod m—a)
for root a € C

of nonzero integer poly.

For any m can find

so that factoring m — «

Proc

uces factorization of V.

Optimal choice of logm is
(1 +0(1))(log N)2/3(log log N)1/3.

RAM cost analysic

1993 Buhler—Lens!
Smoothness bount
Sieve [1-923000 pa
Find (0-901500 pail

with a — bm and
Total RAM time |

1993 Coppersmith
Total RAM time [

using multiple nur

(Multiple number
don't seem to con
with AT, factory,

D

of

472}

The

number-field sieve

Generalizet =1+ N (mod N)
—a=a+bN (mod NV)

— a—bm =a—ba (mod m—a)
for root a € C

of nonzero integer poly.

For
so t

any m can find a
nat factoring m — a

Proc

uces factorization of V.

Optimal choice of logm is
(1 +0(1))(log N)2/3(log log N)1/3.

RAM cost analysis

1993 Buhler—Lenstra—Pometr

Smoothness bound 976150
Siave [1.923000

Find LO'961500

pairs (a, b).
pairs

with a — bm and a — ba sm
Total RAM time £1:923000,

1993 Coppersmith:
Total RAM time [1-901884

using multiple number fields

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

The number-field sieve

Generalize1 =1+ N (mod N)
—a=a-+b6N (mod N)

— a—bm =a—ba (mod m—a)
for root a € C

of nonzero integer poly.

For any m can find
so that factoring m — a

produces factorization of V.

Optimal choice of logm is
(1 +0(1))(log N)2/3(log log N)1/3.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — bm and a — ba smooth.
Total RAM time £1:923000,

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

nber-field sieve

zet1 =1+ N (mod N)

» + 6N (mod N)
m=a—ba (mod m—a)
acC

ro integer poly.

m can find o
‘actoring m — o
s factorization of \V.

choice of logm s
))(log N)?/3(Iog log N)/3.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound £9-201500

Sieve L1.923OOO
Find LO'961500

pairs (a, b).
pairs

with a — 6m and a — ba smooth.

Total RAM time [1923000

1993 Coppersmith:
Total RAM time [1-901884

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

ATl cost

Sieving |
In realist
AT cost

Sleve

N (mod N)
mod V)
x (mod m—a)

poly.

d o
n —Q
tion of V.

logm Is

/3(log log N)1/3.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — om and a — ba smooth.

Total RAM time 1923000

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disast

In realistic cost m¢«
AT cost L2'403750.

N)L/3,

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound £9-201500

Sieve L1.923OOO
Find LO'961500

pairs (a, b).
pairs

with a — 6m and a — ba smooth.

Total RAM time [1923000

1993 Coppersmith:
Total RAM time [1.901884

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'403750.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — om and a — ba smooth.

Total RAM time 1923000

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — om and a — ba smooth.

Total RAM time 1923000

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

Fix: find smooth using ECM.
AT cost L1'923OOO.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — om and a — ba smooth.

Total RAM time 1923000

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.
AT cost L2'40375O.

RAM cost analysis

1993 Buhler—-Lenstra—Pomerance:

Smoothness bound [0-961500
Sieve L1.923OOO

Find LO.9615OO

pairs (a, b).
pairs

with a — om and a — ba smooth.

Total RAM time 1923000

1993 Coppersmith:
Total RAM time [1:901684

using multiple number fields.

(Multiple number fields
don't seem to combine well
with AT, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.
AT cost L2'40375O.

Semi-fix: Reduce smoothness

bounds to rebalance.
AT cost L1'976052.

(2001 Bernstein)

st analysis

hler—Lenstra—Pomerance:

hess bound £9-961500

923000
961500

pairs (a, b).
pairs

- bm and a — ba smooth.

\M time L1:923000

ppersmith:
\M time L1'901884
iltiple number fields.

e number fields
em to combine well
, factory, et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'403750.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.

AT cost L2'40375O.

Semi-fix: Reduce smoothness

bounds to rebalance.
AT cost L1'976052.

(2001 Bernstein)

The fact

1993 Co
There e
that fac

with san
in RAM

Smoothi
Smaller
so need

Algorith
such tha
Note: o
Algorith

whether

)

‘ra—Pomerance:

] LO'9615OO.

rs (a, b).
'S

1 — ba smooth.

1.923000

1.901554

nber fields.

fields
\bine well

et al.)

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.

AT cost L2.403750 |

Semi-fix: Reduce smoothness

bounds to rebalance.
AT cost L1'976O52.

(2001 Bernstein)

The factorization

1993 Coppersmith
There exists an al
that factors any ir
with same #bits s
in RAM time L1

Smoothness bount
Smaller than befol
so need more (a, ¢

Algorithm knows
such that a — bm
Note: one m worl
Algorithm uses EC

whether a — bay

dNCE.

ooth.

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'403750.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.

AT cost L2'40375O.

Semi-fix: Reduce smoothness

bounds to rebalance.
AT cost L1'976052.

(2001 Bernstein)

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as /V

in RAM time [1.038587

Smoothness bound [9-81929¢
Smaller than before,

so need more (a, b).

Algorithm knows all (a, b)

such that a — bm I1s smooth
Note: one m works for all /
Algorithm uses ECM to che:
whether a — bap 1s smooth.

AT cost analysis

Sieving is a disaster

In realistic cost metric.
AT cost L2'4O375O.

Fix: find smooth using ECM.
AT cost L1'923OOO.

Linear algebra Is also a disaster.

AT cost L2.403750 |

Semi-fix: Reduce smoothness

bounds to rebalance.
AT cost L1'976O52.

(2001 Bernstein)

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as NV

in RAM time [1.038587

Smoothness bound £0-819290

Smaller than before,
so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bay 1s smooth.

“analysis

s a disaster

IC cost metric.
L2.4O3750_

| smooth using ECM.
L1.923OOO_

lgebra Is also a disaster.

L2'40375O.

- Reduce smoothness

to rebalance.
L1'976O52.

ernstein)

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as /V

in RAM time [1.038587

Smoothness bound £9-819290
Smaller than before,

so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bap 1s smooth.

Finding
Is slower
Need to

such tha
RAM tir

otriC.

ising ECM.

|lso a disaster.

smoothness
ce.

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as N/

in RAM time [1.038587

Smoothness bound [0-819290

Smaller than before,
so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bay 1s smooth.

Finding this algori
Is slower than runi
Need to precompu

such that a — bm
RAM time [2-0068

ter.

S

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as /V

in RAM time [1.038587

Smoothness bound [0-819290

Smaller than before,
so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bap 1s smooth.

Finding this algorithm
Is slower than running It.
Need to precompute all (a, ¢

such that a — 6m Is smooth
RAM time [2006853

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as N/

in RAM time [1.038587

Smoothness bound £9-819290
Smaller than before,

so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bay 1s smooth.

Finding this algorithm

Is slower than running it.
Need to precompute all (a, b)
such that a — bm 1s smooth.

RAM time [2-006853

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as N/

in RAM time [1.038587

Smoothness bound [0-819290

Smaller than before,
so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bay 1s smooth.

Finding this algorithm

Is slower than running it.
Need to precompute all (a, b)
such that a — bm 1s smooth.

RAM time [2-006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than LO'368266,

then precomputation cost
becomes negligible.

The factorization factory

1993 Coppersmith:

There exists an algorithm
that factors any integer
with same #bits as N/

in RAM time [1.038587

Smoothness bound [0-819290

Smaller than before,
so need more (a, b).

Algorithm knows all (a, b)
such that a — bm I1s smooth.
Note: one m works for all V.
Algorithm uses ECM to check
whether a — bay 1s smooth.

Finding this algorithm

Is slower than running it.
Need to precompute all (a, b)
such that a — bm 1s smooth.

RAM time [2-006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than [0-368266

then precomputation cost

becomes negligible.

The big problem: Coppersmith's
algorithm has size [1:038987
Huge AT cost; useless in reality.

orization factory

ppersmith:
xists an algorithm

LOrs any Integer

e #bits as
time L1.638587_

hess bound [0-819290

than before,
more (a, b).

m knows all (a, b)

t a — bm is smooth.
ne m works for all V.
m uses ECM to check
a — bayy Is smooth.

Finding this algorithm
Is slower than running It.
Need to precompute all (a, b)

such that a — 6m iIs smooth.
RAM time [2006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than [0-368266

then precomputation cost
becomes negligible.

The big problem: Coppersmith’s
algorithm has size [1:038987
Huge AT cost; useless in reality.

Batch N

Goal: O

1. Gene
Test a -

2. Make
close to
When sr
test eacl

3. After
reorgani:
relevant

4. Linea

factory

oorithm

teger

s IV
38587_

4 1 0.819290
e
).

ll (a, b)
IS smooth.
s for all \V.

‘M to check
IS smooth.

Finding this algorithm
Is slower than running it.
Need to precompute all (a, b)

such that a — bm i1s smooth.
RAM time [2006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than [0-368266

then precomputation cost

becomes negligible.

The big problem: Coppersmith's
algorithm has size [1:038987
Huge AT cost; useless in reality.

Batch NFS

Goal: Optimize A

1. Generate (a, b)
Test a — bm for si

2. Make many coj
close to each (a,b
When smooth a —
test each a — bay

3. After all smoot
reorganize: for eac
relevant (a, b) clos

4. Linear algebra.

Finding this algorithm

Is slower than running it.
Need to precompute all (a, b)
such that a — bm 1s smooth.

RAM time [2-006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than [0-368266

then precomputation cost

becomes negligible.

The big problem: Coppersmith’s
algorithm has size [1:038987
Huge AT cost; useless in reality.

Batch NFS

Goal: Optimize AT asymptc

1. Generate (a, b) in paralle
Test a — bm for smoothness

2. Make many copies of eac
close to each (a, b) generatc
When smooth a — bm is fol
test each a — bap for smoof

3. After all smooths are fou
reorganize: for each N, brin
relevant (a, b) close togethe

4. Linear algebra.

Finding this algorithm

Is slower than running it.
Need to precompute all (a, b)
such that a — bm 1s smooth.

RAM time [2-006853

Standard conversion of
precomputation into batching:
if there are enough targets,
more than [0-368266

then precomputation cost

becomes negligible.

The big problem: Coppersmith's
algorithm has size [1:038987
Huge AT cost; useless in reality.

Batch NFS

Goal: Optimize AT asymptotics.

1. Generate (a, b) in parallel.
Test a — bm for smoothness.

2. Make many copies of each N,
close to each (a, b) generator.

When smooth a — bm is found,
test each a — bayy for smoothness.

3. After all smooths are found,
reorganize: for each N, bring
relevant (a, b) close together.

4. Linear algebra.

this algorithm
“than running It.
precompute all (a, b)

t a — bm 1s smooth.
ne L2.OO6853_

1 conversion of
utation into batching:
are enough targets,

N LO.368266’
computation cost

, negligible.

problem: Coppersmith’s
n has size [1.638537
[cost; useless in reality.

Batch NFS

Goal: Optimize AT asymptotics.

1. Generate (a, b) in parallel.
Test a — bm for smoothness.

2. Make many copies of each /N,
close to each (a, b) generator.
When smooth a — bm is found,

test each a — bapy for smoothness.

3. After all smooths are found,
reorganize: for each N, bring
relevant (a, b) close together.

4. Linear algebra.

Generate (a,b)l
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b)l
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b)l
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b)l
Is a — bm
smooth?

If so, store.

Repeat.

thm
1ng It.
te all (a, b)

IS smooth.
53_

on of

to batching:
1 targets,

6

on cost

a

Coppersmith’s
L1.638587_

less In reality.

Batch NFS

Goal: Optimize AT asymptotics.

1. Generate (a, b) in parallel.
Test a — bm for smoothness.

2. Make many copies of each N,
close to each (a, b) generator.
When smooth a — bm is found,

test each a — bapy for smoothness.

3. After all smooths are found,
reorganize: for each N, bring
relevant (a, b) close together.

4. Linear algebra.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b). I
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b). I
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b). I
Is a —bm
smooth?

If so, store.

Repeat.

1th's

ality.

Batch NFS

Goal: Optimize AT asymptotics.

1. Generate (a, b) in parallel.
Test a — bm for smoothness.

2. Make many copies of each /N,
close to each (a, b) generator.
When smooth a — bm is found,

test each a — bapy for smoothness.

3. After all smooths are found,
reorganize: for each N, bring
relevant (a, b) close together.

4. Linear algebra.

Gel

Generate (a,b).|Generate (a,b).|Generate (a,b).
Is a — bm Is a — bm Is a — bm
smooth? smooth? smooth?
If so, store. If so, store. If so, store. If
Repeat. Repeat. Repeat. .
Generate (a,b).|Generate (a,b).|Generate (a,b).|Gel
Is a — bm Is a —btm Is a — bm
smooth? smooth? smooth?
If so, store. If so, store. If so, store. |1
Repeat. Repeat. Repeat. .
Generate (a,b).|Generate (a,b).|Generate (a,b).|Gel
Is a — bm Is a —btm Is a — bm
smooth? smooth? smooth?
If so, store. If so, store. If so, store. |1
Repeat. Repeat. Repeat.
Generate (a,b).|Generate (a,b).|Generate (a,b). Gell

Is a — 6m
smooth?
If so, store.

Repeat.

Is a — om
smooth?
If so, store.

Repeat.

Is a — bm
smooth?
If so, store.

Repeat.

Batch NFS

Goal: Optimize AT asymptotics.

1. Generate (a, b) in parallel.
Test a — bm for smoothness.

2. Make many copies of each N,
close to each (a, b) generator.
When smooth a — bm is found,

test each a — bapy for smoothness.

3. After all smooths are found,
reorganize: for each N, bring
relevant (a, b) close together.

4. Linear algebra.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — btm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

FS

ptimize AT asymptotics.

rate (a, b) in parallel.
- b for smoothness.

' many copies of each N,
each (a, b) generator.
nooth a — bm is found,

1 a — bayy for smoothness.

all smooths are found,
ze: for each N, bring
(a, b) close together.

r algebra.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — baq
smooth?
If so, store.
Send (a,b).
right. Repeat.l

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — bag
smooth?

If so, store.

Send (a,b).

up. Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —btm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — bag
smooth?
If so, store.
Send (a,b).
right. Repeat.l

Is a — baq3
smooth?
If so, store.
Send (a,b).

up. Repeat.

I asymptotics.

In parallel.
noothness.

svies of each N,
) generator.
- bm is found,

for smoothness.

hs are found,
“h N, bring
e together.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — btm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — baq Is a — bas
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. | right. Repeat.
Is a — bag Is a — bag
smooth? smooth?
If so, store. If so, store.
Send (a,¥b). Send (a,b).
up. Repeat. left. Repeat.
Is a — bag Is a — bajg
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. | right. Repeat.
Is a — bay3 Is a — baqa
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
up. Repeat. left. Repeat.

tICS.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —btm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — baq Is a — bao Is a — bas
smooth? smooth? smooth?
If so, store. If so, store. If so, store. |1
Send (a,b). Send (a,b). Send (a,b). S
right. Repeat. | right. Repeat. [right. Repeat. | do
Is a — bag Is a — bag Is a — bay |
smooth? smooth? smooth?
If so, store. If so, store. If so, store. |1
Send (a,b). Send (a,¥b). Send (a,b). S
up. Repeat. | left. Repeat. | left. Repeat. | le
Is a — bag Is a — baqp Is a — baqg I:I
smooth? smooth? smooth?
If so, store. If so, store. If so, store. If
Send (a,b). Send (a,¥b). Send (a,®b). S
right. Repeat. | right. Repeat. [right. Repeat. | do
Is a — baq3 Is a — baqg Is a — bais |
smooth? smooth? smooth?
If so, store. If so, store. If so, store. |1
Send (a,b). Send (a,b). Send (a,b). S
up. Repeat. | left. Repeat. | left. Repeat. Ie:

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — btm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

Is a — baq Is a — bas Is a — bas Is a — bay
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqg Is a — baqy Is a — baqo
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bay3 Is a — baqa Is a — bais Is a — baig
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

I. Generate (a,¥b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

I. Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

N1, Na, N3 ,I
Ns, Ng, N7,
Ng, N1o, N11
N1z, N1, Nis

I. Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a — bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

N1, No, N3,
Ns, Ng, N7,
Ng, N1o, N11
N1z, N1g, Nis

I. Generate (a,b).
Is a —btm
smooth?

If so, store.

Repeat.

Generate (a,b).
Is a —bm
smooth?

If so, store.

Repeat.

Generate (a,b).

Is a — bm
smooth?
If so, store.

Repeat.

N1, No, N3,
Ns, Ng, N7,
Ng, N1o, N11
N3, N1, Nis

Is a — baq Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,¥b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqp Is a — baqg Is a — baqo
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — baq3 Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3,
Ns, Ng, N7,
Ng, N1o, N11
N3, N1, Nis

N1, No, N3,
Ns, Ne, N7,
Ng, N1o, N11
N3, N1, N5

senerate (a,b).

Generate (a,b).

Is a — bm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.
senerate (a,b).|Generate (a,b).
Is a — bm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.
senerate (a, b).|Generate (a,b).
Is a — btm Is a — bm
smooth? smooth?

If so, store. If so, store.
Repeat. Repeat.

senerate (a,b).|Generate (a,b).

Is a — 6m
smooth?
If so, store.

Repeat.

Is a — bm
smooth?

If so, store.

Repeat.

Is a — baq Is a — bas Is a — bas Is a — bay
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).

right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b). Send (a,¥b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqg Is a — baqy Is a — baqo
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bay3 Is a — baqa Is a — bais Is a — baig

smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, N Ns, Ng
No, N1o, N11, N12 Ny, N1o,
N13, N1g, Nis, Nie N13, N1g
N1, No, N3, Ny Ny, No
Ns, Ng, N7, Ng Ns, N
Ng, N1o, N11, N12 Ny, N1o,
N13, N14, Nis, Nie N1z, N1g
N1, No, N3, Ny N1, Vo
Ns, N, N7, Ng Ns, N
Ng, N1o, N11, N12 Ny, N1o,
N1z, N14, V15, Nig N1z, Ny
N1, No, N3, Ny Ny, No
Ns, N, N7, Ng Ns, N
Ng, N1o, N11, N2 Nog, N1o
N1z, N14, V15, Nig N1z, Ny
N1, No, N3, Ny N1, No
Ns, Ne, N7, Ng Ns, N
No, N1g, N11, N12 Ny, N1g
N13, N14, Nis, Nie N13, Nig

rerate (a,b).

Is a — bm
smooth?
5o, store.

Repeat.

erate (a,b).

Is a — bm
smooth?
50, store.

Repeat.

rerate (a,b).

Is a — bm
smooth?
5o, store.

Repeat.

rerate (a,b).

Is a — bm
smooth?
50, store.

Repeat.

Is a — baq Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,¥b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqp Is a — baqg Is a — baqo
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — baq3 Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

Ny, No, Ns, Ny Ny, No, N, Ny
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1o, N11, N12 Ng, N1o, N11, N12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, N1s, Nig N3,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1o, V11, N12 Ng, N1o, N11, N12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, Nis, Nig N3,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns
No, N1g, V11, N12 Ng, N1o, N11, V12 Ny,
Ni3, N14, N1s, Nig Ni3, N4, Nis, Nig N13,
N1, No, N3, Ny N1, No, N3, Ny Ny
Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns
No, N1o, V11, N12 Ng, N1o, N11, V12 Ny,
N13, N14, N1s, Nig N13, N14, N1s, Nig N3,
Ny, No, N3, Ny Ny, No, N3, Ny N
Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns
Ng, N1g, N11, N12 Ng, N1g, N11, N12 No,
N13, N1g, N1s, N16 N13, N1g, N1s, N16 N3,

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1a, N1s5, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N14, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1, N16

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N1z, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, V11, N12
N13, N1a, N1s5, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N1z, N14, N1s, N16

Is a — baq Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bag Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.
Is a — bag Is a — baqg Is a — baqy Is a — baqo
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. | right. Repeat. |down. Repeat.
Is a — bay3 Is a — baqa Is a — bais Is a — baig
smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b). Send (a,b).
up. Repeat. | left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N14, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Nie

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, Nis, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, V11, N12
N13, N1g, Nis, Nig

Is a — bao Is a — bas Is a — bay
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. [down. Repeat.
Is a — bag Is a — bay Is a — bag
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,¥b). Send (a,b). Send (a,b).
left. Repeat. | left. Repeat. | left. Repeat.
Is a — baqp Is a — baqy Is a — baqo
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,®b). Send (a,b). Send (a,b).
right. Repeat. | right. Repeat. [down. Repeat.
Is a — baqg Is a — bais Is a — baig
smooth? smooth? smooth?
If so, store. If so, store. If so, store.
Send (a,b). Send (a,b). Send (a,b).
left. Repeat. | left. Repeat. | left. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N1a, N1, V16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis5, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, Mg

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N14, N1is, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, N1s, Nig

Is a — baj Is a — bay
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. [down. Repeat.
I Is a — bay Is a — bag
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,¥b).
left. Repeat. | left. Repeat.
I Is a — baqy Is a — baqo
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
right. Repeat. [down. Repeat.
I Is a — bays Is a — bag
smooth? smooth?
If so, store. If so, store.
Send (a,b). Send (a,b).
IIeft. Repeat. | left. Repeat.

Ny, No, N, Ny Ny, No, Ns, Ny Ny, No, N3, Ny Ny, No, N, Ny Ny, No, N3, A
Ns, Ng, N7, Ng Ns, Ne, N7, N Ns, N, N-, Ng Ns, Ng, N7, N Ns, Ng, N7, A
Ng, N1g, N11, N12 No, N1g, N11, N12 No, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, N1s, Nig N1z, N14, N1s, Nig N13, N14, N1s, Nig N1z, N14, Nis, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, Ng, N7, Ng Ns, Ng. N7, Ng Ns, Ng, N7, Ng Ns, Ng, N7, Ng Ns, N, N7,
Ng, N1g, N11, N12 Ng, N1g, N11, N1o Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N1z, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N13, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ng. N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, N12 Ng, N1g, N11, /
N1z, N14, V15, Nig N13, N14, N1s, Nig N13, N4, N1s, Nig N13, N14, N1s, Nig N3, N4, N5,
Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, Ny Ny, No, N3, A
Ns, Ne, N7, Ng Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng, N7, Ng Ns, Ng, N7, A
Ng, N1g, N11, N1o Ng, N1g, N11, N1o Ng, N1g, N11, V1o No, N1g, N11, N1o Ng, N1g, N1,/
N1z, N4, N15, Nig N13, N14, N1s, V16 N1z, N4, N1s, Nig N3, N14, N15, Nig N1z, N4, N5,

s a— bay
smooth?

5o, store.

end (a,b).

vn. Repeat.

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

s a— bag
smooth?

~ so, store.
end (a,b).

ft. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Nie

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, Nie

s a — bayo
smooth?

5o, store.

end (a,b).

vn. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, V11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, V11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
Ni3, N14, N1s, Nie

s a — bayg
smooth?

- so, store.
end (a,b).

ft. Repeat.

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N1a, N15, V16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, V12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, Nis5, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
Ni3, N4, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, Nis, Nie

Ny, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N1z, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Ni6

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, V11, N12
N13, N1a, N1, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1a, N1s, Ni6

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, N11, N12
N13, N14, N1s5, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, V11, N12
N13, N1g, N1s5, N16

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, N14, Nis, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N12
N13, N1a, Nis, Nie

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N12
N13, N1g, N1, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, Nis, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, N1is, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

Linear algel

using con

(ab) (a.
(a.b) (a
(a.b) (a

Linear algel

using con

(a.b) (a,
(a,6) (a,
(a,6) (a,

Linear aIgeE
using con
(a,8) (a,
(a.8) (a,
(a.6) (e,

N Ny, No, N, Ny Ny, No, N, Ny Ny, No, N3, Ny Ny, No, N, Ny
Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, N11, N12 No, N1g, N11, N12 No, N1o, N11, N12
- Nig Ni3, N4, Nis, Nig N1i3, N1a, N5, Nis Nis3, N14, Nis, Nig N1i3, N4, Nis, Nig
Ny N1, No, N3, Ny N1, No, N3, Ny N1, N, N3, Ny N1, No, N3, Ny
Ng Ns, N, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, N, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, N11, N12 Ng, N1g, N11, N12 Ng, N1o, N11, N12
» Mg Ni3, N4, Nis, Nig N13, N1a, N1s, Nig Ni3, N14, Nis, Nig Ni3, N4, N1s, Nig
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, V12 Ng, N1o, V11, N12 No, N1g, V11, N12 No, N1o, N11, N12
» Vg N13, N4, V15, N1e N1z, N4, N1s, Nie N1z, N4, N1s, N1e N13, N4, N1s, Nie
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, N, N7, Ng Ns, N, N7, Ng Ns, Ng. N7, Ng Ns, Ne, N7, Ng
, N12 Ng, N1o, N11, N12 Ng, N1o, V11, N12 Ng, N1g, N11, N12 No, N1o, N11, N12
- Vig N1z, V14, V15, N1e N1z, N4, N1s, Nie N1z, V14, N1s, N1e N13, V14, N1s, Nie
Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng Ns, N, N7, Ng Ns, Ng, N7, Ng
, N12 Ng, N1g, N11, V1o Ng, N1g, N11, N12 Ng, N1g, N11, V1o Ng, N1g, N11, N12
» Mg N1z, N1a, Nis, Nig N1z, N1a, N1s, Nig N1z, N1a, Nis, Mg N13, N1a, Ni5, Nig

Linear algeb

using con

(a,b) (a,
(a.6) (a,
(a,b) (a,

Linear algebra for N

using congruences

(a,6) (a,b) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Ns
using congruences
(a,b) (ab) (a.b)
(a.6) (a.b) (a.b)
(a,b) (a,b) (a,b)

Linear algebra for Ny
using congruences
(a,) (a,6) (a,)
(a.6) (a.6) (a,)
(a,6) (ab) (a,b)

N3, N, Ny, No, N3, Ny Ny, No, N, Ny Ny, No, N, Ny
, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Ni1, N12 No, N1g, N11, N12 Ng, N1o, N11, N12 No, N1g, N11, N12
, N1s, N16 Ni3, N4, Nis, Nig N13, N4, N5, Nig Ni3, N1g, Nis, Nig
, N3, Ny N1, N, N3, Ny N1, Np, N3, Ny N1, N, N3, Ny
Nz, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
N11, N1o Ng, N1g, N11, N12 No, N1o, N11, N12 Ng, N1g, N11, N12
, N1s5, V16 Ni3, N1g, Nis, Nig N13, N4, N1, Nig Ni3, N1g, Nis, N1ig
, N3, Ny N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
Nz, Ng Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o No, N1g, N11, N12 Ng, N1o, V11, N12 No, N1g, N11, N12
, N1s5, N16 Ni3, N14, N1s, Nig N13, N4, N1, Nig Ni3, N1g, Nis, N1
, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny N1, N, N3, Ny
Nz, Ng Ns, Ng, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o Ng, N1o, N11, N12 No, N1o, N11, N12 Ng, N1g, N11, N12
, N15, N16 N13, N1a, N1s, Ni6 N13, N1a, N5, Nig Ni3, N1a, Nis, V16
, V3, Vg N1, No, N3, Ny N1, No, N3, Ny N1, No, N3, Ny
, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
Ni1, N1o Ng, N1g, N11, N12 No, N1g, N11, N12 Ng, N1g, N11, N12
, V15, N16 N13, N14, N1s, N16 N13, N14, N1is, Nie N13, N1g, N1s, N16

Linear algebra for MNi3

using congruences
(a,6) (a,b) (a,b)
(a,8) (a,8) (a,b)
(a,8) (a,b) (a,b)

Linear algebra for N

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a.6) (a,8) (a,b)

Linear algebra for
using congruences
(a,6) (a,6) (a8
(a,6) (a,b) (a,b
(a,6) (a,b) (a,bjl

Linear algebra for A5

using congruences

(a.6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for
using congruences
(a,8) (ab) (a0
(a,6) (a,b) (a,0
(a,6) (a,b) (a,b:

Linear algebra for Mg
using congruences
(@) (a,6) (a,0)
(@) (a.6) (a,0)
(a,b) (a,b) (a,b)

Linear algebra for |
using congruences
(a6) (a,6) (a8
(a.6) (a.6) (a,
(a,6) (a,b) (a,b:

LNy, N3, Ny Ny, Ny, N3, Vg Ny, Na, Vs, N
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Nio, V11, N12 No, N1g, N11, N12 No, N1o, N11, N12
Nig, N5, Nig N1z, N4, V15, N1e N13, V14, V15, Nig
S No, N3, Ny N1, N, N3, Ny N1, No, N3, Ny
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, N, N7, Ng
N1o, V11, N12 Ng, N1g, N11, N12 Ng, N1o, N11, N12
Nig, N5, Nig N1z, N4, V15, N1e N1z, N4, N1s, Nie
Ny, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny
. Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ng, N7, Ng
N1o, V11, N12 No, N1g, V11, N12 No, N1o, N11, N12
Nig, N5, Nig N1z, N4, N1s, N1e N13, N4, N1s, Nie
G No, N3, Ny N1, No, N3, Ny N1, Np, N3, Ny
, Ne, N7, Vg Ns, Ng, N7, Ng Ns, Ne, N7, Ng
Nio, V11, V12 Ng, N1o, N11, N12 Ng, N1o, N11, N2
Nig, Nis, Nig N1z, V14, N1s, N1e N13, V14, N1s, Nie
S No, N3, Ny N1, No, N3, Ny N1, N, N3, Ny
, Ne, N7, Ng Ns, Ne, N7, Ng Ns, Ne, N7, Ng
Nio, N11, N2 Ng, N1g, N11, N12 No, N1g, N11, N12
Nig, N5, Nig N13, N1g, N1s, N16 N13, N14, Nis, Nie

Linear algebra for Mi3

using congruences

(a,b6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(6,6) (a.8) (a.0)

Linear algebra for |
using congruences
(a,6) (a,b) (a,b
(a,6) (a,6) (a8
(a,6) (a,6) (a,b

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1o, N11, N2
N13, N4, N1s, Nig

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N1g, N1s, N16

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N4, N1s, Nig

N1, N, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N1z, N1g, N1s, N16

Linear algebra for N

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)

Linear algebra for A

using congruences

(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)
(3,8) (a,b) (a,0)

Linear aII
using
(ab)
(a)
(a,6)

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, V11, N12
N13, Nig4, N1s, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
No, N1g, N11, N12
N13, N14, N1s5, N16

Linear algebra for Nfg

using congruences
(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Mg
using congruences
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)
(a,6) (a,6) (a,b)

Linear aII
using
(a,6)
(a,6)
(a,6)

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nig

N1, No, N3, Ny
Ns, Ng, N7, Ng
Ng, N1o, N11, N2
N13, Nig, N1, V16

Linear algebra for Ny

using congruences
(a,6) (a,8) (a,b)
(a,8) (a,8) (a.b)
(a,8) (ab) (a,b)

Linear algebra for Mqg
using congruences
(@) (a,6) (a,0)
(@) (a.6) (a,0)
(a,b) (a,b) (a,b)

Linear al
using
(a,6)
(ab)
(a,b) :

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, N15, Nig

N1, No, N3, Ny
Ns, Ne, N7, Ng
Ng, N1g, N11, N12
N13, N1g, N1s, N16

Linear algebra for MNi3
using congruences
(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Mqg
using congruences
(a,6) (a,6) (a,b)
(a,6) (a,8) (a,0)
(a,6) (a,6) (a,b)

Linear al
using
(a,6)
(a,6)
(a,)

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, N, N7, Ng
Ng, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N14, N1s, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1o, N11, N12
N13, N1g, N1s5, Nie

N1, No, N3, Ny
Ns, Ne, N7, Ng
No, N1g, N11, N12
N13, N14, Nis, Nie

Linear algebra for N Linear algebra for N> Linear algebra for N3
using congruences using congruences using congruences
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,) (a.8) (a,0)
(a,6) (a.8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,b)

Linear algebra for A5 Linear algebra for Ng Linear algebra for A5
using congruences using congruences using congruences
(a,6) (a,8) (a,0) (a,6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (a,6) (a.8) (a,0)
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,0)

Linear algebra for Ny Linear algebra for Ny Linear algebra for Niy
using congruences using congruences using congruences
(a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,) (a.8) (a,b)
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (@) (a.8) (a,b)
(a,) (a,6) (a,) (a,6) (a,6) (a,) (a,) (a,b) (a,8)

Linear algebra for Mq3 Linear algebra for Aqg Linear algebra for Misg
using congruences using congruences using congruences
(a.6) (a,8) (a,b) (a.6) (a,6) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,0) (a,6) (a,6) (a,b) (a,b) (a,b) (a,b)
(a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a.8) (a,0)

Linear algebra for N Linear algebra for A Linear algebra for N3 Linear algebra fcl
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (c
(a,6) (a,6) (a,b) (a,6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (c
(a.6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (a.b) (a,6) (a.8) (¢

Linear algebra for Nfg Linear algebra for Mg Linear algebra for N Linear algebra fcl
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (c
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,8) (g

Linear algebra for Ng Linear algebra for Mqg Linear algebra for Ny Linear algebra fd
using congruences using congruences using congruences using congruer
(a,6) (a,6) (a,b) (a,) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (c
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,) (a,) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,8) (g

Linear algebra for MNi3 Linear algebra for Mq4 Linear algebra for N5 Linear algebra fd
using congruences using congruences using congruences using congruer
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (c
(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (g
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (¢

Linear algebra for N

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a.6) (a.8) (a,b)

Linear algebra for N>

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear al

gebra for N3

using congruences

(a,6) (a,8) (a,0)
(a,6) (a,8) (a,b)
(a,6) (a.8) (a,b)

Linear algebra for N,

using congruences

(a,6) (a,6) (a,b)
(a,6) (a,6) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for A5

using congruences

(a.6) (a,b) (a,b)
(a.6) (a,b) (a,b)
(a,6) (a,b) (a,b)

Linear algebra for Ng

using congruences

(a.6) (a.b) (a.b)
(a.6) (a.6) (a.b)
(a,6) (a,b) (a,b)

Linear al

gebra for M5

using congruences

(a.6) (a.b) (a,b)
(a,6) (a,b) (a,b)
(a,b6) (a,b) (a,b)

Linear algebra for Ng

using congruences

(a.6) (a.6) (a.b)
(a.6) (a.6) (a.b)
(a,6) (a,b) (a,b)

Linear algebra for Ny

using congruences

Linear algebra for Ny

using congruences

Linear algebra for Niy

using congruences

Linear algebra for Ao

using congruences

(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a.6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a.6) (a,6) (a,b)
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,0) (a,6) (a,8) (a,b)
Linear algebra for Mq3 Linear algebra for Aqg Linear algebra for Misg Linear algebra for Mig
using congruences using congruences using congruences using congruences
(a.6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a,6) (a,8) (a,0) (a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (a,6) (a,6) (a,b) (a,6) (2,6) (a,b) (a,6) (a,6) (a,b)

Linear algebra for N; Linear algebra for A Linear algebra for N3 Linear algebra for N,
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (@) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a.8) (a.b) (a,6) (a.8) (a,b)

Linear algebra for Ns Linear algebra for Njg Linear algebra for N5 Linear algebra for Mg
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,6) (a,8) (a,0) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,) (a,6) (a,) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,8)

Linear algebra for Ng Linear algebra for Mqg Linear algebra for Ny Linear algebra for Mis
using congruences using congruences using congruences using congruences
(a,6) (a,6) (a,b) (a,) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a,8) (a,b)
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,6) (a,b) (a,6) (a.8) (a,b)
(a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,6) (a,) (a,6) (a,b) (a,8)

Linear algebra for MNi3 Linear algebra for Mq4 Linear algebra for N5 Linear algebra for Mg
using congruences using congruences using congruences using congruences
(a.6) (a,6) (a,b) (a.6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a,8) (a,b)
(a,6) (a,6) (a,b) (a,6) (a,6) (a,0) (a,6) (a,6) (a,b) (a,6) (a,6) (a,b)
(a,6) (a,8) (a,b) (a,6) (a,8) (a,b) (a,6) (a.8) (a,b) (a,6) (a,8) (a,b)

