Hyper-and-elliptic-curve
cryptography

(which
hyperel
and elli

Is not the same as:
iptic-curve cryptography

otic-curve cryptography)

Daniel J. Bernstein

University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

ECC security vs. ECDL security

But first some context. ..

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).
Secret key: random ac€Z/H#ZP.
Public key: aP.

The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

Hyper-and-elliptic-curve
cryptography

(which
hyperel
and elli

Is not the same as:
iptic-curve cryptography

otic-curve cryptography)

Daniel J. Bernstein

University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

ECC security vs. ECDL security

But first some context. ..

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).
Secret key: random ac€Z/H#ZP.
Public key: aP.

The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

nd-elliptic-curve
aphy

s not the same as:
ptic-curve cryptography
tic-curve cryptography)

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

rk with:
Inge
he Universiteit Eindhoven

ECC security vs. ECDL security

- some context. ..

Crypto view of ECDL problem:
Fix finite &, E/k, P € E(k).

Secret key: random a€Z/H#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example
(1985 V
receives

uses eas
X (bA);

-Curve

same as:

cryptography
cryptography)
{

is at Chicago &
siteit Eindhoven

siteit Eindhoven

ECC security vs. ECDL security

text. ..

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).

Secret key: random ac€Z/H#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example 1: Kumt
(1985 Miller). Bol
receives X (A) fror
uses easy formulas
X (bA); encrypts u

hoven

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite &, E/k, P € E(k).

Secret key: random a€Z/#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example 1: Kummer-line [k
(1985 Miller). Bob has secr:
receives X (A) from Alice;

uses easy formulas to compt

X(bA); encrypts using X (b4

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).

Secret key: random ac€Z/H#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X (bA).

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).

Secret key: random ac€Z/H#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #£ZA; learn b mod #ZA.

ECC security vs. ECDL security

Crypto view of ECDL problem:
Fix finite k, E/k, P € E(k).

Secret key: random ac€Z/H#ZP.

Public key: aP.
The ECDL problem: compute
secret key from public key.

ECDL solution = ECC attack.

ECC attack = ECDL solution?
Not necessarily!

Let's look at some examples.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute

X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #£ZA; learn b mod #ZA.

Typically Bob checks X(A) € k
but doesn't check A € E(k).
Formulas also work for A € E'(k)
for appropriate twist £/ of E.
Typically #E (k) is large prime
but #E'(k) has small factors.

urity vs. ECDL security

riew of ECDL problem:
>k, E/k, P e E(k).

<ey: random a€Z/#ZP.

ey: abP.
DL problem: compute
2y from public key.

lution = ECC attack.

ack = ECDL solution?
ossarily!

k at some examples.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute
X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #ZA; learn b mod #ZA.

Typically Bob checks X(A) € k
but doesn't check A € E(k).
Formulas also work for A € E'(k)
for appropriate twist £/ of E.
Typically #E (k) is large prime
but #E'(k) has small factors.

Example
terminat
many el

2004 M«
Send X

Annoyin

Same bz
random-
(see, e.g
2006 Sc
PaSSWOr
exchang
Montagi

|D-basec

CDL security

DL problem:
P e E(k).

m a€Z/HZP.

n: compute
iblic key.

ECC attack.

DL solution?

 examples.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute
X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #£ZA; learn b mod #ZA.

Typically Bob checks X(A) € k
but doesn't check A € E(k).
Formulas also work for A € E'(k)
for appropriate twist £/ of E.
Typically #E (k) is large prime
but #E'(k) has small factors.

Example 2: Censo
terminates users w
many elements of

2004 Moller: Fix 1
Send X(aP) or X

Annoying: e.g., cC

Same basic issue ¢
random-number g
(see, e.g., 2006 Gj
2006 Schoenmake
password-authenti
exchange (e.g., 20
Montague—Nguyer
|D-based encryptic

.%ZP.

te

ck.

on?

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X(A) from Alice;

uses easy formulas to compute
X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #ZA; learn b mod #ZA.

Typically Bob checks X(A) € k
but doesn't check A € E(k).
Formulas also work for A € E'(k)
for appropriate twist £/ of E.
Typically #E (k) is large prime
but #E'(k) has small factors.

Example 2: Censor scans ne

terminates users who send
many elements of X(E(k)).

2004 Moller: Fix twist-secur
Send X(aP) or X(a'P").

Annoying: e.g., consider EC

Same basic issue arises in
random-number generation
(see, e.g., 2006 Gjgsteen an
2006 Schoenmakers—Sidoren
password-authenticated key
exchange (e.g., 2001 Boyd-
Montague—Nguyen, broken :
|D-based encryption, etc.

Example 1: Kummer-line ECDH
(1985 Miller). Bob has secret b;
receives X (A) from Alice;

uses easy formulas to compute
X(bA); encrypts using X (bA).

Twist attack: choose A € E(k),
small #£ZA; learn b mod #ZA.

Typically Bob checks X(A) € k
but doesn't check A € E(k).
Formulas also work for A € E'(k)
for appropriate twist £/ of E.
Typically #E (k) is large prime
but #E'(k) has small factors.

Example 2: Censor scans network,
terminates users who send

many elements of X(E(k)).

2004 Moller: Fix twist-secure E.
Send X(aP) or X(a'P').

Annoying: e.g., consider ECDH.

Same basic issue arises in
random-number generation

(see, e.g., 2006 Gjgsteen and
2006 Schoenmakers—Sidorenko),
password-authenticated key
exchange (e.g., 2001 Boyd-
Montague—Nguyen, broken 2013),
|D-based encryption, etc.

' 1: Kummer-line ECDH
iller). Bob has secret b;
X(A) from Alice;

y formulas to compute
encrypts using X (bA).

ttack: choose A € E(k),
ZA; learn b mod #ZA.

/ Bob checks X (A) € k
n't check A € E(k).

s also work for A € E'(k)
spriate twist E' of E.

) #E(k) is large prime
(k) has small factors.

Example 2: Censor scans network,

terminates users who send
many elements of X(E(k)).

2004 Moller: Fix twist-secure E.
Send X(aP) or X(a'P').

Annoying: e.g., consider ECDH.

Same basic issue arises in
random-number generation
(see, e.g., 2006 Gjgsteen and
2006 Schoenmakers—Sidorenko),
password-authenticated key
exchange (e.g., 2001 Boyd-

Montague—Nguyen, broken 2013),

|D-based encryption, etc.

2013 Be
Krasnov
"Elligatc
indisting

uniform

Replace
between
e.g., Inte

Alice ke
until a P

Two exa
both wit
for reasc

ner-line ECDH
0 has secret b;

n Alice:

, TO0 compute
sing X(bA).

oose A € E(k),
b mod #ZA.

ks X(A) € k
A€ E(k).

k for A € E'(k)
st £/ of E.

s large prime
nall factors.

Example 2: Censor scans network,

terminates users who send
many elements of X(E(k)).

2004 Moller: Fix twist-secure E.
Send X(aP) or X(a'P').

Annoying: e.g., consider ECDH.

Same basic issue arises in
random-number generation
(see, e.g., 2006 Gjgsteen and
2006 Schoenmakers—Sidorenko),
password-authenticated key
exchange (e.g., 2001 Boyd-

Montague—Nguyen, broken 2013),

|D-based encryption, etc.

2013 Bernstein—H.
Krasnova—lLange

“Elligator: Elliptic
indistinguishable f
uniform random st

Replace X with fa
between large S C
e.g., interval {0, 1

Alice keeps genera
until aP € S.

Two examples givi
both with #5 ~ (
for reasonable cho

-CDH
ot b;

Example 2: Censor scans network,

terminates users who send
many elements of X(E(k)).

2004 Moller: Fix twist-secure E.
Send X(aP) or X(a'P').

Annoying: e.g., consider ECDH.

Same basic issue arises in
random-number generation
(see, e.g., 2006 Gjgsteen and
2006 Schoenmakers—Sidorenko),
password-authenticated key
exchange (e.g., 2001 Boyd-

Montague—Nguyen, broken 2013),

|ID-based encryption, etc.

2013 Bernstein—Hamburg—
Krasnova—Lange

“Elligator: Elliptic-curve poi
indistinguishable from
uniform random strings’ :

Replace X with fast bijectio
between large S C E(k) anc
e.g., interval {0,1, ..., 20 _

Alice keeps generating a
until aP € §S.

Two examples given In pape
both with #5 ~ 0.5#E (k)
for reasonable choices of £.

Example 2: Censor scans network,

terminates users who send
many elements of X(E(k)).

2004 Moller: Fix twist-secure E.
Send X(aP) or X(a'P').

Annoying: e.g., consider ECDH.

Same basic issue arises in
random-number generation
(see, e.g., 2006 Gjgsteen and
2006 Schoenmakers—Sidorenko),
password-authenticated key
exchange (e.g., 2001 Boyd-

Montague—Nguyen, broken 2013),

|D-based encryption, etc.

2013 Bernstein—Hamburg—
Krasnova—lLange

“Elligator: Elliptic-curve points
indistinguishable from

uniform random strings’ :

Replace X with fast bijection
between large S C E(k) and,
e.g., interval {0,1, ..., 20— 11,

Alice keeps generating a
until aP € S.

Two examples given Iin paper,
both with #S5 ~ 0.5#E (k)
for reasonable choices of £.

. 2: Censor scans network,

es users who send
=ments of X(E(k)).

ller: Fix twist-secure E.
aP) or X(a'P").

g: e.g., consider ECDH.

ISIC ISSuU€ arises In
number generation

., 2006 Gjgsteen and
hoenmakers—Sidorenko),
l-authenticated key

e (e.g., 2001 Boyd-

1ie—Nguyen, broken 2013),

] encryption, etc.

2013 Bernstein—Hamburg—
Krasnova—Lange

“Elligator: Elliptic-curve points
indistinguishable from

uniform random strings’ :

Replace X with fast bijection
between large S C E(k) and,
e.g., interval {0,1, ..., 20 11,

Alice keeps generating a
until aP € §S.

Two examples given in paper,
both with #5 ~ 0.5#E (k)
for reasonable choices of £.

"Elligatc
reinterpr
2013 Fo

Fix prim
s € Fy v
(s2 - 2)
c=2/s
d= —(c

Define £
This Is ¢

For @ : |
on next

of ¢(t) 1

r scans network,

/ho send
X(E(k)).

wist-secure E.
(a'P").

nsider ECDH.

IrISES IN
eneration
gsteen and
rs—Sidorenko),

cated key
01 Boyd-

1, broken 2013),

n, etc.

2013 Bernstein—Hamburg—
Krasnova—lLange

“Elligator: Elliptic-curve points
indistinguishable from

uniform random strings’ :

Replace X with fast bijection
between large S C E(k) and,
e.g., interval {0,1, ..., 20— 11,

Alice keeps generating a
until aP € S.

Two examples given In paper,
both with #S5 ~ 0.5#E (k)
for reasonable choices of £.

“Elligator 1",

reinterpreting and
2013 Fouque—Jou>

Fix prime power g
s € F, with

(s — 2)(s% +2) 7
c=2/s’r=c+
d=—(c+1)%/(c
Define E : z° + y°
This Is a complete
For ¢ : Fq — E(F,

on next slide: the
of ¢(t) under ¢ ar

twork,

e E.

DH.

ko),

013),

2013 Bernstein—Hamburg—
Krasnova—Lange

“Elligator: Elliptic-curve points
indistinguishable from

uniform random strings :

Replace X with fast bijection
between large S C E(k) and,
e.g., interval {0,1, ..., 20 11,

Alice keeps generating a
until aP € §S.

Two examples given in paper,
both with #5 ~ 0.5#E (k)
for reasonable choices of £.

“Elligator 1",
reinterpreting and simplifyin
2013 Fouque—Joux—Tibouch

Fix prime power g € 3 + 4Z
S € FZ'; with

(s* = 2)(s* +2) #0;

C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 22 + y° = 1 + ds
This is a complete Edwards

For ¢ : Fy — E(F;) defined
on next slide: the only prein
of ¢(t) under ¢ are {t, —t}.

2013 Bernstein—Hamburg—
Krasnova—lLange

“Elligator: Elliptic-curve points
indistinguishable from

uniform random strings’ :

Replace X with fast bijection
between large S C E(k) and,
e.g., interval {0,1, ..., 20— 11,

Alice keeps generating a
until aP € S.

Two examples given In paper,
both with #S5 ~ 0.5#E (k)
for reasonable choices of £.

“Elligator 1",
reinterpreting and simplifying
2013 Fouque—Joux—Tibouchi:

Fix prime power g € 3 + 4Z;

s € F, with

(s* =2)(s* +2) #0;

C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 22 + y? = 1 + dzy?.

This 1s a complete Edwards curve.

For ¢ : Fy — E(F;) defined
on next slide: the only preimages
of ¢(t) under ¢ are {t, —t}.

rnstein—Hamburg—
a—Lange

or: Elliptic-curve points
uishable from

random strings’ :

X with fast bijection
large S C E(k) and,
rval {0, 1, ..., 20 11

2ps generating a

€S,

mples given Iin paper,
h #S ~ 0.5#E(k)

ynable choices of k.

“Elligator 1",

reinterpreting and simplifying
2013 Fouque—Joux—Tibouchi:

Fix prime power g € 3 + 4Z;

S € FZ'; with

(52— 2)(s? +2) £0.
C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 2 -

- y? = 1+ dzly’.

This I1s a comp

For ¢ : Fy — E(F;) defined
on next slide: the only preimages
of ¢(t) under ¢ are {t, —t}.

ete Edwards curve.

$(+1) =

Otherwi
u = (1-
v =u’ -
X = x(s
(x(v)v)
T = (c-

r X
V=X

amburg—

-curve points
rom
rings’

st bijection

en In paper,

.54 E (k)

ices of k.

“Elligator 1",
reinterpreting and simplifying
2013 Fouque—Joux—Tibouchi:

Fix prime power g € 3 + 4Z;
S € F("; with

(s* = 2)(s* +2) #0;

C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 2 + y? = 1 + dz?y?.

This 1s a complete Edwards curve.

For ¢ : Fy — E(F;) defined
on next slide: the only preimages
of ¢(t) under ¢ are {t, —t}.

¢(£1) = (0,1).
Otherwise ¢(t) =
u=(1-—1%)/(1+:

v =1u’+ (r> —2)

X =x(v)u,

Y =

(x(v)) T x (s

= (c—1)sX(1-
X -1+ X

YTIX T (1+ X

nts

“Elligator 1",
reinterpreting and simplifying
2013 Fouque—Joux—Tibouchi:

Fix prime power g € 3 + 4Z;
S € FZ'; with

(2 = 2)(s* +2) #0;

C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 22 + y? = 1 + dzy?.

This is a complete Edwards curve.

For ¢ : Fy — E(F;) defined
on next slide: the only preimages
of ¢(t) under ¢ are {t, —t}.

¢(£1) = (0,1).

Otherwise ¢(t) = (z,y) whe
u=(1-1)/(1+1),

v =1u’+ (r2 —2)u’ +u,
X = x(v)u.

Y =
(x(w)0) T (v} (w2 +
= (c—1)sX(1+ X)/Y,

X = (1+ X)?
X+ (14 X)?2

Y

“Elligator 1",
reinterpreting and simplifying
2013 Fouque—Joux—Tibouchi:

Fix prime power g € 3 + 4Z;
S € F("; with

(s* = 2)(s* +2) #0;

C = 2/32; r=c+ 1/c;
d=—(c+1)%/(c—1)°

Define E : 22 + y? = 1 + dzy?.

This 1s a complete Edwards curve.

For ¢ : Fy — E(F;) defined
on next slide: the only preimages
of ¢(t) under ¢ are {t, —t}.

$(£1) = (0,1).

Otherwise ¢(t) = (z,y) where
u=(1-1)/(1+1),

v =1u’+ (r2 - 2)u’ +u,

X = x(v)u.

Y =
(x(v)v) TN A% (v)x (u? + 1/¢?),
= (c—1)sX(1+ X)/Y,

X — (14 X)?
X+ (1+X)2

Y

r 17
eting and simplifying
uque—Joux—Tibouchi:

e power g € 3+ 4Z;
vith

(s*+2) #0;
r=c+1/c;
+1)%/(c—1)°.

= x? 4 y? = 1+ dzly”.

 complete Edwards curve.

-3 — E(Fy) defined
slide: the only preimages
inder ¢ are {t, —t}.

¢(£1) = (0,1).

Otherwise ¢() = (z,y) where
u=(1-1)/(1+1),

v =1u’+ (r2 —2)u’ +u,

X = x(v)u.

Y =
(x(v)v) 9T A (v)x (u? + 1/c?),
= (c—1)sX(1+ X)/Y,

X = (1+ X)?
X+ (14 X)?2

Y

"Elligatc
Hambur
(restrict

Fix prim
non-squ
A B €l
A% — 4E
with Va

Define £

For 9 : |
on next

of Y(t)

$(£1) = (0,1). “Elligator 2", 201.
S|m-p||fy|n-g Otherwise ¢(£) = (z, y) where Hamb.urg—Krasnow
«—Tibouchi: (restricted to the
uw=(1-1¢)/(1+1), o
c 3+ 4Z; Fix prime power g
v =1u’+ (r2 - 2)u’ +u, non-square u € F,
= 0; X — x(v)u, A B € F; with no
1/c; A2—4B;\/_:Fg
— 1)2 Y = /4 5 2 with v a2 - {CL, —
|) 5 (x(v)v)a+1)/ x(v)x(u® +1/c%), | . ‘
- =1+ dz-y~°. Define £ :y* ==«
| z=(c—1)sX(1+ X)/Y,
 Edwards curve. For 4 : Fy — E(F
. rX — (14 X)?
;) defined y = _ on next slide: the
. rX + (1+ X)?
only preimages of ¥(t) under ¥ a
e {t,—t}.

2,2

curve.

1ages

¢(£1) = (0,1).

Otherwise ¢(t) = (z,y) where
u=(1-1)/(1+1),

v =1u’+ (r2 = 2)u’ +u,

X = x(v)u.

Y —
(x(v)v) IO A (v)x (w? + 1/c?),
= (c—1)sX(1+ X)/Y,

X = (1+ X)?
X+ (14 X)?2

Y

“Elligator 2", 2013 Bernstel

Hamburg—Krasnova—Lange
(restricted to the easiest cas

Fix prime power g € 1 + 4Z
non-square u € Fg;

A, B € F; with non-square
A2 — 4B/ : F3—>Fq
with Va2 € {a, —a}.

Define E : y2 = z3 + Az? +

For ¢ : F, — E(F,) defined
on next slide: the only prein
of ¥(t) under ¢ are {t, —t}

d(£1) = (0, 1).

Otherwise ¢(t) = (z, y) where
w=(1—1)/(1+1%)

v=1u’+ (r2 - 2)u’ +u,

X =x(v)u,

Y =
(x(v)v) 9T A5 (v)x (u? + 1/c?),
z=(c—1)sX(1+ X)/Y,

X — (14 X)?
X+ (1+X)2

Y

“Elligator 2", 2013 Bernstein—
Hamburg—Krasnova—Lange
(restricted to the easiest case):

Fix prime power g € 1 4 4Z;
non-square u € Fg;

A, B € F; with non-square
A2—4B; v/ F%—>Fq
with Va2 € {a, —a}.

Define E : y? = z3 + Az® + Bz.

For ¢ : F; — E(F,) defined
on next slide: the only preimages
of ¥(t) under ¢ are {t, —t}.

“Elligator 2", 2013 Bernstein—
Hamburg—Krasnova—Lange

(restricted to the easiest case):

Fix prime power g € 1 4 4Z;
non-square u € Fg;

A, B € F; with non-square
A2 — 4B/ : F3—>Fq
with Va2 € {a, —a}.

Define E : y? = z3 + Az? + Bz.

For ¢ : F;, — E(F,) defined
on next slide: the only preimages
of ¥(t) under ¢ are {t, —t}.

$(0) =

Otherwi:
v=—A
e = x(v
T = €V -
Y = —€n
Proofs,
elligat

(z,y) where

u3 + u,

“Elligator 2", 2013 Bernstein—
Hamburg—Krasnova—Lange
(restricted to the easiest case):

Fix prime power g € 1 4 4Z;
non-square u € Fg;

A, B € F; with non-square
A2 —4B: /- F%—>Fq
with Va2 € {a, —a}.

Define E : y? = z3 + Az® + Bz.

For ¢ : F; — E(F,) defined
on next slide: the only preimages
of ¥(t) under ¢ are {t, —t}.

%(0) = (0,0).

Otherwise ¥ (t) =
v=—A/(1+ut?®
e = x(v3 + Av? 4
T=¢cv—(1l—¢)A

y = —eVz3 + Az’

Proofs, inverse m:
elligator.cr.yj

re

“Elligator 2", 2013 Bernstein—
Hamburg—Krasnova—Lange
(restricted to the easiest case):

Fix prime power g € 1 4 4Z;
non-square u € Fg;

A, B € F; with non-square
A2 — 4B/ : F3—>Fq
with Va2 € {a, —a}.

Define E : y? = z3 + Az? + Bz.

For ¢ : F, — E(F,) defined
on next slide: the only preimages
of ¥(t) under ¢ are {t, —t}.

¥(0) = (0,0).

Otherwise ¥(t) = (z, y) wh
v=—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=ev—(1—¢€A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

“Elligator 2", 2013 Bernstein—
Hamburg—Krasnova—Lange
(restricted to the easiest case):

Fix prime power g € 1 4 4Z;
non-square u € Fg;

A, B € F; with non-square
A2 —4B: /- F%—>Fq
with Va2 € {a, —a}.

Define E : y? = z3 + Az® + Bz.

For ¢ : F; — E(F,) defined
on next slide: the only preimages
of ¥(t) under ¢ are {t, —t}.

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v=—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

r 27, 2013 Bernstein—
oc—Krasnova—Lange

ed to the easiest case):

e power g € 1 4+ 4Z;
are u € Fg;

-7 With non-square

- \/_: FCZI — Fq
2 e {a,—a}.

- y? = g3 + Az? + Bz

g — E(Fg) defined
slide: the only preimages
under 1 are {t, —t}.

$(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v=—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=ev—(1—¢€A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptc

The orig
Index ca

In subex
ECDL a

3 Bernstein—
ra—Lange
casiest case):

cl+4Z;

z
n-square
—»ﬁ

2}
3 1 Az? + Bz.

¢) defined
only preimages

re {t, —t}.

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v=—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL

The original ECC
Index calculus bre:

in subexponential
ECDL attack take

" Bz.

1ages

$(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v=—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=ev—(1—¢€A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising
Index calculus breaks RSA e
in subexponential time. Sca
ECDL attack takes exp time

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v =—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v =—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v =—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

%(0) = (0,0).

Otherwise ¥(t) = (z, y) where
v =—A/(1+ ut?),

e = x(v3 + Av? + Bv),
z=¢ev—(1—¢A/2

y = —eVz3 + Az? + Bz

Proofs, inverse maps, etc.:
elligator.cr.yp.to

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

Replace XL with Coppersmith
to generalize ECCy to ECC?

(0,0).
e 9(t) = (z, y) where
/(14 ut?),

3+ Av? + Bw),

(1 —€)A/2,

/z3 + Az2 + Bz,

nverse maps, etc.:

0r.Cr.yp.to

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

Replace XL with Coppersmith
to generalize ECCy to ECC?

Concrets

Typical
the “NIS
y2 — 13
g — 225¢
ag = 41

297301

25554

E(F,) h
“NIST ¢
4843956
2797914
8440807

(z,y) where
),

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

Replace XL with Coppersmith
to generalize ECCy to ECC?

Concrete ECDL se

Typical for real-wc
the “NIST P-256"
y° =23 — 3z + a
g = 2256 _ 9224 |
ag = 4105336372

2978004 726840¢

25554835256314

E(Fg4) has prime c
"NIST generator”
484395612939064
279791420276294
844080717082404

2IrE

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

Replace XL with Coppersmith
to generalize ECC» to ECC?

Concrete ECDL security

Typical for real-world ECC:
the “NIST P-256" curve E
y2 = g3 — 3z + ag over Fo
g — 2256 _ 9224 | 9192 | 90
ag = 4105836372515214212
2978004726840911444101
2555483525631403946740

E(F4) has prime order £.
“NIST generator”: P = (
48439561293906451759052!
27979142027629495260417-
844080717082404635286, . .

Asymptotic ECDL security

The original ECC advertising:
Index calculus breaks RSA etc.
in subexponential time. Scary!
ECDL attack takes exp time.

Reasonable conjecture =

2012 Petit—Quisquater using F4
solves ECDL» in subexp time.
Do we throw away ECCy?

Replace F4 with XL?
Tung Chou is investigating.

Replace XL with Coppersmith
to generalize ECCy to ECC?

Concrete ECDL security

Typical for real-world ECC.:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 0224 | 9192 4 996 _ |
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(Fg4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . ..9).

tic ECDL security

inal ECC advertising:
lculus breaks RSA etc.
ponential time. Scary!
ttack takes exp time.

ble conjecture =
tit—Quisquater using F4
CDL5 in subexp time.
hrow away ECCy?

F4 with XL7?
lIou 1S Investigating.

XL with Coppersmith
alize ECCs to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 0224 | 9192 4 996 _ 1
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, ...9).

Textboo

/L[
compute
Negatiot

~+/2 fol
So ~s212
to comp

security

advertising:
ks RSA etc.
time. Scary!
s exp time.

ture =
later using F4
ubexp time.

 ECCy7

L7
stigating.

_oppersmith
> to ECC?

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g = 2256 _ 0224 | 9192 4 996 _ |
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . ..9).

Textbook ECDL ¢

x4/ md/2 group o
compute DL in or

Negation map gai
~+/2 for elliptic ci
So ~2128 group o
to compute P-256

th

Concrete ECDL security

Typical for real-world ECC:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 9224 | 9192 4 996 _ 1
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, ...9).

Textbook ECDL cost analys

~+/ /2 group operations 1
compute DL in order-£ grou
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations
to compute P-256 ECDL.

Concrete ECDL security

Typical for real-world ECC.:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 0224 | 9192 4 996 _ 1
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . ..9).

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations
to compute P-256 ECDL.

Concrete ECDL security

Typical for real-world ECC.:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 0224 | 9192 4 996 _ 1
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . ..9).

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations
to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

Concrete ECDL security

Typical for real-world ECC.:

the “NIST P-256" curve E :
y? = 23 — 3z + ag over F, where
g — 2256 _ 0224 | 9192 4 996 _ 1
ag = 410583637251521421293261

297800472634091144410159937

25554835256314039467401291.

E(F4) has prime order £.

“NIST generator’: P = (
4843956129390645175905258525
2797914202762949526041747995
844080717082404635286, . ..9).

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations
to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

But i1s it the best algorithm
that exists?

> ECDL security

for real-world ECC:

T P-256" curve E

— 3z + ag over F, where
0224 | 9192 | 596 _ |
0583637251521421293261
)472684091144410159937
335256314039467401291.

as prime order £.
enerator’: P = (
129390645175905258525
202762949526041747995
17082404635286, . ..9).

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations
to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

But i1s it the best algorithm
that exists?

Standarce
minimiz
total "t
Many re

tried ane
better E

Standar
For eact
each P-:
with suc
takes “ti

curity

rld ECC:
curve E :

5 over Fy where
2192 4+ 296 1

1521421293261
)1144410159937
1039467401291.

rder £.

P =
5175905258525
0526041747995
635286, ...9).

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations

to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

But i1s it the best algorithm
that exists?

Standard definitiol

minimize “time” (

total “time’ over

Many researchers

tried and failed

better ECDL 3

to
gol

Standard conject
For each p € [0, 1]
each P-256 ECDL
with success prob:
takes “time’ >21

where

93261
59937
1291.

3525
17995

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations

to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

But i1s it the best algorithm
that exists?

Standard definition of “best
minimize “time” (e.g., minir
total “time” over all inputs)
Many researchers have

tried and failed to find
better ECDL algorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128701/2.

Textbook ECDL cost analysis:

~+/md/2 group operations to
compute DL in order-£ group.
Negation map gains factor
~+/2 for elliptic curves.

So ~2128 group operations

to compute P-256 ECDL.

This Is the best algorithm that

cryptanalysts have published
for P-256 ECDL.

But i1s it the best algorithm
that exists?

Standard definition of “best’:

minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed

better ECDL 3

to find
gorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p

takes “time” >

2128‘]01/2-

k ECDL cost analysis:

) group operations to
DL in order-£ group.
1 map gains factor

- elliptic curves.

3 group operations
ute P-256 ECDL.

he best algorithm that

lysts have published
6 ECDL.

the best algorithm
Sts

Standard definition of “best”:
minimize “time” (e.g., minimize
total “time” over all inputs).
Many researchers have

tried and failed to find
better ECDL algorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128701/2.

Interlude

How mu
following
def pic
1f n(
if

]

]

if

ret

if ni
if

ret

1if n.

retul

ost analysis:

yerations to
der-£ group.
s factor
Irves.

perations
ECDL.

gorithm that
 published

algorithm

Standard definition of “best”:
minimize “time” (e.g., minimize

total “time” over all inputs).

Many researchers have

tried and failed

better ECDL 3

to find
gorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Interlude regarding

How much “time”

following algorithr

def pidigit(n0O

if nO == 0:
if nl1 ==
1f n2 ==
return
if n2 == 0
return
if nl ==
if n2 == 0
return
if n2 == 0: 1

return

1at

Standard definition of “best”:
minimize “time” (e.g., minimize
total “time” over all inputs).
Many researchers have

tried and failed to find
better ECDL algorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128701/2.

Interlude regarding "time”

How much “time”

does the

following algorithm take?

def pidigit(nO
if nO == 0O:
if nl ==

if n2 ==

return

if n2 ==
return
1if nl ==

1f n2 ==
return
if n2 ==

return

,nl,n2):

: retu

: return

: return

. return

Standard definition of “best”:
minimize “time” (e.g., minimize
total “time” over all inputs).
Many researchers have

tried and failed to find
better ECDL algorithms.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Interlude regarding "time”

How much “time” does the

following algorithm take?

def pidigit(nO
if nO == 0O:
if nl ==

if n2 ==

return

if n2 ==
return
if nl ==

1f n2 ==
return
if n2 ==

return

,nl,n2):

. return

: return

: return

: return

= D =W

oy N O O

1 definition of “best”:
> “time” (e.g., minimize

me" over all inputs).

searchers have
] failed to find
CDL algorithms.

d conjecture:

p € [0, 1],

256 ECDL algorithm
cess probability >p
me” >2128,1/2

Interlude regarding “time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

1if nl1 ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return

return

= D P, W

oy N O O

Student:
learn to

Skipped
This alg

1 of “best’:
e.g., minimize

all inputs).

have
find
1thms.

ure.

algorithm

\bility >
8,1/2

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
if nl ==
if n2 == 0: return 5
return 9
if n2 == 0: return 2
return 6

Students in algorit
learn to count exe
Skipped branches

This algorithm use

nize

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

1if nl1 ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return

return

= D P, W

oy N O O

Students in algorithm course
learn to count executed “ste
Skipped branches take 0 “st

This algorithm uses 4 “step:s

Interlude regarding “time” Students in algorithm courses
How much “time” does the learn to count executed “steps’.
following algorithm take? Skipped branches take 0 “steps”.
def pidigit(n0,n1,n2): This algorithm uses 4 “steps’.
if nO == O0:
if nl ==
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
1f nl ==
if n2 == 0: return 5
return 9
if n2 == 0: return 2
return 6

Interlude regarding “time” Students in algorithm courses

How much “time” does the learn to count executed “steps’ .

following algorithm take? Skipped branches take 0 “steps”.

def pidigit(n0,n1,n2): This algorithm uses 4 “steps’.
1t n0 == 0: Generalization: There exists an
1t nl == algorithm that, given n < 2%,
1t n2 == 0: return 3 prints the nth digit of
return L using £ + 1 “steps”.
1f n2 == 0: return 4
return 1
1f nl ==
if n2 == 0: return 5
return 9
1if n2 == 0: return 2
return 6

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return
return

= D =W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2‘“,
prints the nth digit of 7

using £ + 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return
return

= D =W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2‘“,
prints the nth digit of 7

using £ + 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

> regarding “time”

ch “time’

" does the

r algorithm take?

ligit (nO
) == 0:
nl ==
f n2 ==
“eturn
n2 ==
urn

| ==

n2 ==

,urn

) ==

1

,nl,n2):

: return

: return

: return

. return

= D P, W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

1994 Be
“We say
Ais a (1
A runs i

makes a

r “time” Students in algorithm courses 1994 Bellare—Kilia

does the learn to count executed “steps’. “We say that
| take? Skipped branches take 0 “steps”. A is a (t, g)-adver:
. _ A :
nl,n2): This algorithm uses 4 “steps’ . runs in at most

makes at most q «
Generalization: There exists an

algorithm that, given n < 2%,

0: return 3 prints the nth digit of 7
L using £ + 1 “steps”.
. return 4
1 Variant: There exists a 258-
“step” P-256 discrete-log attack
. return & (with 100% success probability).
9 If “time” means “steps’ then the
~eturn o standard conjectures are wrong.
6

Students in algorithm courses 1994 Bellare—Kilian—Rogawa
learn to count executed “steps’. “We say that

Skipped branches take 0 “steps” . A is a (t, q)-adversary if

A runs in at most t steps ar

This algorithm uses 4 “steps’. _
makes at most q queries to

Generalization: There exists an
algorithm that, given n < 2/‘“,

n 3 prints the nth digit of 7
L using £+ 1 “steps’.
4
1 Variant: There exists a 258-

"step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

oy N O O

Students in algorithm courses 1994 Bellare—Kilian—Rogaway:
learn to count executed “steps’. “We say that

Skipped branches take 0 “steps’ . A is a (t, q)-adversary if

A runs in at most t steps and

This algorithm uses 4 “steps”. _)
makes at most q queries to O.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

s In algorithm courses
count executed “steps’.
branches take 0 “steps’”.

orithm uses 4 “steps’ .

zation: There exists an
n that, given n < 2/‘“,
e nth digit of 7

+ 1 “steps’.

There exists a 258-
-256 discrete-log attack
0% success probability).
" means ‘steps’ then the
| conjectures are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Be
“We fix
Access |
model o
running
executio
of A's d
convent
caused |
tables ..

hm courses
cuted “steps’.
take 0 “steps’.

s 4 “steps’ .

1ere exIsts an
en n < 2‘“,
t of

11
) .

sts a 258-
ete-log attack
s probability).
steps’ then the
‘€S are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilia
“We fix some part
Access Machine (I
model of computa
running time [mea
execution time plt
of A’s description
convention elimin:
caused [by] arbitre
tables . .."

S .

eps .

an

tack

ity).
n the

ng.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilian—Rogawa
“We fix some particular Rar
Access Machine (RAM) as
model of computation. ... ,
running time [means| A'’s ac
execution time plus the leng
of A’s description ... This
convention eliminates patho
caused [by] arbitrarily large
tables ..."

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

llare—Kilian—Rogaway:

- that

., q)-adversary if

n at most t steps and
t most q queries to O."

able-lookup attack
small ¢.

onjectured “useful” DES
bounds. Any reasonable
ation of conjecture was
/en paper's definition.

1S IN paper were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A’s
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by| arbitrarily large lookup
tables ..."

2012 Be
There at

Assumin
overwhe

compute

There e
algorithr
and has

“Time”

Inescapa
standar

n—Rogaway:

sary If
t steps and
jueries to O."

p attack

“useful” DES
\ny reasonable
onjecture was
s definition.

T Were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

2012 Bernstein—L:

There are more ps

Assuming plausibl
overwhelmingly ve
computer experim

There exists a P-2
algorithm that tak
and has success pt

“Time" includes a

Inescapable conclt
standard conject

d
O."

DES

1able
Was

uous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by| arbitrarily large lookup
tables ..."

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristic
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time"
and has success probability :

“Time" includes algorithm |

Inescapable conclusion: The
standard conjecture is fals

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time’ ~s2%°

and has success probability ~1.
“Time" includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

llare—Kilian—Rogaway:
some particular Random
Viachine (RAM) as a

f computation. ... A’s
time [means| A’s actual

n time plus the length
escription ... This

on eliminates pathologies
by arbitrarily large lookup

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time’ ~s2%°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recc
the flaw
conjectu

1. Switc
to circul

(Related
Improve
batch N

n—Rogaway:
icular Random
RAM) as a
tion. ... A’s
ns| A’s actual
s the length

. This
1ites pathologies
rily large lookup

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time’ ~s2%°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recommendat
the flawed security
conjectures, proof:

1. Switch from "t
to circuit AT .

(Related, online sc

Improved AT expc
batch NFS.)

idom

A’s
tual
th

logies
lookup

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time’ ~s2%°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recommendations to fix
the flawed security definitior
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:
Improved AT exponents for

batch NFS.)

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time’ ~s2%°

and has success probability ~1.

“Time" includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:

Improved AT exponents for
batch NFS.)

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time’ ~s2%°
and has success probability ~1.

“Time" includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:

Improved AT exponents for
batch NFS.)

2. Formalize constructivity.

2012 Bernstein—Lange:
There are more pathologies!

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time’ ~s2%°
and has success probability ~1.

“Time" includes algorithm length.

Inescapable conclusion: The
standard conjecture is false.

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:

Improved AT exponents for
batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

rnstein—Lange:
€ more pathologies!

g plausible heuristics,
Imingly verified by
r experiment:

asts a P-256 ECDL
n that takes “time’ ~s2%°
success probability ~1.

includes algorithm length.

ble conclusion: The
d conjecture is false.

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:
Improved AT exponents for

batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

DH spee

Sandy B
security
(“?" if

2011 Be
Schwabe
2012 Ha
2012 Lo
2013 Bo
Lauter:

2013 Ol
Rodrigu
2013 Fa
Sanchez
2014 Be

Lange—S

Inge:
thologies!

> heuristics,
rified by
ent:

560 ECDL
es “time” ~s28°
-obability ~1.

lgorithm length.

sion: The
ure is false.

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:

Improved AT exponents for
batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

DH speed records

Sandy Bridge cycl
security constant-
(“?" if not SUPE

2011 Bernstein—Di
Schwabe—Yang:
2012 Hamburg:
2012 Longa—Sica:
2013 Bos—Costellc
Lauter:

2013 Oliveira—Lop
Rodriguez-Henrigt
2013 Faz-Hernand
Sanchez:

2014 Bernstein—Cl
Lange—Schwabe:

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from "“time”
to circuit AT .

(Related, online soon:

Improved AT exponents for
batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

DH speed records

Sandy Bridge cycles for high
security constant-time a, P |

(“?" if not SUPERCOP-ver
2011 Bernstein—Duif-Lange-

Schwabe—Yang: 1¢
2012 Hamburg: 1¢
2012 Longa—Sica: 1:
2013 Bos—Costello—Hisil—-

Lauter: 1-

2013 Oliveira—Lépez—Aranh:
Rodriguez-Henriquez: 1-
2013 Faz-Hernandez—Longa-
Sdnchez: (
2014 Bernstein—Chuengsatia
Lange—Schwabe: (

Our recommendations to fix
the flawed security definitions,
conjectures, proofs:

1. Switch from “time”
to circuit AT .

(Related, online soon:
Improved AT exponents for

batch NFS.)

2. Formalize constructivity.

More details and attacks:

cr.yp.to/nonuniform.html

DH speed records

Sandy Bridge cycles for high-
security constant-time a, P — aP
(“?" if not SUPERCOP-verified):

2011 Bernstein—Duif-Lange—

Schwabe—Yang: 194120
2012 Hamburg: 1530007
2012 Longa—Sica: 1370007
2013 Bos—Costello—Hisil—

Lauter: 122728

2013 Oliveira—Lépez—Aranha—
Rodriguez-Henriquez: 1148007
2013 Faz-Hernandez—Longa—
Sdnchez: 960007

2014 Bernstein—Chuengsatiansup—
Lange—Schwabe: 91460

ymmendations to fix
od security definitions,
res, proofs:

h from “time”
t AT .

- online soon:
d AT exponents for

FS.)

alize constructivity.

tails and attacks:

-o/nonuniform.html

DH speed records

Sandy Bridge cycles for high-
security constant-time a, P — aP
(“?" if not SUPERCOP-verified):

2011 Bernstein—Duif-Lange—

Schwabe—Yang: 194120
2012 Hamburg: 1530007
2012 Longa—Sica: 1370007
2013 Bos—Costello—Hisil—-

Lauter: 122728

2013 Oliveira—Lépez—Aranha-—
Rodriguez-Henriquez: 1148007
2013 Faz-Hernandez—Longa—
Sdnchez: 960007
2014 Bernstein—Chuengsatiansup—

Lange—Schwabe: 91460

Critical

1986 Ch
traditior
allows fz

14M for

2006 Ga
25M for
— X (2/
oM by s

2012 Ga
1000000
found se
surface

ions to fix
/ definitions,

>.

ime”

on:
ynents for

Cructivity.

ittacks:
Lform.html

DH speed records

Sandy Bridge cycles for high-
security constant-time a, P — aP
(“?" if not SUPERCOP-verified):

2011 Bernstein—Duif-Lange—

Schwabe—Yang: 194120
2012 Hamburg: 1530007
2012 Longa—Sica: 1370007
2013 Bos—Costello—Hisil—

Lauter: 122728

2013 Oliveira—Lépez—Aranha—
Rodriguez-Henriquez: 1148007
2013 Faz-Hernandez—Longa—
Sdnchez: 960007

2014 Bernstein—Chuengsatiansup—
Lange—Schwabe: 91460

Critical for 12272¢

1986 Chudnovsky-
traditional Kumm:e

allows fast scalar i
14M for X(P) —

2006 Gaudry: eve
25M for X(P), Xt
— X(2P), X(Q +
6M by surface coe

2012 Gaudry—Schc
1000000-CPU-hou
found secure smal
surface over F,127.

1S,

nl

DH speed records

Sandy Bridge cycles for high-
security constant-time a, P — aP
(“?" if not SUPERCOP-verified):

2011 Bernstein—Duif-Lange—

Schwabe—Yang: 194120
2012 Hamburg: 1530007
2012 Longa—Sica: 1370007
2013 Bos—Costello—Hisil—-

Lauter: 122728

2013 Oliveira—Lépez—Aranha-—
Rodriguez-Henriquez: 1148007
2013 Faz-Hernandez—Longa—
Sdnchez: 960007
2014 Bernstein—Chuengsatiansup—

Lange—Schwabe: 91460

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovs
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X (P), X(Q), X(Q -
— X(2P), X(Q + P), inclu
6M by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour comput:
found secure small-coefficier
surface over F5107 4.

DH speed records

Sandy Bridge cycles for high-
security constant-time a, P — aP
(“?" if not SUPERCOP-verified):

2011 Bernstein—Duif-Lange—

Schwabe—Yang: 194120
2012 Hamburg: 1530007
2012 Longa—Sica: 1370007
2013 Bos—Costello—Hisil—

Lauter: 122728

2013 Oliveira—Lépez—Aranha—
Rodriguez-Henriquez: 1148007
2013 Faz-Hernandez—Longa—
Sdnchez: 960007

2014 Bernstein—Chuengsatiansup—
Lange—Schwabe: 91460

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovsky:
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X(P), X(Q@), X(Q — P)
— X(2P), X(Q + P), including
oM by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour computation
found secure small-coefficient
surface over F5127 4.

d records

ridge cycles for high-
constant-time a, P — aP
10t SUPERCOP-verified):

rnstein—Duif-Lange—

—Yang: 194120
mburg: 1530007
nga—Sica: 1370007

s—Costello—Hisil—-

122728
velra—Lopez—Aranha—
az-Henriquez: 1148007
z-Hernandez—Longa—

960007
rnstein—Chuengsatiansup—

chwabe: 901460

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovsky:
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X(P), X(Q@), X(Q — P)
— X(2P), X(Q + P), including
6M by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour computation
found secure small-coefficient
surface over F5107 4.

es for high-
ime a, P — aP
RCOP-verified):

nif—-Lange—
194120
1530007
1370007
—Hisil—
122728
ez—Aranha—
1ez: 1148007
ez—Longa—
960007

1uengsatiansup—
91460

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovsky:
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X(P), X(Q@), X(Q — P)
— X(2P), X(Q + P), including
oM by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour computation
found secure small-coefficient
surface over F,127 .

Ty Y2 22 1

I_
— aP
ified):

)4120
30007
370007

02728
a_

148007

160007
nsup—
11460

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovsky:
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X(P), X(Q@), X(Q — P)
— X(2P), X(Q + P), including
6M by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour computation
found secure small-coefficient
surface over F5107 4.

Ty Yo 2o o T3 Y3 2

2 2 2 B 2R
H H I

ANA
‘ A%l A% A2
o
ANV Y Yy
X X X >
\L T~ 15
H H I
0w
X X X X X X >
v e e | L)
o e g oL .2
2R 2 2 A 2 2R
T4 Y4 24 t4 Ty Ys 2

Critical for 122728, 91460:

1986 Chudnovsky—Chudnovsky:
traditional Kummer surface

allows fast scalar mult.
14M for X(P) — X(2P).

2006 Gaudry: even faster.
25M for X(P), X(Q@), X(Q — P)
— X(2P), X(Q + P), including
oM by surface coefficients.

2012 Gaudry—Schost:
1000000-CPU-hour computation
found secure small-coefficient
surface over F,127 .

Ty Y2 22 tr x3 Y3z 23 U3

R A A A A A
H H

‘ Y /Y /Y

A2 A2 A2

'52\\;(:2 'D2

VNUYVN YN VY Yy
X

;

i/ S N i/

H H

Wl
v Voo
.Cg_z .Cé_z .2_2 %% 3;_11

Voo Yy oy oy vy

for 122728, 91460:

udnovsky—Chudnovsky:
al Kummer surface

st scalar mult.
X(P) — X(2P).

udry: even faster.
X(P), X(Q). X(Q — P)
2), X(Q + P), including
urface coefficients.

udry—Schost:
-CPU-hour computation
cure small-coefficient

Ty Y2 22 tr x3 Y3z 23 U3

Hyper-a

I B B A B A A
H H

} i\ L\i Y Y Y Y

\L SN N \L

H H

W W
v Vv
.Cg_2 .Cé_z .2_2 % % 55_11

AR 2 B 2 2

Typical
y® = (2

(% -
over Fy
J = Jac
surface
Small K

), 91460:

-Chudnovsky:
or surface

nult.

X(2P).

n faster.
Q). X(Q - P)
- P), including
fficients.

)St:
r computation
-coefficient

—1-

Ty Y2 22 tr x3 Y3z 23 U3

Hyper-and-elliptic-

R A A A A A
H H

‘ Y /Y /Y
A A A
B2 C2 D2
ANYNYVNYN Y Y Yy
i/ T~ A i/
H H
WU W W
v Voo
'3_2'62_2'3_2 %%%
200 20 20 R 2 TR 2

Typical example:
y> = (z —1)(z +

(z —1/2)(z -
over F, with p =
J = Jac H: traditi
surface K: traditic
Small K coeffs (21

Ky:

ding

tion
1t

Ty Y2 22 tr x3 Y3z 23 U3

Hyper-and-elliptic-curve cryj

B A A B A A
H H

‘ Y /Y /Y

A2l A% A2
' 52\; C2 ' D2

VNUYN YN VY Yy
>< -

|

\L SN N \L

H H

W W
v Vv

AR 2 B 2 2

T4 Y4 24 t4 Ts Y5 25 ts

Typical example: Define H :
y* = (2 = 1)(z + 1)(z + 2)

(z —1/2)(z +3/2)(z -
over Fp with p = 2127 _ 3¢
J = Jac H; traditional Kumt
surface K: traditional X : J
Small K coeffs (20 : 1 : 20 :

Ty Y2 22 tr x3 Y3z 23 U3

Hyper-and-elliptic-curve crypto

R A A A A A
H H

‘ Y /Y /Y

A A A2

B2 C?2 D2

ANYVNYVNYN Y Y Yy

i/ T~ A i/

H H

WU W
v Voo
.3_2.62_2.;_2 %%f_ll

200 20 20 R 2 TR 2

Typical example: Define H :
y* = (2 = 1)(z + 1)(z + 2)

(z —1/2)(z+3/2)(z — 2/3)
over Fp with p = 2127 _ 309:
J = Jac H; traditional Kummer
surface K: traditional X : J — K.
Small K coeffs (20 : 1: 20 : 40).

Hyper-and-elliptic-curve crypto

To Y2 22 tp T3 Y3 23 13
oy v vy Yy
H H
AN
‘ A A A°
B2 c2 D2
ANVNCVNCYN Y Y vy
X X X X X
i/ T~ 4 i/
H H
R AR A A A
X X X X X X X X
v e e | L2y
L 4.2
v v v Y oy oy
T4 Y4 24 t4 Ts Ys 25 U

Typical example: Define H :
y* = (2 = 1)(z + 1)(z + 2)

(z —1/2)(z+3/2)(z — 2/3)
over Fp with p = 2127 _ 309:
J = Jac H; traditional Kummer
surface K: traditional X : J — K.
Small K coeffs (20 : 1: 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

z2 to ®3 Y3 23 U3

Hyper-and-elliptic-curve crypto

Vv v
. H
AWA;
A2 A?
D2
\\¢ VYNV Y Yy
m&i/ﬁ¢
H
0o W
e | Lo
.%§ .%7 .5% 'zi 'tf
2 B 2 2R 2
24 t4 Tn Ys 25 i5

Typical example: Define H :
v2=(z —1)(z +1)(z +2)

(z —1/2)(z+3/2)(z — 2/3)
over F, with p = 2127 — 309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F

r = (74
s = 159
C:y° =

Hyper-and-elliptic-curve crypto Define F 2 = Fpl
r=(7+4)*=3
s =159 + 5617; w
C:vy?=rzd + sz

Typical example: Define H :
y* = (2 = 1)(z + 1)(z + 2)

(z —1/2)(z+3/2)(z — 2/3)
over Fp with p = 2127 _ 309:
J = Jac H; traditional Kummer
surface K: traditional X : J — K.
Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Hyper-and-elliptic-curve crypto

3 13
R
oy
(/X
o

X
1 .21
1 t
Y

5 15

Typical example: Define H :
v2=(z —1)(z +1)(z +2)

(z —1/2)(z + 3/2)(z — 2/3)
over F, with p = 2127 — 309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F o = Fp[i]/(4% + 1)
r = (7 + 44)? = 33 4 564;

s = 159 4 561; w = 1/—384
C:y?=rz® + szt +3522 +

Hyper-and-elliptic-curve crypto

Typical example: Define H :
v2 = (2~ 1)(z + 1)(z +2)
(2 —1/2)(z + 3/2)(z — 2/3)
over F, with p = 2127 —309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F o = Fpli]/(4* + 1);
r = (7 + 44)? = 33 4 561;

s = 159 4 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

Hyper-and-elliptic-curve crypto

Typical example: Define H :
v2 = (2~ 1)(z + 1)(z +2)
(2 —1/2)(z + 3/2)(z — 2/3)
over F, with p = 2127 —309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010

Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F o = Fpli]/(4* + 1);
r = (7 + 44)? = 33 4 561;

s = 159 4 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 :'r:r3+sa:2+§a:+?.

Hyper-and-elliptic-curve crypto

Typical example: Define H :
v2 = (2~ 1)(z + 1)(z +2)
(2 —1/2)(z + 3/2)(z — 2/3)
over F, with p = 2127 —309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer

formulas in 2007 Gaudry, 2010
Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F o = Fpli]/(4* + 1);

r = (7 + 44)? = 33 4 561;

s = 159 4 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 :'r:r3+sa:2+§a:+?.

(z,vy) — (1/z°, y/z3) takes C to
y2 =725 +352° + sz + 7.

Hyper-and-elliptic-curve crypto

Typical example: Define H :
v2 = (2~ 1)(z + 1)(z +2)
(2 —1/2)(z + 3/2)(z — 2/3)
over F, with p = 2127 —309;
J = Jac H; traditional Kummer

surface K: traditional X : J — K.

Small K coeffs (20 : 1 : 20 : 40).

Warning: There are errors in the
Rosenhain /Mumford /Kummer
formulas in 2007 Gaudry, 2010
Cosset, 2013 Bos—Costello—
Hisil-Lauter. We have simpler,

computer-verified formulas.

Define F o = Fpli]/(4* + 1);

r = (7 + 44)? = 33 4 561;

s = 159 4 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 :'r:r3+sa:2+§a:+?.

(z,vy) — (1/z°, y/z3) takes C to
y2 — 73 + 522+ sz + 7.

1+ 12 Wy
(2.9) (1—zz (1—22:)3)
takes H over sz to C.

nd-elliptic-curve crypto

example: Define H :
—1)(z +1)(=2 +2)
-1/2)(z +3/2)(z — 2/3)
with p = 2127 — 309:

H: traditional Kummer

K: traditional X : J — K.

coeffs (20 : 1 : 20 : 40).

. There are errors in the
in/Mumford /Kummer
in 2007 Gaudry, 2010
2013 Bos—Costello—
uter. We have simpler,
r-verified formulas.

Define F 2 = Fp[i]/ (4% + 1);

r = (7 + 44)° = 33 + 564;

s = 159 + 56%; w = +/—384;
C:y°=rz® +sz* +352°+ 7.

(z,v) — (2%, y) takes C to E
y2 :ra;3+sa:2+§a;+f
(z,vy) — (1/z°, y/z3) takes C to
y2 =723 + 522+ sz + 7.

1+1z WY
(2,y) = ()

1 -1z (1 —12)3
takes H over sz to C.

J is isog
Well res
computl
Here #.
also reac

-curve crypto

Define H -

1)(z + 2)
-3/2)(z — 2/3)
2120 309;
onal Kummer

nal X : J —= K.

) :1:20 :40).

re errors in the
rd /Kummer
saudry, 2010
-Costello—
nave simpler,

formulas.

Define F > = Fp[i]/ (4% + 1);

r = (7 4 41)? = 33 + 564;

s = 159 + 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

(z,v) — (z°,y) takes C to E :
y2 —rz3 + sz +3z+T.

(z,vy) — (1/z°, y/z3) takes C to
y2 =723 + 52 + sz + 7.

1+ 12 WY
(2.9) (1—zz (1—22:)3)
takes H over sz to C.

J Is isogenous to

Well restriction W
computing #J(Fp
Here #J(F,) = 1t
also reasonably tw

to

2/3)

ner

— K.

40).

1 the
er

er,

Define F 2 = Fpli]/ (4% + 1);

r = (7 + 44)? = 33 4 564;

s = 159 + 561; w = +/—384;
C:y°2=rz® +sz* +352°+ 7.

(z,vy) — (z°, y) takes C to E :
y2 :ra;3+sa:2+§a;+f
(z,vy) — (1/z°, y/z3) takes C to
y2 — 73 + 522+ sz + 7.

1 +12 Wy
(2,9) = ()

1 -1z (1 —12)3
takes H over sz to C.

J is isogenous to

Well restriction W of E, so
computing #J(Fp) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

Define F o = Fpli]/(4* + 1);

r = (7 + 44)? = 33 + 561;

s = 159 4 561; w = /—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 :'r:r3+sa:2+§a:+?.

(z,vy) — (1/z°, y/z3) takes C to
y2 — 73 + 522+ sz + 7.

1+ 12 Wy
(2.9) (1—zz (1—22:)3)
takes H over sz to C.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

Define F o = Fpli]/(4* + 1);

r = (7 + 44)? = 33 + 561;

s = 159 + 561; w = 1/—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 = rz3 + sz° + 35T+ 7.

(z,vy) — (1/z°, y/z3) takes C to
y2 — 73 + 522+ sz + 7.

1+ 12 WY
(2.9) (1—zz (1—22:)3)
takes H over sz to C.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves

with fast point-counting.

Define F o = Fpli]/(4* + 1);

r = (7 + 44)? = 33 + 561;

s = 159 + 561; w = 1/—384;
C:y°=rz® +sz* +352°+ 7.

(z,vy) — (z°, vy) takes C to E :
y2 = rz3 + sz° + 35T+ 7.

(z,vy) — (1/z°, y/z3) takes C to
y2 — 73 + 522+ sz + 7.

1+ 12 WY
(2.9) (1—zz (1—22:)3)
takes H over sz to C.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves

with fast point-counting.

What's new here:
1. Small Kummer coefficients.
Requires lifting Scholten to Q.

:pz = Fp['i]/(z'2 + 1);

- 43)? = 33 + 563;

+ 561; w = +/—384;

- g0 + sz —|—§3:2 + 7.

(22, y) takes C to E :
3 +sa:2 + ST+ T.

- (1/z2, y/z3) takes C to
> 4+3z° +sT+T.

1+1z WY
1 -1z (1 —12)3

over sz to C.

J is isogenous to

Well restriction W of E, so
computing #J(Fp) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves

with fast point-counting.

What's new here:

1. Small Kummer coefficients.
Requires lifting Scholten to Q.

2. EXp|i<
LW —
with ¢ o

/(2 + 1);

3 4 501;

= \/—384;

4 45z + 7

ykes C to E :
ST + 7.

'z3) takes C to
ST+ T.

WY)
(1 —12)3
to C.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for
building genus-2 curves

with fast point-counting.

What's new here:

1. Small Kummer coefficients.
Requires lifting Scholten to Q.

2. Explicit formul:
W — Jand
with ¢ o/ = 2.

J is isogenous to

Well restriction W of E, so
computing #J(Fp) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for

bui

wit

ding genus-2 curves

n fast point-counting.

What's new here:

1. Small Kummer coefficients.
Requires lifting Scholten to Q.

2. Explicit formulas for isog

W — Jand = W
with ¢ o/ = 2.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for

bui

wit

ding genus-2 curves

n fast point-counting.

What's new here:

1. Small Kummer coefficients.
Requires lifting Scholten to Q.

2. Explicit formulas for isogenies
W —= Jandd:J =W
with o/ = 2.

J Is isogenous to

Well restriction W of E, so
computing #J(Fy) is fast.
Here #J(F,) = 16 - prime;
also reasonably twist-secure.

2003 Scholten:
this strategy for

bui

wit

ding genus-2 curves

n fast point-counting.

What's new here:

1. Small Kummer coefficients.
Requires lifting Scholten to Q.

2. Explicit formulas for isogenies
W —= Jandd:J =W
with o/ = 2.

We took random points

in H(Fp) x H(Fp);

applied H(Fp) — C(F,2)
— E(F,2) = W(Fp);
interpolated formulas for ¢'.

Similarly interpolated formulas
for ¢; veritied composition.

Easy computer calculation.
“Wasting brain power
is bad for the environment.”

enous to

triction W of E, so
ng #J(Fp) is fast.
/(Fp) = 16 - prime;
sonably twist-secure.

holten:

tegy for

genus-2 curves
t point-counting.

new here:

| Kummer coefficients.
lifting Scholten to Q.

2. Explicit formulas for isogenies

W — Jand = W
with ¢ o/ = 2.

We took random points

in H(Fy) x H(Fp);

applied H(Fp) — C(F,2)
— E(F.2) = W(Fp);
interpolated formulas for ¢'.

Similarly interpolated formulas
for ¢; verified composition.

Easy computer calculation.
“Wasting brain power
is bad for the environment.”

3. Using
dynamic
between

e.g. Gen
fast forn
Comput
fast forn

For mor:
see our
Paper c

of E, so
) is fast.

) - prime;
1st-secure.

urves

unting.

coefficients.
holten to Q.

2. Explicit formulas for isogenies
W —=Jandd:J =W
with ¢t o/ = 2.

We took random points

in H(Fp) x H(Fp);

applied H(Fp) — C(F,2)
— E(F,2) = W(Fp);
interpolated formulas for ¢'.

Similarly interpolated formulas
for ¢; veritied composition.

Easy computer calculation.
“Wasting brain power
is bad for the environment.”

3. Using isogenies
dynamically move
between E(F,2) a

e.g. Generate keys
fast formulas for £
Compute shared s
fast formulas for /

For more informat
see our talk at AN
Paper coming soo

ts.

2. Explicit formulas for isogenies

W — Jand = W
with ¢ o/ = 2.

We took random points

in H(Fy) x H(Fp);

applied H(Fp) — C(F,2)
— E(F.2) = W(Fp);
interpolated formulas for ¢'.

Similarly interpolated formulas
for ¢; veritied composition.

Easy computer calculation.
“Wasting brain power
is bad for the environment.”

3. Using isogenies to
dynamically move computat

between E(F 2) and J(Fp).

e.g. Generate keys using
fast formulas for E.
Compute shared secrets usir
fast formulas for K.

For more information:
see our talk at ANTS!
Paper coming soon.

2. Explicit formulas for isogenies
W —= Jandd:J =W
with ¢t o/ = 2.

We took random points

in H(Fp) x H(Fp);

applied H(Fp) — C(F,2)
— E(F,2) = W(Fp);
interpolated formulas for ¢'.

Similarly interpolated formulas
for ¢; veritied composition.

Easy computer calculation.
“Wasting brain power
is bad for the environment.”

3. Using isogenies to
dynamically move computations

between E(F 2) and J(Fp).

e.g. Generate keys using

fast formulas for E.

Compute shared secrets using
fast formulas for K.

For more information:
see our talk at ANTS!
Paper coming soon.

