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Consider, e.g., y = Lnl/loj.
Uniform random integer in [1, y°]
has y-smoothness chance ~0.306;

uniform random integer in [1, n]
has chance ~ 2.77 - 10711,
Plausible conjecture:
y-smoothness chance of #(n + 7)
is ~ 8.5 10712,

Find ~ 8.5 - 107122

fully factored congruences.

If n > 2340 and y = [n1/10
8.5-1071°y? > 3y/logy, ar
approximations seem fairly ¢
so conjecturally the Q sieve
will find a square.

Find many independent squi
with negligible extra effort.
If gcd turns out to be 1,

try the next square.

Conjecturally always works:
splits odd n into
prime-power factors.



What's chance of random %(n + %)
being y-smooth, i.e., completely
factored into primes < y?
Consider, e.g., y = Lnl/loj.
Uniform random integer in [1, y]
has y-smoothness chance ~0.306;

uniform random integer in [1, n]
has chance ~ 2.77 - 10711,
Plausible conjecture:
y-smoothness chance of i(n + 1)
is ~ 8.5 10712,

Find ~ 8.5 - 107122

fully factored congruences.

If n > 2340 and y = [n1/10] then
8.5-10" 1%y > 3y/logy, and
approximations seem fairly close,
so conjecturally the Q sieve

will find a square.

Find many independent squares
with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:
splits odd n into
prime-power factors.
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Find many independent squares
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Find many independent squares
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If n > 2340 and y = [n1/10] then
8.5-10" 1%y > 3y/logy, and
approximations seem fairly close,
so conjecturally the Q sieve

will find a square.

Find many independent squares
with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:
splits odd n into
prime-power factors.
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for larger u?
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1/%_smoothness chance

U

roughly =",

has n

Plausible conjecture:
Q sieve succeeds

with y = [n1/¥]

for all n > u(1+0(1))u2;

here o(1) is as u — 00.



340 and y = [n1/19] then

122> 3y/logy, and

1ations seem fairly close,
cturally the Q sieve
a square.

ny independent squares
ligible extra effort.

irns out to be 1,

1ext square.

irally always works:
d n into
ower factors.

How about y ~ nl/%

for larger u?

Uniform random integer in [1, n]

1/%_smoothness chance

U

roughly ™.

has n

Plausible conjecture:
Q sieve succeeds
with y = [nl/¥]
for all n > u(1+o(1))u?.

here o(1) is as u — ©0.

How abc¢
letting

Given n
N geom

until Q
e.g., Inc

Plausible
expy/ (2
u € /(.

Cost of
hence st



— |n1/10] then

//logy, and
em fairly close,

e @ sieve

ndent squares

ra effort.
) be 1,
o

ys works:

[S.

How about y ~ nl/%

for larger u?

Uniform random integer in [1, n]

1/%_smoothness chance

U

roughly 4",

has n

Plausible conjecture:
Q sieve succeeds

with y = [nl/¥]

for all n > u(1+0(1))u2;

here o(1) is as u — 0.

How about
letting u grow wit

Given n, try seque
In geometric progr
until Q sieve work
e.g., Increasing po

Plausible conjectu

exp \/(% + o(1)) I
u € /(2 + o(1))l

Cost of Q sieve is

hence subexponen



then

d
lose,

AIeS

How about y ~ nl/%

for larger u?
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roughly ™.

has n

Plausible conjecture:
Q sieve succeeds
with y = [nl/¥]
for all n > u(1+o(1))u?.

here o(1) is as u — ©0.

How about
letting u grow with n?

Given n, try sequence of y's
In geometric progression
until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y
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How about y ~ nl/%

for larger u?

Uniform random integer in [1, n]
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roughly 4",

has n

Plausible conjecture:
Q sieve succeeds

with y = [n1/¥]

for all n > u(1+0(1))u2;

here o(1) is as u — 00.

How about
letting u grow with n?

Given n, try sequence of y's
In geometric progression
until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y €
exp \/(% + 0o(1))log n loglogn,
u € 1/(2+ 0(1))logn/loglogn.

Cost of Q sieve is a power of v,

hence subexponential in n.
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In geometric progression
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e.g., increasing powers of 2.
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Given n, try sequence of y's
In geometric progression
until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y €

exp \/(% + o(1))log n loglogn,

u € 1/(2+0(1))logn/loglogn.

Cost of Q sieve is a power of v,
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Find enough smooth congru
by changing the range of 7's
replace y?2 with y¢t1to(l) =
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Increasing ¢ past 1

increases number of 2's but
reduces linear-algebra cost.
So linear algebra never dom

when y Is chosen properly.



How about
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Given n, try sequence of y's
In geometric progression
until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y €

exp \/(% + 0o(1))log n loglogn,

u € 1/(2+ 0(1))logn/loglogn.

Cost of Q sieve is a power of v,
hence subexponential in n.

More generally, if y €

exp \/(2% + o(1))log n loglogn,
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So linear algebra never dominates

when y Is chosen properly.
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More generally, if y €

exp \/(2% + o(1))log n loglogn,
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Find enough smooth congruences
by changing the range of 's:
replace y?2 with y¢tito(l) =

exp \/( (c+1)jc+0(1)) log n log log n.

Increasing ¢ past 1

increases number of 72's but
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More generally, if y €

exp \/(2% + o(1))log n loglogn,
conjectured y-smoothness chance

is 1/yc—|—0(1)_

Find enough smooth congruences
by changing the range of 7's:
replace y2 with y¢t1to(l) —

exp \/( (c+1)226+0(1)) log nn log log n.

Increasing ¢ past 1

increases number of 7's but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.
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Smoothness chance of #(n + %)
degrades as 1 grows.
Smaller for 1 & y? than for i ~ y.
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Improving smoothness chances

Smoothness chance of #(n + %)
degrades as © grows.

Smaller for 1 & y? than for i ~ y.

Crude analysis: #(n + %) grows.
~yn if 1 R y;
~ yln if 1~y

More careful analysis:

n + 1 doesn’'t degrade, but

1 I1s always smooth for 2 < ¥,

only 30% chance for 7 ~ y2.
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degrades as 1 grows.

Smaller for 1 & y? than for i ~ y.

Crude analysis: #(n + %) grows.
~yn if 1 & y;
~ yln if 1~ Y2

More careful analysis:

n + 1 doesn’'t degrade, but

2 Is always smooth for 1 < ¥,

only 30% chance for i ~ y2.
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Improving smoothness chances

Smoothness chance of #(n + %)
degrades as © grows.

Smaller for 1 & y? than for i ~ y.

Crude analysis: #(n + %) grows.
~yn if 1 R y;
~ yln if 1~y

More careful analysis:

n + 1 doesn’'t degrade, but

1 Is always smooth for 2 < ¥,

only 30% chance for 7 ~ y2.

Can we select congruences
to avoid this degradation?
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noose g, square of large prime.

noose a ‘g-sublattice” of 7's:

arithmetic progression of 7's

where ¢ divides each 2(n + 1).

e.g. progression ¢ — (n mod q),

29 — (n mod q), 3¢ — (n mod q),

etc.

Check smoothness of

generalized congruence #(n +1)/q

for 2’'s In this sublattice.

e.g. check whether 7, (n+1)/q are

smooth for 2 = ¢ — (n mod q) etc.

Try many large ¢'s.

Rare for 1's to overlap.
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Choose g, square of large prime.

Choose a “g-sublattice” of 7's:
arithmetic progression of 7's
where ¢ divides each 2(n + ).
e.g. progression ¢ — (n mod q),
29 — (n mod q), 3¢ — (n mod q),
etc.

Check smoothness of

generalized congruence ¢(n +1)/q
for 2's in this sublattice.

e.g. check whether 7, (n+1)/q are
smooth for 2 = ¢ — (n mod g) etc.

Try many large ¢q's.
Rare for 2's to overlap.

e.g. mn =

Original

-~

W N = e,
D W W

Use 997
1 € 3024

8024
17964
27904



ness chances

e of 1(n + 1)
/S.

than for 7 ~ y.

n + 1) grows.

SIS:
-ade, but
 for 2 < y,

or 1 & y°.

oruences
ydation?

Choose g, square of large prime.

Choose a “g-sublattice” of 1's:
arithmetic progression of 7's
where ¢ divides each 2(n + 1).
e.g. progression ¢ — (n mod q),
29 — (n mod q), 3¢ — (n mod q),
etc.

Check smoothness of

generalized congruence ¢(n +1)/q
for 1's in this sublattice.

e.g. check whether 7, (n+1)/q are
smooth for 2 = ¢ — (n mod g) etc.

Try many large ¢'s.
Rare for 1's to overlap.

e.g. n = 3141592

Original Q sieve:

T n+1

1 314159265
2 314159265
3 314159265
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1 € 802458 + 994(
1 (n-
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Choose g, square of large prime.

Choose a “g-sublattice” of 7's:
arithmetic progression of 7's
where ¢ divides each 2(n + ).
e.g. progression ¢ — (n mod q),
29 — (n mod q), 3¢ — (n mod q),
etc.

Check smoothness of

generalized congruence (n +1)/q
for 2's in this sublattice.

e.g. check whether 7, (n+1)/q are
smooth for 2 = ¢ — (n mod g) etc.

Try many large ¢q’s.
Rare for 2's to overlap.

e.g. n = 314159265358970:

Original Q sieve:

n+1

3141592653589 7932«

7;
1
2 3141592653589 7932¢
3
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Rare for 1's to overlap.
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58 316052737309
67 316052737310
76 316052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+q—(n mod q)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g & nl/? have

i % (n+1)/g mntl? a yhl?

so smoothness chance Is roughly
(w/2) /2 (uf2) U2 = 2% [u¥,
2% times larger than before.

Even lar
from ch:

“Quadrz

’2,2—??,\/‘

have 72

much sn

"MPQS'
using su
But still

“Numbe
achieves



05358979323:

353979324
353979325
353979326

e,

)09Z:
-14)/997°
052737309

052737310
052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+q—(n mod q)

q

(9—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g & nl/? have

i~ (n+i)/g mntl? ayYl?

so smoothness chance Is roughly
(w/2) %2 (uf2) U2 = 2% [u¥,
2% times larger than before.

Even larger improy
from changing pol

“Quadratic sieve”

2 _n with 1 & v
2 1

’L.
have 2 — n &~ n

much smaller thar

"MPQS" improve:
using sublattices:

But still ~ nl/2.

“Number-tield sie\
achieves n°1).



323:

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+q—(n mod q)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g & nl/? have

i % (n+1)/g mntl? a yhl?

so smoothness chance Is roughly
(w/2) /2 (uf2) U2 = 2% [u¥,
2% times larger than before.

Even larger improvements
from changing polynomial 2|

“Quadratic sieve” (QS) use:
2 —n with 1 & /n;
have 32 — n & nl/2+o(1)

much smaller than n.
"MPQS" improves o(1)

using sublattices: (i° —n)/.
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°(1).



Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+q—(n mod q)

q

(9—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g & nl/? have

i~ (n+i)/g mntl? ayYl?

so smoothness chance Is roughly
(w/2) %2 (uf2) U2 = 2% [u¥,
2% times larger than before.

Even larger improvements
from changing polynomial #(n+1%).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n & nl/2to(1)

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.
But still & nl/2.

“Number-field sieve” (NFS)
achieves n°(1).



1alysis: Sublattices
e the growth problem.
actically unlimited supply

alized congruences
— d
o q))n+q (7 mod q)

q
0 and n.

reful analysis: Sublattices
better than that!

nl/? have

-1)/q o nt/? oyl
thness chance Is roughly
;/2(u/2)—u/2 _ 2u/uu,

> larger than before.

Even larger improvements

from changing polynomial #2(n+1%).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n & nl/2+0(1),

much smaller than n.
"MPQS" improves o(1)

using sublattices: (i —n)/q.
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°(1).

Generali

The Q s
the num

Recall h
factors ¢

Form a
as prodt
for sevelt
14(625)
— 4410C

gcd{611
= 47.



iblattices

th problem.

nlimited supply

gruences

-¢—(n mod g)
q

sis: Sublattices
an that!

1/2 ry 4u/2
ince Is roughly
1/2 DU [y ¥

an before.

Even larger improvements

from changing polynomial #(n+1%).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n & nl/2to(1)

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.
But still & nl/2.

“Number-field sieve” (NFS)
achieves n°(1).

Generalizing beyor

The Q sieve is a s
the number-field s

Recall how the Q
factors 611:

Form a square

as product of 2(% -
for several pairs (7
14(625) - 64(675)
= 44100007

gcd{611,14 - 64 -°
= 47.



ttices
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Even larger improvements

from changing polynomial #2(n+1%).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n & nl/2+0(1),

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.

But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°(1).

Generalizing beyond Q

The Q sieve is a special cas
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611,14 - 64 - 75 — 4410
= 47,



Even larger improvements

from changing polynomial #(n+1%).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n & nl/2to(1)

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.

But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°(1).

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611, 14 - 64 - 75 — 4410000}
— 47



ger Improvements

ainging polynomial 4(n—+1).

tic sieve” (QS) uses
vith 4 &2 \/n;
_n s nl/2to(l)

haller than n.

" improves o(1)

blattices: (i° —n)/q.
~ nll?,

r-field sieve” (NFS)
n°).

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611, 14 - 64 - 75 — 4410000}
— 47.

The Q(\
factors ¢

Form a
as prodt
for sevet

(—11 +

.(E
= (112-

Comput:
s = (-1
t =112
gcd{611



/ements

ynomial 2(n+1).

(QS) uses

n;
2+0(1)
7.

5 0(1)

(* —n)/q.

e” (NFS)

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611, 14 - 64 - 75 — 4410000}
— 47

The Q(+/14) sieve
factors 611 as foll

Form a square
as product of (z +
for several pairs (2

(=11 + 3-25)(—1

Compute

s=(—-11+3-25
t =112 — 16 - 25,
gcd{611,s —t} =



Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of (2 + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47.

The Q(+/14) sieve

factors 611 as follows:

Form a square

as product of (z + 257)(z +
for several pairs (2, 7):
(=114 3-25)(—11 + 3/14

(3 +25)(3 + V14)
= (112 — 161/14)?.
Compute

s=(-11+3-25)-(3+25
t =112 — 16 - 25,
gcd{611,s —t} = 13.



Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611, 14 - 64 - 75 — 4410000}
— 47

The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (7 + 257)(z + v/147)
for several pairs (2, 7):

(=11 + 3-25)(—11 + 3/14)

(34 25)(3 + 1/14)
— (112 — 161/14)?.
Compute

s =(=1143-25)- (3 + 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.



zing beyond Q

leve Is a special case of
ber-field sieve.

ow the @ sieve
)11:

square
ct of (2 + 6117)
al pairs (2, 7):

- 64(675) - 75(686)
002,

14 - 64 - 75 — 4410000}

The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (1 4 255)(z + v/145)
for several pairs (2, 7):

(=114 3-25)(—11 + 3/14)

(3 +25)(3 + V14)
= (112 — 161/14)?.
Compute

s = (—11+3-25)- (3 + 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.

Z[V14]

since 25

Apply ri
(—11 +

(3
= (112 -

e §2 =

Unsurpri



d Q

pecial case of
leve.

sleve

- 6115)
)
. 75(686)

75 — 44100001

The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (7 + 257)(z + v/147)
for several pairs (%, 7):

(—11 4 3-25)(—11 4 31/14)

(34 25)(3 + /14)
= (112 — 161/14)?.
Compute

s = (=114 3-25)- (3 + 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.

Why does this wol

Answer: Have ring

Z|\14] — Z/611,
since 252 = 14 in

Apply ring morphi
(—11 4+ 3-25)(—1

(3 +25)(3-
— (112 — 16 - 25)"

e, s2=1t%in Z/

Unsurprising to fir



> of

)00}

The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (1 4 255)(z + v/145)
for several pairs (2, 7):

(=114 3-25)(—11 + 3/14)

(3 +25)(3 + V14)
= (112 — 161/14)?.
Compute

s = (—11+3-25)- (3 + 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.

Why does this work?

Answer: Have ring morphisr

Z|\/14] — Z/611, /14 — 2
since 25° = 14 in Z/611.

Apply ring morphism to squ
(—11+4+3-25)(—-11+3-25
- (3 + 25)(3 + 25)
= (112 — 16 - 25)% in Z/611

i.e. s> =1t%in Z/611.

Unsurprising to find factor.



The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (% + 257)(z + /147)
for several pairs (2, 7):

(—11 4 3-25)(—11 + 3/14)

(34 25)(3 + 1/14)
— (112 — 161/14)?.
Compute

s =(=1143-25)- (3 + 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.

Why does this work?

Answer: Have ring morphism

Z|\/14] — Z/611, \/14 — 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:
(—11+43-25)(—11+ 3 - 25)
- (34 25)(3 + 25)

— (112 — 16 - 25)? in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.



/14) sieve

)11 as follows:

square

ct of (44 257)(4 + V/147)
al pairs (2, 7):

3.25)(—11 + 3v/14)

 + 25)(3 + 1/14)
- 161/14)°.

C
1+3-25)-(3+25),
— 16 - 25,

s —t} =13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 — 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=11 4 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)? in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.

Diagram

Q[x] _
A

Z[z] —



OWS.

257)(4 + V/145)
,7):

1+ 3v/14)
F/14)

) - (3 + 25),

13.

Why does this work?

Answer: Have ring morphism

Z|\/14] — Z/611, \/14 — 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=11 +3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)° in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.

Diagram of ring r

x|—>\/ﬁ> Q

Q[z]
\

zz] 22V 7

.

Z|z| uses poly arit
Ligz® + i1zt + -
Z[\/14] uses R ari
{io +41v14 4, -
Z/611 uses arithm
on {0,1,..., 610}



Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 — 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=11 4 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)° in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.

Diagram of ring morphisms:

Qlz] =Y QvTA] = ¢
A A

Z|x]| uses poly arithmetic on
{i0z° + 41zt + -+ all iy ¢
Z[\/14] uses R arithmetic ol
{i0 +41V14 : 99,41 € Z};
Z /611 uses arithmetic mod
on {0,1,...,610}.



Why does this work? Diagram of ring morphisms:

Answer: Have ring morphism /14
Qlz > Q(v14| = Q(+v/ 14

Z[\/14] — Z/611, v/14 5 25, £ | [A =AY
since 25° = 14 in Z/611.

. . /14
Apply ring morphism to square: Z|x] > Z|\/14]
(—11+3-25)(—11+ 3 - 25) JTds25

- (34 25)(3 + 25) v

— (112 — 16 - 25)2 in Z/611. Z/611
i.e. s2=1t%in Z/611. Z|z| uses poly arithmetic on

{102° + 4121 + - 1 all 4 € Z};
Z[\/14] uses R arithmetic on

{i0 +41V14 : 99,41 € Z};

Z /611 uses arithmetic mod 611
on {0,1,..., 610}.

Unsurprising to find factor.




os this work?

Have ring morphism
— Z/611, /14 — 25,
> =14 in Z/611.

ng morphism to square:

3-25)(—11+ 3 - 25)
)+ 25)(3 + 25)
- 16 -25)° in Z/611.

- ¢2 in Z/611.

sing to find factor.

Diagram of ring morphisms:

Qlz] = QIvTa) = Q(vIA)
A A

Z|x]| uses poly arithmetic on
{102 + 112t + - 1 all 4y, € Z};
Z[\/14] uses R arithmetic on

{i0 +41V14 : 9,41 € Z};

Z /611 uses arithmetic mod 611
on {0,1,...,610}.

Generali
to (f,m
m € Z,

Write d
= Jqz

Can tak
out larg

petter p

Pick a ¢

Then fd
monic g



k?

r morphism

v 14 — 25,

sm to square:

1+ 3-25)
F 25)

in Z/611.
11,

d factor.

Diagram of ring morphisms:

Qlz] = QIvTa) = Q(vId)
A A

Z|z] uses poly arithmetic on
{102° + 412t + - 1 all 4 € Z};
Z[\/14] uses R arithmetic on

{10 +41V14 : 49,41 € Z};

Z /611 uses arithmetic mod 611
on {0,1,...,610}.

Generalize from (a
to (f, m) with irre
m€E€ Z, f(m) €En

Write d = deg f,
f=fazt 4+

Can take fy =1 f
out larger f allow

petter parameter ¢

Pick a € C, root ¢
Then fya is a roo

monic g = fg_lf(



Diagram of ring morphisms:

Qlz] = QIvTa) = Q(vIA)
A A

Z|x]| uses poly arithmetic on
{102° + 412t + - 1 all 4y, € Z};
Z[\/14] uses R arithmetic on

{i0 +41V14 : 99,41 € Z};

Z /611 uses arithmetic mod 611
on {0,1,...,610}.

Generalize from (2% — 14, 2°
to (f, m) with irred f € Z]a
m € Z, f(m) € nZ.

Write d = deg |,
f:fd$d+"'—|—f1$1—|—fo:

Can take f; = 1 for simplici
out larger f, allows

better parameter selection.

Pick ¢ € C, root of f.
Then fya is a root of

monic g = f41f(z/fy) € :



Diagram of ring morphisms:

Qlz] = Qv = Q(vIA)
A A

Z|z] uses poly arithmetic on
{102° + 4121 + - 1 all 4 € Z};
Z[\/14] uses R arithmetic on

{10 +41V14 : 99,41 € Z};

Z /611 uses arithmetic mod 611
on {0,1,...,610}.

Generalize from (z? — 14, 25)
to (f, m) with irred f € Z|z],
m € Z, f(m) € nZ.

Write d = deg f,
f=faz?+-+ izt + foz°.

Can take fy; = 1 for simplicity,
out larger f allows

better parameter selection.

Pick a € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Z[a].



- of ring morphisms:

VI QIVI4] = Q(V14)
A

V14 Z[/14]
/14525
Y
Z/611

s poly arithmetic on
i120 + - all iy € Z};
uses R arithmetic on
14 - 10,11 € Z};

ses arithmetic mod 611

Generalize from (z? — 14, 25)
to (f, m) with irred f € Z|x],
m € Z, f(m) € nZ.

Write d = deg f,
f = faz®+- -+ fiz + foz.

Can take fy; = 1 for simplicity,
out larger fy allows

etter parameter selection.

Pick ¢ € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Z[a].




orphisms:

[V14] = Q(V14)
\

[v14]

v/ 14—25
Y

/611

hmetic on

- all 24y € Z};
thmetic on

1 EEZZ};

ietic mod 611

Generalize from (z? — 14, 25)
to (f, m) with irred f € Z|z],
m € Z, f(m) € nZ.

Write d = deg f,
f = faz®+- + fizt + foz.

Can take fy; = 1 for simplicity,
out larger f allows

better parameter selection.

Pick a € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Z[a].

70 + 7
Qo) = 4+
T0,
A
O — {algeb.rai
In
10 +
Z{fgo| = -+
10, -
lfdaHfdm



)(\/14)

Generalize from (z? — 14, 25)
to (f, m) with irred f € Z|x],
m € Z, f(m) € nZ.

Write d = deg |,
f = faz®+- -+ fiz" + foz.

Can take fy; = 1 for simplicity,
out larger fy allows

better parameter selection.

Pick a € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Z[a].

o + T1Q + 7"206:

0 _ algebraic integers
N in Q(a)

10 + z’lfda -+
- 1
Lfga] =+ Zd_lfg
10, - - -, 14-1 € ]
lfdaHfdm

Z/n=40,1,..., n—1}



Generalize from (z? — 14, 25)
to (f, m) with irred f € Z|z],
m € Z, f(m) € nZ.

Write d = deg f,
f = faz®+- + fizt + foz.

Can take fy; = 1 for simplicity,
out larger f allows

better parameter selection.

Pick o € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Z[a].

0o + T1Q + r2a2 —+
Qla) =<+ ?”d_lad_l:

O _ algebraic integers
- in Q(a)

10 + 11 fgax +
1 1
Zfia| = _I_Zd 1fd a1,
20, . - -, 14—1 €L
lfdaHfdm



ze from (z2 — 14, 25)
) with irred f € Z|z],
f(m) e nZ.

= deg f,
¢ .+ frzl + fozl

> fg = 1 for simplicity,
r fq allows
arameter selection.

- C, root of f.
a IS a root of

= 41 f(z/f4) € Z[z].

o + T1Q + r2a2 —+
Qla) =<+ ?"d_lad_l:

0 _ algebraic integers
N in Q(a)

10 + 11 fga +
Z[fga] =< - +iy  f5 a®h
10, - - -, 14-1 € Z
lfdaHfdm

Build sq
congruel
with 2Z
Could re
higher-d
quadrati

for some
But let's

Say we |

H(z’,j)ES
in Q(a)



2 — 14, 25)
d f € Z|z],
Z

fiz! + foz'.

or simplicity,
/S
election.

of f.

t of

z/fq) € Z|[z].

ro + r1ia + roa® +
Qla) =<+ ?”d_lad_l:

O _ algebraic integers
- in Q(a)

10 + 11 fgax +
1 1
Zfia| = _I_Zd 1fd a1,
10, .- -, 14-1 € L
lfdaHfdm

Build square in Q|
congruences (1 — :
with 1Z + 9Z = Z

Could replace 1 —
higher-deg irred In
quadratics seem f:
for some number 1
But let's not both

Say we have a squ

| 15, yes(z —1m)!

in Q(a); now wha



o + T1Q + r2a2 —+
Qla) =<+ ?"d_lad_l:

0 _ algebraic integers
N in Q(a)

10 + 11 fga +
Z[fga]l = - - +iy  fg a®h
10, - - -, 14-1 € Z
lfdaHfdm

Build square in Q(a) from
congruences (1 — 3m)(z — 7
with 1Z 4+ jZ =Z and 7 > |

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| 1(i,j)es(t —3m)(1 — ja)
in Q(a); now what?



o + T1Q + r2a2 -+
SRR T'd_lad_li

O _ algebraic integers
- in Q(a)

10 + z’lfda -+
1 1
L{fga] = q -+, 1fd ™
10, .- -, 14—1 € Z
lfdaHfdm

Build square in Q(a) from
congruences (1 — 3m)(1 — ja)
with tZ + 7Z =Z and 7 > 0.

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| (i, j)es(e —m)(2 — ja)
in Q(a); now what?



o + T1Q + r2a2 -+
= { -t ?"d_lad_li
r0,....T4—1 € Q

algebraic integers
in Q(a)

10 + 11 fga +

Build square in Q(a) from
congruences (¢ — 7m)(2 — ja)
with tZ 4+ 5Z =Z and 57 > 0.

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| 1(i,j)es(t —3m)(1 — ja)
in Q(a); now what?

[1(2 =7
IS @ Squ:
ring of 1
Multiply
butting

compute
[ 1z —J
Then ap
o Z[fq
fqo to ;

p(r) — ¢
InZ/n |

9'(fam)



C Integers
Q)

L1 fq0 +

a—1_d—1.

ty_1fqg
g1 E Z

n—1}

Build square in Q(a) from
congruences (1 — 3m)(1 — ja)
with tZ + 7Z =Z and 7 > 0.

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| (i, j)es(e —m)(2 — ja)
in Q(a); now what?

[1(2 —gm) (2 = 3¢
is a square in O,
ring of integers of

Multiply by ¢'(fzc
butting square roc

compute r with r-
[1(2 = gm) (2 — 3¢
Then apply the rir

o :Z|fqal = Z/n
fqo to fym. Con
p(r) —g'(fam)[
In Z/n have (1)
g'(fgm)*[1(z — 5



Build square in Q(a) from
congruences (¢ — 7m)(2 — ja)
with tZ 4+ 5Z =Z and 57 > 0.

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| 1(i,j)es(t —3m)(1 — ja)
in Q(a); now what?

[z — gm) (& — ja) f3
Is a square in O,
ring of integers of Q(a).

Multiply by g'(f4a)?
outting square root into Z|f

compute r with 7% = ¢/(f4c
(i — im) (i — ja) £,
Then apply the ring morphis
¢ : Z|fqa] = Z/n taking
fqo to fym. Compute gcd{
o(r) — g'(fam)[ (s — sm).
In Z/n have ¢(1)? =
g'(fam)*T1(i — m)f3.



Build square in Q(a) from
congruences (1 — j1m)(2 — ja)
with tZ + 3Z =Z and 7 > 0.

Could replace 1 — 7z by
higher-deg irred in Z|z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

| 1, yes(t —1m)(1 — 52)
in Q(a); now what?

[1(& = 3m) (& — ja) £y
is a square in O,
ring of integers of Q(a).

Multiply by ¢'(fza)?,
outting square root into Z[fyc]:

compute r with 72 = ¢/(fya)?:
12— m)(& - ja)fg.

Then apply the ring morphism
¢ : Z|fqa] = Z/n taking

fqa to fym. Compute ged{n,
o(r) — g'(fam)[ 1 — 3m) fa}
In Z/n have ¢(r)° =
g'(fam)? (i — ym)* f5.



uare in Q(a) from
1ces (2 — Jm)(2 — ja)
+4Z=2Z and 7 > 0.
place 1 — 7z by

eg irred in Z|z];
cs seem fairly small

» number fields.
> not bother.

1ave a square
(2 —gm)(1 —ja)
- now what?

(16 = 3m) (& — ja) £y
Is a square in O,
ring of integers of Q(a).

Multiply by ¢'(f4ex)?.

compute r with 72 = ¢'(fya)?:
(i — 3m) (i — ja) £,

Then apply the ring morphism
¢ : Z|fqa] — Z/n taking

fqa to fgm. Compute gcd{n,

p(r) — 9'(fam)[ 1(z — 3m) fa}.

In Z/n have ¢(r)° =
g'(fam)?[1(i — jm)* f3.

outting square root into Z[fyc]:

How to
of congr

Start wi'
e.g., y2

Look for

yY-Smoot
yY-smoot
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Find enc
Perform
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and 7 > 0.

jT by
Z|z];
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y small
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[1(& = 3m) (& — ja) £y
is a square in O,
ring of integers of Q(a).

Multiply by g¢'(fsa)2,

compute r with 72 = ¢/(fya)?:
12— m)(& - ja)fg.

Then apply the ring morphism
¢ : Z|fqa] = Z/n taking

fqa to fym. Compute ged{n,

p(r) = 9'(fam)[ 1(z — 3m) fa}.

In Z/n have ¢(r)° =
g'(fam)?[1(i — jm)* f5.

outting square root into Z[fyc]:

How to find squar
of congruences (2

Start with congrue
e.g., y° pairs (4,7

Look for y-smootl
y-smooth 1 — 1m

y-smooth f;norm
fai® + -+ fos®

Find enough smoc
Perform linear alg
exponent vectors |



(16 = 3m) (& — ja) £y
Is a square in O,
ring of integers of Q(a).

Multiply by g¢'(fza)2,

compute r with 72 = ¢'(fya)?:

(i — 3m) (i — ja) £,

Then apply the ring morphism

¢ : Z|fqa] = Z/n taking

fqa to fgm. Compute gcd{n,

o(r) = g'(fam) [ 1(z — 3m) fa}.
In Z/n have ¢(r)° =

9 (£am)? (i — 3m)2f3.

outting square root into Z[fyc]:

How to find square product
of congruences (2 — 3m)(% -

Start with congruences for,
e.g., y> pairs (%, 7).

Look for y-smooth congruer
y-smooth 7 — 7m and

y-smooth fynorm(z — ja) =
fat® + -+ fo3® = 3£ (i/;

Find enough smooth congru
Perform linear algebra on
exponent vectors mod 2.



[1(& = 3m) (& — ja) £y
is a square in O,
ring of integers of Q(a).

Multiply by g¢'(fza)2,

compute r with 72 = ¢'(fya)?:
12— m)(& - ja)fg.

Then apply the ring morphism
¢ : Z|fqa] = Z/n taking

fqa to fym. Compute gcd{n,
o(r) — g'(fam)[ (s — 3m) fa}
In Z/n have ¢(r)° =
g'(fam)? (i — ym)* f5.

outting square root into Z[fyc]:

How to find square product
of congruences (1 — jm)(2 — ja)?

Start with congruences for,
e.g., y> pairs (3, 7).

Look for y-smooth congruences:
y-smooth 2 — 7m and

y-smooth fynorm(z — ja) =
fait -+ foj® = 4£(/)

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.



m)(i — ja)fy
re in O,
ntegers of Q(a).

by g'(facr)?,

square root into Z|fyal:

7 with 72 = ¢/(fga)?-
m)(i - ja)f3.

ply the ring morphism
al — Z/n taking

fym. Compute ged{n,

'(fam) [ 1(z — 3m) fa}.

have ¢(1)? =
[ = gm)?f3.

How to find square product

of congruences (2 — 3m)(z — ja)?

Start with congruences for,
e.g., y> pairs (%, 7).

Look for y-smooth congruences:

y-smoot
y-smoot

fai® + -

N 2 — 7m and

n fgnorm(z — ja) =

-+ fog® = 74 f(4/7).

Find enough smooth congruences.

Perform

linear algebra on

exponent vectors mod 2.

Exponer
many °r
many ‘g
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One rati
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Value or

One rati

Value 0
value 1 |
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t Into Z[fda]:

= 9'(fga)*
12 morphism
, taking

pute gcd{n,

(¢ — gm) fa}.

)

m)2f2

How to find square product
of congruences (2 — 7m)(1 — ja)?

Start with congruences for,
e.g., y> pairs (3, 7).

Look for y-smooth congruences:
y-smooth 2 — 7m and

y-smooth fynorm(z — ja) =
faid+ o+ fog® = 341 (/3)

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.

Exponent vectors
many ‘“rational” c
many “algebraic”
a few “character”

One rational comg
for each prime p <
Value ordy (¢ — 77

One rational comyg
Value 0 if 2 — 9m
value 1 if 2 — 9m

If | |(z —3m) is a
then vectors add t
In rational compor
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fa}

How to find square product
of congruences (1 — jm)(2 — ja)?

Start with congruences for,
e.g., y> pairs (%, 7).

Look for y-smooth congruences:
y-smooth 7 — 7m and

y-smooth fynorm(z — ja) =
Fait -+ foj® = 4£(5/)

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.

Exponent vectors have

many “rational’ component
many “algebraic’ componen
a few “character’ componer

One rational component
for each prime p < v.
Value ordy (2 — 3m).

One rational component for
Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | (2 — gm) is a square
then vectors add to 0
In rational components.



How to find square product Exponent vectors have
of congruences (1 — jm)(2 — ja)? many “rational”’ components,

- many “algebraic’ components,
Start with congruences for, y 48 P

5 .. a few “character’ components.
e.g., Y pairs (2, 7).

One rational component
Look for y-smooth congruences:

S | <.
y-smooth i — jm and for each prime p < y

Value ordy(z — 3m).

y-smooth fynorm(i — ja) =
Fi% 4 -+ fog% = jdf(z'/j). One rational component for —1.
Value 0 if 2 — 9m > 0,

Find enough smooth congruences. T
value 1 if 2 — 9m < 0.

Perform linear algebra on
exponent vectors mod 2. If | |(z — gm) is a square
then vectors add to 0

In rational components.




find square product
uences (1 — jm)(1 — ja)?
th congruences for,

pairs (2, 7).

y-smooth congruences:

N 2 — 7m and

n fgnorm(z — ja) =

-+ fog® = 3°f(i/5).

yugh smooth congruences.

linear algebra on
t vectors mod 2.

Exponent vectors have

many “rational’ components,
many “algebraic’ components,
a few ‘“character’ components.

One rational component
for each prime p < v.
Value ordy(z — 3m).

One rational component for —1.

Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | (2 — gm) is a square
then vectors add to 0
In rational components.

One alg:
for each
D IS a pr

fa ¢ pZ
TEFp;

Value 0
otherwis
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Recall tt
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Exponent vectors have

many ‘“rational’ components,
many “algebraic’ components,
a few ‘“character’ components.

One rational component
for each prime p < v.
Value ordy(z — 3m).

One rational component for —1.

Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | |(z — gm) is a square
then vectors add to 0
In rational components.

One algebraic comr
for each pair (p, r
v Is a prime < y;
fa & pZ; disc f ¢
recFy f(r)=0

Value 0 if 2 — 97 ¢
otherwise ord,(5%.

This 1s the same 2
the valuation of 2
at the prime pQO +
Recall that 2Z + 3
so no higher-degre



- 7a)7?

1CES.

Exponent vectors have

many “rational’ components,
many “algebraic’ components,
a few ‘“character’ components.

One rational component
for each prime p < v.
Value ordy(z — 3m).

One rational component for —1.

Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | (2 — gm) is a square
then vectors add to 0
In rational components.

One algebraic component
for each pair (p, r) such tha
IS a prime < y;

fa & pZ; disc f ¢ pZ,;

r € Fp f(r)=0inFy.

Value 0 if ¢+ — 57 € pZ;
otherwise ord,(5%f(i/7)).

This Is the same as

the valuation of 1 — j&

at the prime pO + (fqa — f
Recall that 1Z + 9Z = Z,

so no higher-degree primes.



Exponent vectors have

many ‘“rational’ components,
many “algebraic’ components,
a few “character’ components.

One rational component
for each prime p < v.
Value ordy, (2 — 3m).

One rational component for —1.

Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | |(2 — gm) is a square
then vectors add to 0
In rational components.

One algebraic component
for each pair (p, r) such that
v Is a prime < y;

fa & pZ; disc f ¢ pZ;
rcFy f(r)=0inFy.

Value 0 if 2 — 57 ¢ pZ;
otherwise ord,(5%f(i/7)).

This Is the same as
the valuation of 2 — j&x
at the prime pO + (fga — fur)O.
Recall that :Z + 7Z = Z,
so no higher-degree primes.



t vectors have
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haracter’ components.
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prime p < ¥.
dp(2 — 3m).

onal component for —1.

f1—9m <O.
- 9m) is a square

tors add to O
al components.

One algebraic component
for each pair (p, r) such that
IS a prime < y;

fa & pZ; disc f ¢ pZ,;

r € Fp f(r)=0inFy.

Value 0 if 2 — 57 € pZ;
otherwise ord,(5%f(i/7)).

This Is the same as

the valuation of 1 — j&

at the prime pO + (fqa — fur)O.
Recall that 1Z + 9Z = Z,

so no higher-degree primes.
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yonent
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square
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1ents.

One algebraic component
for each pair (p, r) such that
v Is a prime < y;

fa & pZ; disc f ¢ pZ;
rcFy f(r)=0inFy.

Value 0 if 2 — gr € pZ;
otherwise ord,(5%f(i/7)).

This Is the same as

the valuation of 2 — j&x

at the prime pO + (fgqa — fur)O.
Recall that :Z + 7Z = Z,

so no higher-degree primes.

One character con
for each pair (p, r
» In a short range

Value O it 2 — 97 1
square in Fy, else

It | (2 — ) is a :
then vectors add t

In algebraic compc
and character comr



One algebraic component One character component

S, for each pair (p, r) such that for each pair (p, r) with
ts, pis a prime < y; p In a short range above .
1ts. fq & vZ; disc f & pZ;

| Value 0 if 2 — g7 Is a
r € Fp f(r)=0inFy.

Value 0 if ¢+ — 57 € pZ;
otherwise ord,(5%f(i/7)).

square in Fp, else 1.

If | (2 — 7a) is a square
then vectors add to 0

—1. This Is the same as in algebraic components
the valuation of 1 — & and character components.
at the prime pO + (fqa — fur)O.
Recall that 1Z + 7Z = Z,

so no higher-degree primes.




One algebraic component One character component
for each pair (p, r) such that for each pair (p,r) with
pis a prime < y; » In a short range above y.

fa ¢ Z; disc f ¢ pZ;
rcFy f(r)=0inFy.

Value 0 if 2 — g7 € pZ;
otherwise ord,(5%f(i/7)).

Value O if 2 — 97 iIs a
square in Fp, else 1.

If | (2 — 7a¢) is a square
then vectors add to 0

This Is the same as In algebraic components
the valuation of 2 — j& and character components.
at the prime pO + (fqa — fur)O.
Recall that :Z + 7Z = Z,

so no higher-degree primes.




2braic component
pair (p, ) such that
ime < y;

 disc f ¢ pZ;
f(r)=0in Fy.

if 1 — 97 & pZ;

e ordy(7%(4/7)).
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One character component
for each pair (p, r) with

p In a short range above .

Value O if 2 — g7 is a
square in Fp, else 1.

If | (2 — 7a) is a square
then vectors add to 0
in algebraic components

and character components.
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What at
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IS square
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) such that
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=17,
e primes.

One character component
for each pair (p, r) with
» In a short range above .

Value O if 2 — 97 iIs a
square in Fp, else 1.

If | (2 — 7a¢) is a square
then vectors add to O

in algebraic components
and character components.

Conversely, consid
adding to O in all

| |(2 — 3m) must |

Is| (2 — 7a) a sq
Ideal [ [(z — 7a)O
square outside f
What about prime
Even if ideal is sqt
IS square root prin
Even if ideal is get
by square of eleme
does square equal



One character component
for each pair (p, r) with
p In a short range above .

Value O if 2 — g7 is a
square in Fp, else 1.

If | (2 — 7a) is a square
then vectors add to 0

in algebraic components
and character components.

Conversely, consider vectors
adding to 0 in all componen

| |(2 — 3m) must be a squar

Is | |(2 — ja) a square?
Ideal [ [(z — 7a)O must be
square outside f,disc f.

What about primes in f;dis
Even if ideal is square,

IS square root principal?
Even if ideal is generated

by square of element,

does square equal | |[(z — ja



One character component
for each pair (p, r) with
» In a short range above y.

Value O if 2 — 97 iIs a
square in Fp, else 1.

If | (2 — 7¢) is a square
then vectors add to O

in algebraic components
and character components.

Conversely, consider vectors
adding to 0 in all components.

[1( — 7m) must be a square.

Is | |(2 — ja) a square?

Ideal | |(2 — 70¢)O must be
square outside f,disc f.

What about primes in f disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(2 — ja)7
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Conversely, consider vectors
adding to 0 in all components.

[1(7 — 7m) must be a square.

Is | |(2 — ja) a square?

Ideal [ [(z — 7a)O must be
square outside f,disc f.

What about primes in f disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(z — ja)?

Obstruc
conjectu

“(fq disc

A few cl
suffice t
forcing |
to be a

Can be «
easy to |
with mo
non-squi
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Conversely, consider vectors
adding to 0 in all components.

[1( — 7m) must be a square.

Is | |(2 — ja) a square?

Ideal | |(2 — 70¢)O must be
square outside f,disc f.

What about primes in f disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(2 — ja)7

Obstruction group
conjecturally very

“(fq disc f)-Selme

A few characters
suffice to generate

forcing [ |(2 — )
to be a square.

Can be quite slopy
easy to redo linear
with more charact
non-square IS encg



Conversely, consider vectors
adding to 0 in all components.

[1(7 — 7m) must be a square.

Is | |(2 — ja) a square?

Ideal [ [(z — 7a)O must be
square outside f,disc f.

What about primes in f disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(z — ja)?

Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ ](z — 7a)
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.



Conversely, consider vectors
adding to 0 in all components.

[1( — 7m) must be a square.

Is | |(2 — ja) a square?

Ideal | |(2 — 70¢)O must be
square outside f,disc f.

What about primes in f;disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(2 — ja)?

Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ |(2 — )
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.
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e of element,
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Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ ](z — 7a)
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.
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Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ |(2 — )
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.

Sublattices

Consider a sublatt
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Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ ](z — )
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.

Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — 3m)3®f(i/7)

expands by factor q(d¢11)/2
before division by g.

Number of sublattice elemer
within any particular bound

on (¢ —jm)j®f(i/5)
is proportional to g~ (@—1)/(c



Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing [ |(2 — )
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.

Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — gm)3*f(3/5)

expands by factor g(¢t1)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — ym)j° f(i/7)
is proportional to g—(¢—1)/(d+1)
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Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — 3m)3®f(i/7)

expands by factor q(d¢11)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — ym)5*f(i/7)

is proportional to g—(¢—1)/(d+1)
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Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — gm)3*f(3/5)

expands by factor g(¢t1)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — ym)j%f(2/5)

is proportional to g~ (¢—1)/(d+1)

Compared to just
conjecturally obta
times as many cor
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Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — 3m)3®f(i/7)

expands by factor q(¢11)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — jm)5*f(i/7)

is proportional to g~ (¢—1)/(d+1)

Compared to just using g =
conjecturally obtain y#/(d+1
times as many congruences

by using sublattices for

all y-smooth integers q < y°

Separately consider
1 —jm and 5%£(i/7)/q
for more precise analysis.

Limit congruences according
iIncreasing smoothness chanc



Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides 5¢f(i/7).
Assume squarish lattice.
(4 — gm)3*f(3/5)

expands by factor g(d¢t1)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — ym)j%f(2/5)

is proportional to g~ (¢—1)/(d+1)

Compared to just using g = 1,
conjecturally obtain y#/(d+1)+o(1)
times as many congruences

by using sublattices for

all y-smooth integers g < y2.

Separately consider
i — jm and 5%f(i/4)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.
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- a sublattice

(2, 7) where

34 f(1/7).
squarish lattice.
)74 f(3/3)

by factor g(d+1)/2
lvision by g.

of sublattice elements
ny particular bound

ym)5*f(i/7)

tional to g—(¢—1)/(d+1)

Compared to just using ¢ = 1,
conjecturally obtain y#/(d+1)+o(1)
times as many congruences

by using sublattices for

all y-smooth integers q < y2.

Separately consider
1 —jm and 5%£(i/7)/q
for more precise analysis.

Limit congruences accordingly,
iIncreasing smoothness chances.

Multiple

Assume
1S also Ir

Pick O ¢
Two cor
(i —jm)
Expand

handle t

Merge s
by testir
aborting

Can use
f+2(z
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1ttice.

g(d+1)/2

d.

1ce elements
lar bound

/7)
q

—(d-1)/(d+1)

Compared to just using g = 1,
conjecturally obtain y#/(d+1)+o(1)
times as many congruences

by using sublattices for

all y-smooth integers q < y2.

Separately consider
i — jm and 5%f(i/4)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.

Multiple number f

Assume that f +:
Is also irred.

Pick B € C, root «
Two congruences
(2—gm)(i—7J);
Expand exponent
handle both Q(a)

Merge smoothness
by testing 1 — 1m
aborting if 2 — 9m

Can use many nur
f+2(x —m) etc.
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Compared to just using ¢ = 1,

conjecturally obtain y#/(@+1)+o(1)

times as many congruences

by using su

lattices for

all y-smoot

n Integers g < y2.

Separately consider

1 — 7m and

1%f(i/9)/q

for more precise analysis.

Limit congruences accordingly,

iIncreasing smoothness chances.

Multiple number fields

Assume that f + — m € £
Is also irred.

Pick B € C, root of f + o —
Two congruences for (2, 7):

(z—gm)(e—ja); (2—3m)(s
Expand exponent vectors to
handle both Q(a) and Q(6

Merge smoothness tests
by testing 1 — 3m first,
aborting if 2 — 7m not smoc

Can use many number field:s
f+2(x —m) etc.



Compared to just using g = 1,
conjecturally obtain y#/(d+1)+o(1)
times as many congruences

by using sublattices for

all y-smooth integers g < y2.

Separately consider
i — jm and 5%f(i/4)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.

Multiple number fields

Assume that f +x — m € Z|z]
Is also irred.

Pick 8 € C, root of f +2 — m.
Two congruences for (2, 7):
(1—gm)(t—ja); (t—yjm)(s—30).
Expand exponent vectors to
handle both Q(a) and Q(8).

Merge smoothness tests
by testing 1 — 9m first,
aborting if 1 — 7m not smooth.

Can use many number fields:
f+2(x —m) etc.



