
Hyper-and-elliptic-curve

cryptography

(which is not the same as:

hyperelliptic-curve cryptography

and elliptic-curve cryptography)

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context: : :

ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.



Hyper-and-elliptic-curve

cryptography

(which is not the same as:

hyperelliptic-curve cryptography

and elliptic-curve cryptography)

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context: : :

ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.



Hyper-and-elliptic-curve

cryptography

(which is not the same as:

hyperelliptic-curve cryptography

and elliptic-curve cryptography)

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context: : :

ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).



Hyper-and-elliptic-curve

cryptography

(which is not the same as:

hyperelliptic-curve cryptography

and elliptic-curve cryptography)

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context: : :

ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).



Hyper-and-elliptic-curve

cryptography

(which is not the same as:

hyperelliptic-curve cryptography

and elliptic-curve cryptography)

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

But first some context: : :

ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).



ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).



ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).

Twist attack: choose A 2 E(k),

small #ZA; learn b mod #ZA.



ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).

Twist attack: choose A 2 E(k),

small #ZA; learn b mod #ZA.

Typically Bob checks X(A) 2 k
but doesn’t check A 2 E(k).

Formulas also work for A 2 E 0(k)

for appropriate twist E 0 of E.

Typically #E(k) is large prime

but #E 0(k) has small factors.



ECC security vs. ECDL security

Crypto view of ECDL problem:

Fix finite k, E=k, P 2 E(k).

Secret key: random a2Z=#ZP .

Public key: aP .

The ECDL problem: compute

secret key from public key.

ECDL solution ) ECC attack.

ECC attack ) ECDL solution?

Not necessarily!

Let’s look at some examples.

Example 1: Kummer-line ECDH

(1985 Miller). Bob has secret b;

receives X(A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X(bA).

Twist attack: choose A 2 E(k),

small #ZA; learn b mod #ZA.

Typically Bob checks X(A) 2 k
but doesn’t check A 2 E(k).

Formulas also work for A 2 E 0(k)

for appropriate twist E 0 of E.

Typically #E(k) is large prime

but #E 0(k) has small factors.

Example 2: Censor scans network,

terminates users who send

many elements of X(E(k)).
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2004 Möller: Fix twist-secure E.

Send X(aP ) or X(a0P 0).

Annoying: e.g., consider ECDH.

Same basic issue arises in

random-number generation

(see, e.g., 2006 Gjøsteen and

2006 Schoenmakers–Sidorenko),

password-authenticated key

exchange (e.g., 2001 Boyd–

Montague–Nguyen, broken 2013),

ID-based encryption, etc.

2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.



Example 2: Censor scans network,

terminates users who send

many elements of X(E(k)).

2004 Möller: Fix twist-secure E.

Send X(aP ) or X(a0P 0).

Annoying: e.g., consider ECDH.

Same basic issue arises in

random-number generation

(see, e.g., 2006 Gjøsteen and

2006 Schoenmakers–Sidorenko),

password-authenticated key

exchange (e.g., 2001 Boyd–

Montague–Nguyen, broken 2013),

ID-based encryption, etc.

2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.



2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.



2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.



2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.



2013 Bernstein–Hamburg–

Krasnova–Lange

“Elligator: Elliptic-curve points

indistinguishable from

uniform random strings”:

Replace X with fast bijection

between large S � E(k) and,

e.g., interval f0; 1; : : : ; 2b � 1g.

Alice keeps generating a

until aP 2 S.

Two examples given in paper,

both with #S � 0:5#E(k)

for reasonable choices of k.

“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.



“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.



“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.



“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.



“Elligator 1”,

reinterpreting and simplifying

2013 Fouque–Joux–Tibouchi:

Fix prime power q 2 3 + 4Z;

s 2 F�q with

(s2 � 2)(s2 + 2) 6= 0;

c = 2=s2; r = c+ 1=c;

d = �(c+ 1)2=(c� 1)2.

Define E : x2 + y2 = 1 + dx2y2.

This is a complete Edwards curve.

For � : Fq ! E(Fq) defined

on next slide: the only preimages

of �(t) under � are ft;�tg.

�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.



�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.



�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to



�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to



�(�1) = (0; 1).

Otherwise �(t) = (x; y) where

u = (1� t)=(1 + t),

v = u5 + (r2 � 2)u3 + u,

X = �(v)u,

Y =

(�(v)v)(q+1)=4�(v)�
�
u2 + 1=c2

�
,

x = (c� 1)sX(1 +X)=Y ,

y =
rX � (1 +X)2

rX + (1 +X)2
.

“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to



“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to



“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.



“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.



“Elligator 2”, 2013 Bernstein–

Hamburg–Krasnova–Lange

(restricted to the easiest case):

Fix prime power q 2 1 + 4Z;

non-square u 2 Fq;

A;B 2 F�q with non-square

A2 � 4B;
p

: F2
q ! Fq

with
p
a2 2 fa;�ag.

Define E : y2 = x3 + Ax2 + Bx.

For  : Fq ! E(Fq) defined

on next slide: the only preimages

of  (t) under  are ft;�tg.

 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).



 (0) = (0; 0).

Otherwise  (t) = (x; y) where

v = �A=(1 + ut2),

� = �(v3 + Av2 + Bv),

x = �v � (1� �)A=2,

y = ��
p
x3 + Ax2 + Bx.

Proofs, inverse maps, etc.:

elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).



Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).



Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.



Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.



Asymptotic ECDL security

The original ECC advertising:

Index calculus breaks RSA etc.

in subexponential time. Scary!

ECDL attack takes exp time.

Reasonable conjecture )
2012 Petit–Quisquater using F4

solves ECDL2 in subexp time.

Do we throw away ECC2?

Replace F4 with XL?

Tung Chou is investigating.

Replace XL with Coppersmith

to generalize ECC2 to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.



Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256” curve E :

y2 = x3 � 3x+ a6 over Fq where

q = 2256 � 2224 + 2192 + 296 � 1,

a6 = 410583637251521421293261

297800472684091144410159937

25554835256314039467401291.

E(Fq) has prime order `.

“NIST generator”: P = (

4843956129390645175905258525

2797914202762949526041747995

844080717082404635286; : : : 9).

Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.



Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.



Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Textbook ECDL cost analysis:

�
p
�`=2 group operations to

compute DL in order-` group.

Negation map gains factor

�p2 for elliptic curves.

So �2128 group operations

to compute P-256 ECDL.

This is the best algorithm that

cryptanalysts have published

for P-256 ECDL.

But is it the best algorithm

that exists?

Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Standard definition of “best”:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed to find

better ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.

Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6

Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 258-

“step” P-256 discrete-log attack

(with 100% success probability).

If “time” means “steps” then the

standard conjectures are wrong.

1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.



1994 Bellare–Kilian–Rogaway:

“We say that

A is a (t; q)-adversary if

A runs in at most t steps and

makes at most q queries to O.”

Oops: table-lookup attack

has very small t.

Paper conjectured “useful” DES

security bounds. Any reasonable

interpretation of conjecture was

false, given paper’s definition.

Theorems in paper were vacuous.

2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : ”

2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)



2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)



2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)

2. Formalize constructivity.



2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html



2012 Bernstein–Lange:

There are more pathologies!

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjecture is false.

Our recommendations to fix

the flawed security definitions,

conjectures, proofs:

1. Switch from “time”

to circuit AT .

(Related, online soon:

Improved AT exponents for

batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

DH speed records

Sandy Bridge cycles for high-

security constant-time a; P 7! aP

(“?” if not SUPERCOP-verified):

2011 Bernstein–Duif–Lange–
Schwabe–Yang: 194120
2012 Hamburg: 153000?
2012 Longa–Sica: 137000?
2013 Bos–Costello–Hisil–
Lauter: 122728
2013 Oliveira–López–Aranha–
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Hyper-and-elliptic-curve crypto

Typical example: Define H :

y2 = (z � 1)(z + 1)(z + 2)

(z � 1=2)(z + 3=2)(z � 2=3)

over Fp with p = 2127 � 309;

J = JacH; traditional Kummer

surface K; traditional X : J ! K.

Small K coeffs (20 : 1 : 20 : 40).
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formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos–Costello–

Hisil–Lauter. We have simpler,

computer-verified formulas.
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Warning: There are errors in the
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formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos–Costello–

Hisil–Lauter. We have simpler,

computer-verified formulas.

Define Fp2 = Fp[i]=(i2 + 1);
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s = 159 + 56i; ! =
p�384;

C : y2 = rx6 + sx4 + sx2 + r.
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(x; y) 7! (1=x2; y=x3) takes C to

y2 = rx3 + sx2 + sx+ r.

(z; y) 7!
�

1 + iz

1� iz ;
!y

(1� iz)3

�

takes H over Fp2 to C.

J is isogenous to

Weil restriction W of E, so

computing #J(Fp) is fast.

Here #J(Fp) = 16 � prime;

also reasonably twist-secure.
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with fast point-counting.

What’s new here:

1. Small Kummer coefficients.

Requires lifting Scholten to Q.

2. Explicit formulas for isogenies

� : W ! J and �0 : J ! W

with � � �0 = 2.
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dynamically move computations

between E(Fp2) and J(Fp).

e.g. Generate keys using
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Compute shared secrets using
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For more information:

see our talk at ANTS!

Paper coming soon.
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