SafeCurves:
choosing safe curves for

elliptic-curve cryptography

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Cryptography

http://safecurves.cr.yp.to

Public-key signatures:

e.g., RSA, DSA, ECDSA.
Some uses: signed OS updates,
SSL certificates, e-passports.

Public-key encryption:
e.g., RSA, DH, ECDH.
Some uses: SSL key exchange,
locked iIPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

/€ES:
r safe curves for
urve cryptography

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Inge
‘he Universiteit Eindhoven

Cryptography

'safecurves.cr.yp.to

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked IPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why EC

“Index c

fastest r
to break

Long his

many m

1975,
1977,
. qL
1990,
1994,
2006,
2013,

1932

Cl

lir

nt
fu
m

15

(FFS is

es for
ography

0
is at Chicago &
siteit Eindhoven

siteit Eindhoven

Cryptography

es.cr.yp.to

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked iIPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calculus’:

fastest method we

to break original L

Long history, inclu

many major Impro
CFRAC;
linear sieve

1975,
1977,
1932,
1990,
1994,
2000,
2013,

quac

ratic si

num

her-fielc

function-fiel

medium-prir
9 — z FFS

(FFS is not releva

g0 &
hoven

hoven

Cryptography

%

.to

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:
e.g., RSA, DH, ECDH.
Some uses: SSL key exchange,
locked IPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calculus’ :

fastest method we know
to break original DH and RS

Long history, including

many major improvements:
CFRAC;
linear sieve (LS);

1975,
1977,
1932,
1990,
1994,
2006,
2013,

quac

ratic sieve (QS);

num

ver-field sieve (NI

function-field sieve (F
medium-prime FFS/N
t9 — z FFS.

(FFS is not relevant to RSA

Cryptography

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked iIPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calculus’:

fastest method we know
to break original DH and RSA.

Long history, including
many major improvements:
1975, CFRAC;

1977, linear sieve (LS);
1982, quadratic sieve (QS);
1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
2013, z9 — = FFS.

(FFS is not relevant to RSA.)

raphy

ey signatures:
A, DSA, ECDSA.

es: signed OS updates,

ificates, e-passports.

ey encryption:
A, DH, ECDH.
es: SSL key exchange,
’hone mail download.

ey encryption:

S, Salsa20.

es: disk encryption,
_ encryption.

Why ECC?

“Index calculus’:

fastest method we know
to break original DH and RSA.

Long history, including

many major improvements:
CFRAC;
linear sieve (LS);

1975,
1977,
1932,
1990,
1994,
2006,
2013,

quac

ratic sieve (QS);

num

ver-field sieve (NFS);
function-field sieve (FFS);

medium-prime FFS/NFS;
t9 — z FFS.

(FFS is not relevant to RSA.)

Also ma
~ 100 s

Costs of

breaking
~ 2120
~ 2110
~ 2100

~ 260 7

Why ECC? Also many smaller

~ 100 scientific p:

res: “Index calculus”:

CDSA. fastest method we know Costs of these alg
| OS updates, to break original DH and RSA. breaking RSA-102
-passports. ~ 2120 2170 CFR

Long history, including 5110 5160 | g

10N many major improvements: ~ 2100 5150 (.

_DH. 1975, CFRACG; | o
_ _ ~ 250, 2112 'NFS.

ey exchange, 1977, linear sieve (LS); ' |

| download. 1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

on:

’ 1994, function-field sieve (FFS);
| . 2006, medium-prime FFS/NFS;
ncryption,

. 2013, z7 — = FFS.

(FFS is not relevant to RSA.)

tes,

g€,

Why ECC?

“Index calculus’ :

fastest method we know
to break original DH and RSA.

Long history, including

many major improvements:
CFRAC;
linear sieve (LS);

1975,
1977,
1932,
1990,
1994,
2006,
2013,

quac

ratic sieve (QS);

num

ver-field sieve (NFS);
function-field sieve (FFS);

medium-prime FFS/NFS;
t9 — z FFS.

(FFS is not relevant to RSA.)

Also many smaller improven
~ 100 scientific papers.

Costs of these algorithms fo
breaking RSA-1024, RSA-2C
~ 2120 2170 CFRAC;

~ 2110’ 2160’ LS:

~ 2100, 2150’ QS:

~ 290, 212 NFS.

Why ECC? Also many smaller improvements:

y ' ~ 100 scientific papers.
Index calculus”: Pap

fastest method we know Costs of these algorithms for
to break original DH and RSA. breaking RSA-1024, RSA-2048:
~ 2120 2170 CFRAC;

~ 2110, 21607 LS:

~ 2100, 21507 QS:

~ 290 2112 'NFS.

Long history, including

many major improvements:
1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);
1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
2013, z9 — z FFS.

(FFS is not relevant to RSA.)

Why ECC?

“Index calculus’:

fastest method we know
to break original DH and RSA.

Long history, including
many major improvements:
1975, CFRAC:

1977, linear sieve (LS);
1982, quadratic sieve (QS);

1990, number-field sieve (NFS);
1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;
2013, 29 — = FFS.

(FFS is not relevant to RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~ 2120 2170 "CFRAC;

~ 2110, 21607 LS:

~ 2100, 21507 QS:

~ 290 212 NFS.

1986 Miller “Use of

elliptic curves In cryptography’:
"It is extremely unlikely

that an ‘index calculus’ attack
on the elliptic curve method

will ever be able to work."

C?

alculus’:

nethod we know
original DH and RSA.

tory, including

ajor Improvements:
-RAC;
ear sieve (LS);

1aC

ratic sieve (QS);

1m

ver-field sieve (NFS);
nction-field sieve (FFS);

edium-prime FFS/NFS;
' —x FFS.

not relevant to RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~ 2120 2170 "CFRAC;

~ 2110’ 2160’ LS:

~ 2100, 2150’ QS:

s 290, 212 NFS.

1986 Miller “Use of

elliptic curves In cryptography’:
"It 1s extremely unlikely

that an ‘index calculus’ attack
on the elliptic curve method

will ever be able to work."

The cloc

-rl‘”””/ _-\""""ll

This is t

Warning
This s 1
“Elliptic

- know
)H and RSA.

ding
vements:

(LS);
eve (QS);

] sieve (NFS);
d sieve (FFS);

ne FFS/NFS;

nt to RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~ 2120 2170 "CFRAC;

~ 2110, 21607 LS:

~ 2100, 21507 QS:

s 290 212 NFS.

1986 Miller “Use of

elliptic curves In cryptography’:
"It is extremely unlikely

that an ‘index calculus’ attack
on the elliptic curve method

will ever be able to work."

The clock

|
\

/\

This i1s the curve 3

Warning:
This I1s not an elli
“Elliptic curve” #

A

=S);

FS:

Also many smaller improvements:

~ 100 scientific papers.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

~ 2120 2170 CFRAC:
%2110 2160 | S-
~ 2100 9150 (g
s 290, 212 NFS.

1986 Miller “Use of

elliptic curves In cryptography’:

"It 1s extremely unlikely

that an ‘index calculus' attack

on the el

will ever

iptic curve method

be able to work.”

The clock

Y
A

ah

/
|
\

This is the curve 2 + y° =

Y
=

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

Also many smaller improvements:

~ 100 scientific papers.

Costs of these algorithms for
breaking RSA-1024, RSA-2048:
~ 2120 2170 "CFRAC;

~ 2110, 21607 LS:

~ 2100, 21507 QS:

s 290 212 NFS.

1986 Miller “Use of

elliptic curves In cryptography’:
"It is extremely unlikely

that an ‘index calculus’ attack
on the elliptic curve method

will ever be able to work."

The clock

/ \
| — T
\ |

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

ny smaller improvements: The clock

Example
cientific papers.
. _ Y
these algorithms for \

- RSA-1024, RSA-2048:

»170 CERAC: /\

2160 | . l/
2150’ QS: \

112 NFS. \/

ller “Use of

Y
8

This is the curve 2 + y* = 1.
urves In cryptography’

tremely unlikely Warning:
‘ndex calculus’ attack This 1s not an elliptic curve.
liptic curve method “Elliptic curve” # “ellipse.”

be able to work.”

Improvements: The clock Examples of point
pers.
Y

orithms for \
4 RSA-2048:
AC; /\\

| > T
of This is the curve 2 + y2 = 1.
ryptography’ :
likely Warning:
ulus’ attack This is not an elliptic curve.
e method “Elliptic curve” # “ellipse.”
o work.”

ents: The clock Examples of points on this ¢
Y
r A
148: /\
| > T
This is the curve 2 + y% = 1.
Wy
Warning:
ck This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

/ \
| — T
\ |

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:
(0,1) = “12:00".

/ \
| — T
\ |

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock

/ \
| — T
\ |

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".
(0, —1) = "“6:00".

The clock Examples of points on this curve:
(0,1) = “12:00".

Y (0, —1) = "“6:00".

A

(1,0) = “3:00".

/ \
| — T
\ |

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
Yy (0,—1) = “6:00".
A (1,0) = “3:00".
/\ (—1,0) = “9:00" .
I — X
\ /

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
J (0, —1) = “6:00
i (1,0) = “3:00"
(—=1,0) = “9:00
,'/\\\ (v/3/4,1/2) =
| T

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
y (0, —1) = “6:00".
A (1,0) = “3:00"
(—1,0) = “9:00
/'/\\\ (v/3/4,1/2) = “2:00
| e

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
Y (0, —1) = “6:00".
i (1.0) = "3 00"
(—1,0) = O”.
N TR -

| - (1/2,—/3/4) =

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
Y (0, —1) = “6:00" .
| (1,0) = “3:00".
(—1,0) = “9:00".
/\\ (v/3/4,1/2) = “2:00".
'() — (1/2, —+/3/4) = “5:00".

N R

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock Examples of points on this curve:

(0,1) = “12:00".
J (0, 1) = “6:00"".
| (1,0) = “3:00".
(—1,0) = “9:00".
/\ (v/3/4,1/2) = “2:00".
() >~ T (1/2, —+/3/4) = "5:00".
“7:00".

N R

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock

Y
A

N

/
| — T
\

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = “5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).

The clock

N

/
| — T
\

This is the curve 2 + y2 = 1.

Warning:
This 1s not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = “5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (=3/5,—-4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5, —3/5).

Many more.

he curve 2 + y? = 1.

10t an elliptic curve.
curve” # “ellipse.”

Examples of points on this curve:

0,1) = “12:00".
o,—1) = "6:00"

~1/2,—+/3/4) = “7:00".

1/2,4/1/2) = “1:30" .
3/5,4/5). (—3/5,4/5).
3/5,—4/5). (=3/5, —4/5).
4/5,3/5). (—4/5,3/5).
(4/5,=3/5). (—4/5,=3/5).

Many more.

Additior

$2+y2
T = SIN (

ytic curve.
“ellipse.”

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = “5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—-3/5). (—4/5, —3/5).

Many more.

Addition on the cl

z? +y2 =1, para
T =sIna, Y = CO

Examples of points on this curve:

0,1) = “12:00".
o,—1) = "6:00"

~1/2,—+/3/4) = “7:00".

1/2,4/1/2) = “1:30" .
3/5,4/5). (—3/5,4/5).
3/5,—4/5). (=3/5, —4/5).
4/5,3/5). (—4/5,3/5).
(4/5,—-3/5). (—4/5,—-3/5).

Many more.

Addition on the clock:

Y

neutral = (0,
P1 — (a

nl"””/ -\"""--
P ",

22 + y2 = 1, parametrized |
T =sInQ, Yy = COSA.

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = "5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—-3/5). (—4/5, —3/5).

Many more.

Addition on the clock:

Y

} neutral = (0, 1)
P = (z1,91)

» P2 =(z2,92)
> &

P = (23, ¥3)

mu"'/ \'""In
o .,

22 + y2 = 1, parametrized by
T =sInQa, Yy = COoSA.

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = "5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—-3/5). (—4/5, —3/5).

Many more.

Addition on the clock:

Y

} neutral = (0, 1)
P = (z1,91)

» P2 =(z2,92)
> T

P = (23, ¥3)

mu"'/ \'""In
o .,

z° + y2 = 1, parametrized by
T =sina, Yy = cosa. Recall
(sin(a; + o), cos(ay + ar)) =

Examples of points on this curve:

(0,1) = “12:00".
(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = "5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—=3/5,4/5).
(3/5,—4/5). (—3/5, —4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,-3/5). (—4/5, —3/5).

Many more.

Addition on the clock:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

2 + y2 = 1, parametrized by
T =sina, Yy = cosa. Recall
(sin(a; + o), cos(ay + ar)) =
(sin a1 cos as + cos aj sin apo,

Examples of points on this curve:

(0,1) = “12:00".
(0, —1) = “6:00" .

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = "5:00" .
(=1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—=3/5,4/5).
(3/5,—4/5). (—3/5, —4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,-3/5). (—4/5, —3/5).

Many more.

Addition on the clock:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

22 + y2 = 1, parametrized by
T =sina, Yy = cosa. Recall
(sin(a; + ap), cos(ai + ar)) =
(sin a1 cos as + cos aj sin apo,
COS (x] COS axp — Sin Ay Sin).

s of points on this curve:

“12:00" .

= "6:00".

“3:00".

— "0:00".

1/2) = “2:00".

/3/4) = “5:00" .

_/374) = “7:00"
1/2) = "“1:30".

5). (—3/5,4/5).

1/5). (=3/5,—4/5).

5). (—4/5,3/5).

/5). (—4/5,—-3/5).

ore.

Addition on the clock:

Y

neutral

=(0,1)

P = (z1,91)

P> = (z2,y2)
> T

nl"””/ -\"""--
P ",

' P3 = (23, y3)

22 4+ y2 = 1, parametrized by

T =sInQ, Yy = COSA.

Recall

(sin(a1 + ap), cos(ai + ar)) =
(sin aj cos ar + cos aj sin ao,

COS (x] COS axp — Sin &y Sin @).

Clock ac

-rl‘”””/ \'“"'“l-

Use Car
addition
for the ¢
sum of (

(Z1y2 +

s on this curve:

00" .
‘5:00" .

= "7:00".
“1:30".
,4/5).

/5, —4/5).
,3/5).

/5, —3/5).

Addition on the clock:

Y

neutral

=(0,1)

P = (z1,91)

P> = (z2, y2)

mu"'/ \'""In
o .,

> &

' P3 = (23, y3)

22 + y2 = 1, parametrized by

T =sInQa, Yy = COoSA.

Recall

(sin(a; + ap), cos(ai + ar)) =
(sin a1 cos ar + cos aq sin apo,

COS (x] COS axp — Sin aq Sin).

Clock addition wit

INN

Use Cartesian coo
addition. Additior

for the clock z2 +
sum of (z1,y1) ar

(z1Yy2 + Y122, V1Y

urve.

Addition on the clock:

Y

} neutral = (0, 1)
P1 = (z1,91)

l\ > I
P3 = (3, y3)

z? + y2 = 1, parametrized by
T =sina, Yy = cosa. Recall
(sin(a1 + ap), cos(ai + ar)) =
(sin aj cos ar + cos aj sin ao,
COS (x] COS axp — Sin aq Sin @).

Clock addition without sin,

Y

} neutral = (0,
P1 — (a

nl"””/ -\"""--
P ",

Use Cartesian coordinates fc
addition. Addition formula
for the clock z2 4+ y2 = 1.
sum of (z1,%1) and (z2, y2)
(z1y2 + Y122, Y192 — T122)

Addition on the clock: Clock addition without sin, cos:

Y Y

} neutral = (0, 1) } neutral = (0, 1)
P = (z1,91) P = (z1,91)

/ Py, = (22, yo) / P = (z2,y2)
|\ > T I\ > T
Py = (23, y3) ' P3 = (3, 93)

Use Cartesian coordinates for

2 + y2 = 1, parametrized by
addition. Addition formula

T =sina, Yy = cosa. Recall

(sin(ay + ap), cos(ag + as)) = for the clock z% + y? = 1.

(sin a1 cos as + cos aj sin apo, sum of (z1,y1) and (z2,¥2) is
COS (x] COS axp — Sin aq Sin). (Z1Yy2 + Y172, Yy1¥2 — T1T2).

' on the clock:

Y

} neutral = (0, 1)
Pr = (z1,91)

S
' P3 = (23, y3)

— 1, parametrized by
Y, Yy = cosa. Recall

+ as),cos(a1 + aj)) =
0S o + COS &y SIn a9,
0S ap — Sin a1 sin ay).

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P1 = (z1,91)

l\ > I
' P3 = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1.
sum of (z1,%1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1Z2).

ock:

itral = (0, 1)

metrized by
sa. Recall
(o1 +a2)) =
S a1 SIn Ao,

n o sinao).

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

/ P> = (22, yY2)
l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:

sum of (z1,¥1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1Z2).

Examples of clock
"2:00" 4+ “5:00"
= (4/3/4,1/2) +
= (—1/2,—/3/4
"5:00" 4+ "9:00"
= (1/2, —\/ /4) -
= (V3/4,1/2) =

(5:5) = (s

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P1 = (z1,91)

| — I
‘ P = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1.
sum of (z1,y1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1T2).

Examples of clock addition:

“2:00" + “5:00”
= (1/3/4,1/2) + (1/2, -/
= (—1/2,—+/3/4) = “T:00’
“5:00" + "9:00"

(1/2,—/3/4) +(~1,0)
(v/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525)

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula

for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is
(z1y2 + Y122, Y192 — T122).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525/

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525/

; 3 4\ (117 —44
5'5/) \ 125" 125 /°

Clock addition without sin, cos:

mu"'/ \'""In
o .,

Y

} neutral = (0, 1)
P = (z1,91)

P2 _ ($2,y2)
>~ T
' P3 = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(3 4) (24 7)
55 2525)
3(3 4) (117 —44)

55 125" 125)

- (336 —527
-\ 625" 625 /)

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

(s55) = (33
55 2525)
3(§ ﬂ) _ (117 —44)
55 125" 125 /
4(§ ﬂ) _ (336 —527)
55 625 625 |

(z1,91) +(0,1) =

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

(s55) = (33
55 2525)
3(§ ﬂ) _ (117 —44)
55 125" 125 /
4(§ ﬂ) _ (336 —527)
55 625 625 |

(z1,91) +(0,1) = (21, v1)-

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(33) - (5 =)

5' 5 2525)

3(§ ﬂ) _ (117 —44)
5' 5 125" 125)

4(§ ﬂ) _ (336 —527)
5' 5 625" 625)

(1,91) +(0,1) = (21, 91).

(z1,91) + (—21,91) =

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(35) = (Ge%s)
3(55) = (25 1)
j(? é;) (0(12)33(655572-
z1,y1) + (0,1) = (21, v1).
(mi,yi) + (—z1,91) i (01, 1).

ldition without sin, cos:

Y

} neutral = (0, 1)
Pr = (z1,91)

P2 _ (3;2,y2)
el
' P3 = (23, y3)

resian coordinates for
. Addition formula
lock 2?2 + y? = 1:
z1,Y1) and (z2,y2) is
Y1Z2, Y1Y2 — T1Z2).

Examples of clock addition:

"2:00" + "5:00"

= (V/3/4.1/2) + (1/2.—/3/4)
= (—1/2,—+/3/4) = “7:00".
"5:00" + "9:00"

= (1/2,—+/3/4) + (-1,0)

(v/3/4,1/2) = “2:00".
3 4 24 7
(E’E) B (25’ 25)'
3(§ ﬂ) _ (117 —44)
55 125’ 125)
4(§ ﬂ) _ (336 —527)
5" 5 625" 625)

(z1,91) +(0,1) = (z1,91).

NO

Clocks ¢

Clock(F
{(z.9)
Here F~
=40, 1,
with arit
eg. 2!

hout sin, cos:

itral = (0, 1)

P = (21,91
,\ (z1,91)

o P2 = (22, 92)

l>$
>P3—333y3

rdinates for
 formula

y° = 1.

d (z2,y2) is
> — T1T2).

Examples of clock addition:

“2:00" + "5:00"

= (v/3/4,1/2) + (1/2,—/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ “9:00"

= (1/2,—+/3/4) + (~1,0)
= (1/3/4,1/2) = “2:00" .

2(55) = (5525)
i(5:5) = (s s)
(5:5) = (65 a8)
(z1,91) +(0,1) = (21, y1):
(z1,91) + (—z1,91) = (0, 1).

Clocks over finite

Clock(F7) =

{(a:,y) cF7 xFy
Here F7 = {0, 1,2
=40,1,2,3, -3, -
with arithmetic m
eg. 2-5b =3 and

COS.

1, Y1)
(z2, y2)

(23, y3)

1

1S

Examples of clock addition:

"2:00" + "5:00"

= (V/3/4.1/2) + (1/2.—/3/4)
= (—1/2,—+/3/4) = “T:00".
"5:00" + "9:00"

= (1/2,—+/3/4) + (-1,0)

(v/3/4,1/2) = “2:00".
NEEAWENAY
Gk
5’5 125’ 125)
(5:5) = (o5 025)
(z1,91) +(0,1) = (21, 91).
(z1,91) + (—z1,91) = (0, 1).

Clocks over finite fields

Clock(F7) =

{(:I;,y) cF7; xFy: z° +y2
Here F7 ={0,1,2,3,4,5,6}
=4{0,1,2,3,-3,-2, -1}
with arithmetic modulo 7.
eg. 2-5=3and3/2=5i

Examples of clock addition:
“2:00" + "5:00"

(v/3/4,1/2) 4+ (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(55) = ()
e lm)
4(5’ 5) B (625' 625)
T1, 1) = (z1, .
v+ oerm) (1)

Clocks over finite fields

Clock(F7) =
{(:cy) € F; x F7: 2?2 + 4% = 1}.
Here F7 =40,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

s of clock addition:
- “5:00"

4,1/2) +(1/2,—+/3/4)
), —+/3/4) = “7:00".

- “9:00”
—1/3/4) + (~1,0)
1/2) = “2:00".

24 7
(25’25)'
117 —44
(125’ 125)'
336 —527
(625, 5)

0,1) = (z1,91).

)
)
)

+ (—$1,y1) = (0,1).

Clocks over finite fields

Clock(F7) =

{(a;y) € F7 x F7:$2+y2:1}.

Here F7 =40,1,2,3,4,5,6}
~{0,1,2,3, -3, -2, —1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F7.

Larger e

Example
on Cloc}

2(1000,

addition:

(1/2,=1/3/4)

) = “7:00"

-(—1,0)
"2:00".

=)
)
(21, 91).
1) =(0,1).

Clocks over finite fields

Clock(F7) =

{(:cy) € F7 x F7:332—|—y2:1}.

Here F7 =40,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in Fy.

Larger example: C

Examples of addit

on C|OCk(F1000003
2(1000, 2) = (400

Clocks over finite fields

Clock(F7) =

{(a;y) € F7 x F7:$2+y2:1}.

Here F7 =40,1,2,3,4,5,6}
~{0,1,2,3, -3, -2, —1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F7.

Larger example: Clock(Fqgo

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).

Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).

Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).
4(1000, 2) = (56000, 97).

Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

o o
. 2(1000, 2) = (4000, 7).
. e 4(1000, 2) = (56000, 97).
. 8(1000, 2) = (863970, 18817).
o o
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

® o
. 2(1000, 2) = (4000, 7).
. . e 4(1000, 2) = (56000, 97).
. 8(1000, 2) = (863970, 18817).
. . 16(1000, 2) = (549438, 156853).
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

° . ’ 2(1000, 2) = (4000, 7).
o 4(1000, 2) = (56000, 97).
) 8(1000, 2) = (863970, 18817).
.) 16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.

Clocks over finite fields Larger example: Clock(F1000003)-
Examples of addition
o o on C|OCk(F1000003):
. 2(1000, 2) = (4000, 7).
. e 4(1000, 2) = (56000, 97).
e 8(1000, 2) = (863970, 18817).
. . 16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).
Clock(F7) = “Scalar multiplication”
{(a:y) cF; xF7: 12 +y2 — 1}_ on a clock:
Here F; = {0,1,2,3,4,5,6} Given integer n > 0
={0,1,2,3,-3,-2, -1} and clock point (z,y),
with arithmetic modulo 7. compute n(z, y).
e.g 2-5=3and3/2=5in Fy.

ver finite fields

EF7><F7::1:2+y2:1}.

=4{0,1,2,3,4,5,6}
2,3,—3,-2,—1}

hmetic modulo 7.

> =3 and 3/2 =5 in F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary
If n is e
by doub
Otherwi
by addin
This 1s \

flelds

odulo 7.
3/2 =51In F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,vy),
compute n(z, y).

“Binary method" :
If n is even, comp
by doubling (n/2)
Otherwise comput
by adding (z, y) t
This is very fast.

1 F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :

If n is even, compute n(z,y
by doubling (n/2)(z,vy).
Otherwise compute n(z, y)
by adding (z,y) to (n — 1)(
This is very fast.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :
If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :

If n is even, compute n(z, y)
by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,y) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

xample: Clock(F1000003)-

s of addition

<(F1000003):

) = (4000, 7).

) = (56000, 97).

) — (863970, 18817).
2) — (549438, 156853).
) — (951405, 877356).

multiplication”
ck:

teger n > 0

k point (z,y),

“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,y).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cr

Standarce
and som

Alice ch
Comput

Bob cho
Comput:

Alice col
Bob con
They us
to encry

Warning
Many ck

lock(F1000003)-

on

):

), 7).

)0, 97).

)70, 18817).
0438, 156853).
1405, 877356).

ion”

“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptograph

Standardize a larg
and some (z,y) €

Alice chooses big
Computes her puk

Bob chooses big s
Computes his pub

Alice computes a(
Bob computes b(a
They use this shar
to encrypt with Al

Warning #1:
Many choices of p

9003).

ol o1 ~—
S W
NS N’

“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z,y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p
and some (z,y) € Clock(F,

Alice chooses big secret a.
Computes her public key af:

Bob chooses big secret 6.
Computes his public key b(a

Alice computes a(b(z,y)).
Bob computes b(a(z,vy)).
They use this shared secret
to encrypt with AES-GCM e

Warning #1:
Many choices of p are bad!

“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.
Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

method":

ven, compute n(z, y)
ing (n/2)(z, y).

se compute n(z, y)

g (z,y) to (n — 1)(z, y).
ery fast.

ring out n

y) and n(z,y)
more difficult.

clock additions

yuted

2) = (947472,736284)
 0-digit n.

figure out n?

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fy).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret b.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes b(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alic
secret

Alic
public
a(z

{Alice,
shared
ab(x

ute n(z, y)

(z,9).
e n(z,y)
> (n —1)(z,y).

(z,y)
cult.

itions
472,736284)

tn?

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, vy).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alice’s
secret key a

'

Alice’s
public key

a(z,y) ><

{Alice, Bob}'s
shared secret
ab(z, y)

T,Y).

34)

Clock cryptography

Standardize a large prime p
and some (z,y) € Clock(Fy).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z,vy).

Alice computes a(b(z,y)).
Bob computes b(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alice’s Bob

secret key a secret |
Alice’s Bob
public key public

{Alice, Bob}'s {Bob, A
shared secret — shared
ab(z,y) ba(z,

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alice’s Bob's
secret key a secret key 0

' '

Alice’s Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z, y) ba(z,y)

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alice’s Bob's
secret key a secret key 0

' '

Alice's Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z,y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 2130

yptography

lize a large prime p
e (z,vy) € Clock(Fp).

0oses big secret a.

es her public key a(z, y).

oses big secret b.
es his public key b(z, y).

mputes a(b(z, y)).

putes b(a(z, y)).
e this shared secret

pt with AES-GCM etc.
#1:

1oices of p are bad!

Alice’s Bob's
secret key a secret key b

' '

Alice’s Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z, y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 21230

Timing .

Attacket
a(z,y) :

Attacket
Alice to
Often at
time for
performe

not just
This rev

Fix: cor
performi
no matt

y

e prime p
Clock(Fy).

secret a.

lic key a(z,y).

ecret b.
lic key b(z, y).

b(z,y))-
(z,y))

ed secret
=S-GCM etc.

-are bad!

Alice’s Bob's
secret key a secret key 0

' '

Alice's Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z,y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 2130

Timing attacks

Attacker sees mor
a(z,y) and b(z,y

Attacker sees time
Alice to compute
Often attacker car
time for each opel
performed by Alic
not just total time
This reveals secret

Fix: constant-tin
performing same ¢
no matter what sc

L, Y).

L Y).

{C.

Alice’s Bob's
secret key a secret key b

' '

Alice’s Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z,y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 2130

Timing attacks

Attacker sees more than
a(z,y) and b(z,y).

Attacker sees time for
Alice to compute a(b(z,y))
Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Alice’s Bob's Timing attacks

secret key a secret key 0
i ¢ Attacker sees more than
alz,y) and b6(z, v).
Alice's Bob's (z.9) (.9)
public key public key Attacker sees time for

a(z.9) >< oz, y) Alice to compute a(b(z,y)).
{Alice, Bob}'s {Bob, Alice}'s Often attacker can see

shared secret = shared secret time for each operation
ab(z, y) ba(z,y) performed by Alice,
Warning #2: not just total time.

Clocks aren't elliptic! This reveals secret a.

Can use index calculus Fix: constant-time code,
to attack clock cryptography. performing same operations
To match RSA-3072 security no matter what scalar is.
need p ~s 2130

e's Bob's

key a secret key b
e's Bob's
- key public key

Y) b(z,y)
>

Bob}'s {Bob, Alice}'s

secret — shared secret
L Y) ba(z,y)
2

ren't elliptic!
index calculus

k clock cryptography.

h RSA-3072 security
J 21536_

Timing attacks

Attacker sees more than
a(z,y) and b(z, y).

Attacker sees time for

Alice to compute a(b(z,vy)).

Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Additior

/\

T2 + y2
Sum of
((z1y2+
(y192—

Bob's
secret key 0

¢

Bob's
public key
- b(z,y)
N
{Bob, Alice}'s
shared secret
ba(z,y)

Ficl
-ulus

/ptography.
(2 security

Timing attacks

Attacker sees more than
a(z,y) and b(z, y).

Attacker sees time for

Alice to compute a(b(z,vy)).

Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition on an ell

X
N/

\\/I

Y
A
/M

2 +y2 =1 — 30
Sum of (z1,y1) at
((z1y2+y122)/(1-
(y1y2—z122)/(1-

ice}'s
ecret
y)

Timing attacks

Attacker sees more than
a(z,y) and b(z,y).

Attacker sees time for

Alice to compute a(b(z,vy)).

Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition on an elliptic curve

Y

neutral = (0,
/M

I\ PL= (71,1
/ P = (
. > T
\ P3:‘

\\/I

z? +y° =1 — 30z°y>.

Sum of (z1,v1) and (z2, yo
((z1y2+y122)/(1-3021Z2Y
(y1y2—2122)/(1+30z122Yy

Timing attacks

Attacker sees more than
a(z,y) and b(z, y).

Attacker sees time for

Alice to compute a(b(z,vy)).

Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition on an elliptic curve

Y
A
neutral = (0, 1)

//.\\
P = (z1,v1)
/ P> = (z2, y2)
. > T
\ P3 = (z3,y3)

\\/I

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (z2,y2) is
((z1y2+y122)/(1-30Z1229192),
(y1y2—z122)/(1+30z1229192)).

attacks

- sees more than
aind b(z, y).

- sees time for

compute a(b(z, y)).

tacker can see
each operation
d by Alice,
total time.
eals secret a.

Istant-time code,
ng same operations
er what scalar is.

Addition on an elliptic curve

Y
A
neutral = (0, 1)

//.\\
P = (z1,v1)
////// P> = (z2,y2)
. > T
\\\\\\ P3 = (z3,93)

\\/I

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (z2,y2) is
((z1y2+y122)/(1-30Z1229192),
(yiye—z122)/(1+30z1229192)).

The cloc

-rl‘”””/ \'“"'“l-

z° + y2
Sum of
(z192 +
Yyi1yz —

> than

 for

2 (6(z,y)).

1 see
ation

\v

. Q.

1e code,
yperations
alar i1s.

Addition on an elliptic curve

} neutral = (0,1)

//.\\

P = (z1,91)

P> = (z2,2)
T

>
P = (23, y3)

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (x5, y2) is
((z1y2+y122)/(1-30Z1229192),
(y1y2—z122)/(1+30z1229192)).

The clock again, f

INN

z° +y? = 1.

Sum of (z1,y1) at
(z1y2 + Y122,
Y1y2 — T1%2).

Addition on an elliptic curve

Y
A
neutral = (0, 1)

//.\\
P = (z1,v1)
/ P> = (z2,y2)
. > T
\ P3 = (z3,93)

\\/I

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (z2,y2) is
((z1y2+y122)/(1-30Z1229192),
(viy2—z122)/(1+30z1229192)).

The clock again, for compar

Y

neutral = (0,
P1 — (a

nl"””/ -\"""--
P ",

z° +y° = 1.

Sum of (z1,v1) and (z2, Yo
(z1y2 + Y1722,

Y1Y2 — T1Z2).

Addition on an elliptic curve

Y
A
neutral = (0, 1)

//.\\
P = (z1,v1)
/ P> = (z2, y2)
. > T
\ P3 = (z3,y3)

\\/I

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (z2,y2) is
((z1y2+y122)/(1-30Z1229192),
(y1y2—z122)/(1+30z1229192)).

The clock again, for comparison:

Y

} neutral = (0, 1)
P = (z1,91)

/ P> = (z2, Y2)
l\ > T

z° +y? = 1.

Sum of (z1,y1) and (x5, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

 on an elliptic curve

Y
A
neutral = (0, 1)

)
/’ \ P =(z1,91)
P> = (z2,v2)

> &

\ Ps = (z3,y3)

\\/I

= 1 — 30z2%y?.

(z1,y1) and (z2,y2) is
y122)/(1-30z122Y1Y2),
z122)/(14+3021229192)).

The clock again, for comparison:

Y

} neutral = (0, 1)

P = (z1,91)

nl"””/ -\"""--
P ",

$2+y2:1.

P2 _ (32,y2)
S
' P3 = (23, y3)

Sum of (z1,y1) and (z2,y2) is

(z1y2 + Y122,
Y1Y2 — T1L2).

More ell

Choose

Choose

{(z,y) ¢

332-

IS a '‘col
“The Ec
(z1,v1)

where

333:?

Y

yBZF

ptic curve

itral = (0, 1)

?1 = (21, 1)
>.\P2 —3(;332 y2)
3 = (23, 43)

22

d (z0,y2) is
-30z1T2Y1Y2),
+30z1Zoy192)).

The clock again, for comparison:

Y

neutral = (0, 1)
P = (z1,91)

P> = (z2,y2)
> T

' P3 = (23, y3)

mu"'/ \'""In
o .,

z° +y? = 1.

Sum of (z1,y1) and (z2,y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

More elliptic curve

Choose an odd pri

Choose a non-squ

1(z,y) € Fp X Fp
Is a ‘complete Ed
“The Edwards adc

(z1.91) + (%2, ¥2)
where

T1Y2 + Y12

I3 =
1+ d$1$2y1
 Y1Yy2 — 117
Y3 = '

1 — dziT0Y1

/1)
T2, Y2)

(z3,Y3)

) IS
192)
192)).

N ™

The clock again, for comparison:

Y

} neutral = (0, 1)

P = (z1,91)

nl"””/ -\"""--
P ",

z? +y° =1.

P> = (z2, ¥2
> T
P = (23, y3)

Sum of (z1,y1) and (z2,y2) is

(z1y2 + Y122,
Y1Y2 — T1L2).

More elliptic curves

Choose an odd prime p.

Choose a non-square a € F,

(z,y) € Fp X Fp .
z° + y° = 1+ dz’y°}
Is a ‘complete Edwards cun

“The Edwards addition law"

(z1,y1) + (22, y2) = (23, Y3
where

_ T1Y2 T Y122
T3 = ,
1 +dzi1z2Y192
 Y1Y2 — T1ZD
Y3

1 —dzizoy1Yn

The clock again, for comparison: More elliptic curves

’ Choose an odd prime ».

} neutral = (0,1)
P = (z1,91) {(z.y) e Fp x Fp:

P = (z2,y2) 2 +y? =1+ dz°y}
> I Is a ‘complete Edwards curve”.

Choose a non-square d € Fy.

mu"'/ \'""In
o .,

' Ps = (23, 93) “The Edwards addition law":
(z1,91) + (22, 92) = (23, ¥3)

z° + y2 = 1. where

Sum of (z1,y1) and (z2,y2) is . Ty + y1Z7
(z192 + Y122, T 1t dmizoyiyn
Yi1y2 — 331332)- Y1Y2 — T1T)

Y3 = :
1 —dzi1z0Y1Y2

-k again, for comparison:

Y

} neutral = (0,1)
Pr = (z1,91)

P> = (z2, ¥2
> T
P = (23, y3)

More elliptic curves

Choose an odd prime p.

Choose a non-square d € Fy.

{(z,y) € Fp x Fp:
z° +y° = 1+ dz?y?}

Is a "‘complete Edwards curve”.

“The Edwards addition law' :

(z1,y1) + (22, ¥2) = (3, ¥3)
where

_ T1Y2 T Y122
T3 = ,
1 +dzi1z2Y192
 Y1Y2 — T1ZD
Y3

1 —dzizoy1Y0

"Hey, th
in the E
What if

or comparison: More elliptic curves “Hey, there are di
in the Edwards ad

What if the denon

Choose an odd prime ».

Choose a non-square d € Fy.

itral = (0, 1)

1= (z1,y1) {(93,?/)26 Fg X Fp: -
/*Pzz(ﬁcz,yz) -ty :l_I_dmy}

— >z Is a ‘complete Edwards curve’.

P3 = (23, 93) “The Edwards addition law":
(z1,91) + (22, 92) = (23, ¥3)

where
d (22,92) is 5y — 192 9122
1+ dz1Z2y192
_ Y1Y2 — T130
Y3

1 —dz1ToY1Y0

1son; More elliptic curves "Hey, there are divisions
in the Edwards addition law

Choose an odd prime .
P P What if the denominators at

Choose a non-square d € Fy.

1, Y1) {(z.y) € Fp x Fp:
(22, 92) z° +y° = 1+ dz?y?}
Is a "‘complete Edwards curve”.

(23, y3) “The Edwards addition law":
(z1,91) + (22, 92) = (23, ¥3)

where
) IS T1Y2 + Y12
T3 = ,
1 +dz1z0Y192
 Y1Y2 — T1Z2
Y3

1 —dzizoy1Yn

More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

“The Edwards addition law' :
(z1,91) + (22, 92) = (23, ¥3)

where
_ T1Y2 T Y122
T3 = ,
1 +dz1z0Y192
 Y1Y2 — T122
Y3 =

1 —dz1zoy1Y>

More elliptic curves "Hey, there are divisions

In the Edwards addition law!

Choose an odd prime .
P P What if the denominators are 07"

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' :
(z1,91) + (22, 92) = (23, ¥3)

where
_ T1Y2 T Y122
T3 = ,
1 +dz1z0Y192
 Y1Y2 — T122
Y3 =

1 —dz1zoy1Y>

More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' : This proof relies on

choosing non-square d.
(z1,91) + (22, 92) = (23, ¥3) . !

where
_ T1Y2 T Y122
T3 = ,
1 +dz1z0Y192
 Y1Y2 — T122
Y3 =

1 —dz1zoy1Y>

More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' : This proof relies on

choosing non-square d.
(z1,91) + (22, 92) = (23, ¥3) . !

where If we instead choose square d:
£y — T1Y2 + Y1T2 | curve is still elliptic, and
1 + dziz2Y1Y2 addition seems to work,
 Y1Y2 — T1T but there are failure cases,
43 = 1 —dz1zoY1Y> often exploitable by attackers.

Safe code is more complicated.

Iptic curves

an odd prime p.
a non-square d € Fy.

- Fp X Fy
I y? —1+d:c2y2}

nplete Edwards curve’.

lwards addition law' :
+ (z2,¥2) = (23, ¥3)

1Y2 + Y122
- dT1Z2Y1Y2
1Y2 — Z12)
- dz1T2Y1Y2

"Hey, there are divisions
In the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe e

Choose

Choose
this Is n
72 -+ y2
IS a safe

S

me p.
are a € Fy.

Fdz?y?}

wards curve' .

lition law' :
= (23, y3)

"Hey, there are divisions
In the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never O.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example

C
C

Noose p = 2255

noose d = 1216¢€

this I1s non-square

z° +y° =1+ dz

1S

a safe curve for

ASH

"Hey, there are divisions
In the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example

Choose p = 2%°° — 19.

Choose d = 121665/121666
this i1s non-square in F.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.

"Hey, there are divisions
in the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example

Choose p = 2%°° — 19

Choose @ = 121665/121666;
this i1s non-square in Fy.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.

"Hey, there are divisions A safe example
in the Edwards addition law!
What if the denominators are 07"

Choose p = 2%°° — 19
Choose @ = 121665/121666;
Answer: Can prove that this is non-square in Fy,.

’X]dedfie.nona.tors are Inever 0. 22 yg 14 d$2y2
'tion law is complete. Is a safe curve for ECC.

This proof relies on —z2 492 = 1 — dg2y?

choosing non-square d. .
Is another safe curve

If we instead choose square d: using the same p and d.
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

"Hey, there are divisions
in the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.

Safe code is more complicated.

A safe

example

Choose p = 2%°° — 19
Choose @ = 121665/121666;

this i1s non-square in Fy.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.

IS anot
using t

y° =1 — dzy?
ner safe curve

ne same p and d.

Actually, the second curve

is the first curve in disguise:

replace z in first curve

by v/—1-z, using -1 € Fy,.

ere are divisions
dwards addition law!

the denominators are 07"

Can prove that
yminators are never 0.
 law Is complete.

of relies on
' non-square d.

tead choose square d:
still elliptic, and
seems to work,

e are failure cases,
ploitable by attackers.

le 1Is more complicated.

A safe

example

Choose p = 2%°° — 19.
Choose d = 121665/121666;

this i1s non-square in Fy.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.

IS anot
using t

y° =1 — dz’y?
ner safe curve

ne same p and d.

Actually, the second curve

is the first curve in disguise:

replace z in first curve

by v/—1-z, using /-1 € Fy,.

Even mc

Edwards
12 -+ y2
Twisted
0z 4y

Welerstr

v2 — 2,3

Montgol
bv® = u

Many re
e.g., suk

y = (u-
to obtai

/1SIONS
dition law!
1inators are 07"

e that
are never 0.
mplete.

n

re d.

se square d:
c, and

work,

re cases,

y attackers.
complicated.

A safe example

Choose p = 2%°° — 19

Choose @ = 121665/121666;
this i1s non-square in Fy.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.
—22 4 g2 = 1 — dz2y?
IS another safe curve

using the same p and d.

Actually, the second curve
is the first curve in disguise:

replace z in first curve

by v/—1-z, using -1 € Fy,.

Even more elliptic

Edwards curves:
2 4+ y% =1+ dz

Twisted Edwards «
az? + y2 =1+ d:

Welerstrass curves
v =y 1+ au + b6

Montgomery curve
bv? = u3 + au’ +

Many relationship:
e.g., substitute -

y=(u—1)/(u+
to obtain Montgol

A safe example Even more elliptic curves

07 Choose p = 2%°° — 19. Edwards curves:
Y Choose d = 121665/121666; 2 + y? = 1+ dzly?.
) this is non-square in Fp. Twisted Edwards curves:
| 22 + y2 = 1 + dzy? az? + y2 =1+ dz?y?.
Is a safe curve for ECC. .
Welerstrass curves:
—$2+y2:1—d$2y2 v° = ud + au + b.
Is another safe curve
| Montgomery curves:
a: using the same p and d.

bv? = u3 + aul + u.

Actually, the second curve . .
Y Many relationships:

is the first curve in disguise:

o e.g., substitute z = u /v,
replace z in first curve

- | y=(u—1)/(u+1) in Edw
ed. by V=12, using V=1 € Fp. to obtain Montgomery.

A safe example Even more elliptic curves

Choose p = 2%°° — 19 Edwards curves:
Choose d = 121665/121666; z° + y° = 1+ dz’y°.
this i1s non-square in Fy.

Twisted Edwards curves:
22 + y? = 1 + dzy? az? + y2 =1+ dz?y?.

Is a safe curve for ECC. .
Welerstrass curves:

—z? + y? =1 — dz?y? v? = u3 + au + b.

Is another safe curve
Montgomery curves:

bv? = u3 + au? + u.

using the same p and d.

Actually, the second curve . .
Y Many relationships:

is the first curve in disguise: .
e.g., substitute z = u /v,
y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

replace z in first curve

by v/—1-z, using v—1 € Fy,.

xample Even more elliptic curves Addition

02 — 1,3

p = 2290 _ 19 Edwards curves:
d = 121665/121666; z° +y° = 1+ dzy?.

on-square in F,,. :
q p Twisted Edwards curves:

= 1+ dz?y? az? + y2 =1+ dz?y?.

curve for ECC. .
Welerstrass curves:

12:1—d3:2y2 v2:u3—|—au—|—b.

or safe curve
Montgomery curves:

e same p and d. b2 — u3 + qu? + u.

the second curve . .
Many relationships:

st curve In disguise: e.g., substitute £ = u /v,
y = (u —1)/(u + 1) in Edwards

to obtain Montgomery.

r in first curve

-z, using v/—1 € Fp.

- 19.
5/121666;
in Fy.

2y2

ECC.

:$2y2
VE

and d.

1d curve
1 disguise:

Even more elliptic curves

Edwards curves:
z? +y° = 1+ dz’y°.

Twisted Edwards curves:
az? + y% = 1+ dz?y?.
Welerstrass curves:

v =u3 +au -+ b

Montgomery curves:
bv? = u3 + au® + u.

Many relationships:
e.g., substitute z = u /v,

y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

Addition on Weler
v2 =u’+au+b

Even more elliptic curves

Edwards curves:
z° + y° = 1 + dz’y°.

Twisted Edwards curves:
az? + y% = 1+ dz?y?.
Welerstrass curves:

vi =u3 +au b

Montgomery curves:
bv? = u3 + au® + u.

Many relationships:
e.g., substitute z = u /v,

y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

Addition on Welerstrass cur
v2 = ud +aqu 4+ b

Even more elliptic curves

Edwards curves:
z° + y° = 1 + dzy°.

Twisted Edwards curves:
az? + y% = 1+ dz?y?.
Welerstrass curves:

v =u3 +au -+ b

Montgomery curves:
bv? = u3 + au® + u.

Many relationships:
e.g., substitute z = u /v,

y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

Addition on Weierstrass curves
v2 = ud + au + b

Even more elliptic curves Addition on Welerstrass curves
v? = ud + au + b:

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with uz = A2 — u1 — uo,

Edwards curves:
z° + y° = 1+ dz’y°.

Twisted Edwards curves: v3 = AMu1 — u3) — v1,

a$2 + y2 =1+ d$2y2- A= (?}2 — ’Ul)/(’UQ — ul); for

Weierstrass curves: v1 70, (u1,v1) + (u1,v1) =

v2 = ud +au—+b (u3,v3) with ugz)\z—ul—ug,
v3 = AMu1 — u3) — vy,

Montgomery curves:) — (3u% +a)/2u1;

2 _ .3 2
bve = u” + au® + u. (ulr'vl) N (ul,—vl):oo;

Many relationships: (u1,v1) + 00 = (u1,v1);
e.g., substitute £ = u/v, 00 + (u2,v2) = (u2, v2);
y=(u—1)/(u+1) in Edwards X 1 00 = Q.

to obtain Montgomery.

Even more elliptic curves Addition on Welerstrass curves
v? = ud + au + b:

for uy # w2, (u1,v1) + (u2,v2) =
(u3,v3) with uz = A2 — u1 — uo,

Edwards curves:
z° + y° = 1+ dz’y°.

Twisted Edwards curves: v3 = AMu1 — u3) — v1,

a$2 + y2 =1+ d$2y2- A= (?}2 — ’Ul)/(’UQ — ul); for

Weierstrass curves: v1 70, (u1,v1) + (u1,v1) =

v2 = ud +au—+b (u3,v3) with ugz)\z—ul—ug,
v3 = AMu1 — u3) — vy,

Montgomery curves:) — (3u% +a)/2u1;

2 _ .3 2
bve = u” + au® + u. (ulr'vl) N (ul,—vl):oo;

Many relationships: (u1,v1) + 00 = (u1,v1);
e.g., substitute £ = u/v, 00 + (u2,v2) = (u2, v2);
y=(u—1)/(u+1) in Edwards X 1 00 = Q.

to obtain Montgomery. Messy to implement and test.

re elliptic curves

Ccurves:
= 1 + dz?y?.

Edwards curves:
> =1 + dz’y°.

ass curves:
+ au + b.

nery Curves:
3 + a,u2 + U.

lationships:

stitute £ = u /v,
-1)/(w + 1) in Edwards
n Montgomery.

Addition on Welerstrass curves
v2 = ud + au + b

for u1 # wuo, (u1,v1)+ (U2, v2) =

(u3,213) with u3z = A2 — Ul — U2,
v3 = A(u1 — u3) — 1,

A = (v —v1)/(us — up); for
v1 #0, (u1,v1) + (u1,v1) =
(u3,v3) with uz = A2 — Ul — U2,
v3 = A(u1 — u3) — vy,

A = (3u? + a)/2ws;

(u1,v1) + (u1, —v1) = 00;
(u1,v1) + 00 = (u1,v1);

00 + (u2, v2) = (u2, v2)
o0 — X = Q.

Messy to implement and test.

Much ni

Montgol
the “"Mc
our reco
Ditfie—H
(e.g., fol

Montgol
only wit
of curve

Montgol
nP and
n/2|P
using on
with no

curves

2y2_

_Urves.

£2y?.

V]

= u /v,
1) in Edwards
mery.

Addition on Welerstrass curves
v2 =ud +au+ b

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with uz = A2 — u1 — uo,
v3 = AMu1 — u3) — vy,

A= (v —v1)/(ur — uy); for
U1 7é 0, (ul,'vl) -+ (ul,'vl) =
(u3,v3) with uz = A% — uq — up,
v3 = AMu1 — u3) — vy,

A = (3u? + a)/2vs;

(w1, v1) + (w1, —v1) = o0;
(w1,v1) + 00 = (u1,v1);
o0 + (U2, v2) = (u2, v7
00 + 00 = 0.

)
)

Messy to implement and test.

Much nicer than \

Montgomery-curve
the "Montgomery
our recommended
Ditfie—Hellman ke

(e.g., for forward :

Montgomery ladd

only with u-coord;
of curve points P.

Montgomery ladde
nP and (n +1)P
n/2|P and (|n/
using one bit of n
with no branches

ards

Addition on Welerstrass curves
v2 = ud +au + b

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with u3z = A2 — uy — uo,
v3 = A(u1 — u3) — v,

A= (v —v1)/(ux — uy); for
U1 7& 0, (ul,vl) —+ (ul,'ul) —
(u3,v3) with uz = A% — ug — up,
v3 = AMu1 — u3) — vy,

A = (3u? + a)/2wvs;

(w1, v1) + (w1, —v1) = o0;
(u1,v1) + 00 = (u1, V1
00 + (U2, v2) = (u2, V7
00 + 00 = 00.

);
);

Messy to implement and test.

Much nicer than Welerstras:

Montgomery-curve ECDH u
the "Montgomery ladder” —
our recommended method f
Ditfie—Hellman key exchange
(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder comput:
nP and (n + 1)P recursivel
In/2]P and (|n/2] +1)P
using one bit of n

with no branches.

Addition on Welerstrass curves
v =ud +au+ b

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with u3 = A2 — u1 — uo,
v3 = AMu1 — u3) — vy,

A= (v —v1)/(ur — uy); for
U1 7é 0, (ul,'vl) -+ (ul,'vl) =
(u3,v3) with uz = A% — ug — up,
v3 = AMu1 — u3) — vy,

A = (3uf + a)/2v;

(w1, v1) + (w1, —v1) = o0;

(w1, v1) + 00 = (u1, V1
o0 + (U2, v2) = (u2, v7
00 + 00 = 0.

);
);

Messy to implement and test.

Much nicer than Welerstrass:

Montgomery-curve ECDH using
the “Montgomery ladder” —
our recommended method for
Ditfie—Hellman key exchange
(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder computes

nP and (n 4+ 1)P recursively from
n/2|P and (|n/2| +1)P

using one bit of n

with no branches.

- on Welerstrass curves
+ au + b:

w2, (u1,v1)+ (u2, v2) =
with uz = A2 — Ul — U,

Ul — u3) — V1,
 — v1)/(up — wuy); for
(u1,v1) + (u1,v1) =

with u3 = A2 — U1 — U,

U1 — u3) — U1,

* +a)/2v1;

+ (u1, —v1) = 00;
+ 00 = (u1,v1);
, v2) = (u2,v2);

> implement and test.

Much nicer than Weilerstrass:

Montgomery-curve ECDH using
the "Montgomery ladder” —
our recommended method for
Ditfie—Hellman key exchange
(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder computes

nP and (n 4+ 1)P recursively from
In/2|P and (|n/2| + 1)P

using one bit of n

with no branches.

Curve se

Many di
1999 AN
2000 IEl
2000 SE
2000 NI
2001 AN
2005 Br.
2005 NS
2011 AN

Our new
http://

strass curves

v1) + (w2, v2) =
=A% — ug — up,
- V1,

4o — uy); for

nt and test.

Much nicer than Weierstrass:

Montgomery-curve ECDH using
the “Montgomery ladder” —
our recommended method for
Ditfie—Hellman key exchange
(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder computes

nP and (n 4+ 1)P recursively from
n/2|P and (|n/2| +1)P

using one bit of n

with no branches.

Curve selection

Many different sta
1999 ANSI X9.62.
2000 IEEE P1363.
2000 SEC 2.

2000 NIST FIPS 1
2001 ANSI X9.63.
2005 Brainpool.
2005 NSA Suite E
2011 ANSSI FRPZ

Our new evaluatio
http://safecur:

VES

Much nicer than Welerstrass:

Montgomery-curve ECDH using
the "Montgomery ladder” —
our recommended method for
Ditfie—Hellman key exchange
(e.g., for forward secrecy).

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder computes

nP and (n 4+ 1)P recursively from
In/2|P and (|n/2| + 1)P

using one bit of n

with no branches.

Curve selection

Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:
http://safecurves.cr.yj

Much nicer than Weierstrass: Curve selection

Montgomery-curve ECDH using Many different standards:
the “Montgomery ladder’ — 1999 ANSI X9.62.

our recommended method for 2000 IEEE P1363.
Diffie—Hellman key exchange 2000 SEC 2.

(e.g., for forward secrecy). 2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.
2011 ANSSI FRP256V1.

Montgomery ladder works

only with u-coordinates
of curve points P.

Montgomery ladder computes

. Our new evaluation site:
nP and (n 4+ 1)P recursively from

n/2|P and (|n/2| +1)P
using one bit of n

http://safecurves.cr.yp.to

with no branches.

cer than Welerstrass:

mery-curve ECDH using
ntgomery ladder’ —
mmended method for
ellman key exchange

- forward secrecy).

mery ladder works

h u-coordinates
points P.

mery ladder computes

(n + 1)P recursively from
and (|n/2] +1)P

e bit of n

branches.

Curve selection

Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:
http://safecurves.cr.yp.to

Avoiding

The cun

The nun
must be
a large
Standare

This guce
no “‘tran

\elerstrass:

> ECDH using
ladder’” —
method for

/ exchange
ecrecy).

r works
nates

2r computes
recursively from

2| +1)P

Curve selection

Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:
http://safecurves.cr.yp.to

Avoiding known a

The curve must b

The number of cu
must be divisible |
a large prime num
Standard attacks 1
{ ~ 2200 is adequz
{ ~ 2290 is consenr

£ must not divide
p; p—1; p* — 1;

p3—1; ...;pzo—
This guarantees ti
no “transfers’ to

sing

or

\v

es
y from

Curve selection

Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:
http://safecurves.cr.yp.to

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by

a large prime number £.
Standard attacks take time
¢ ~ 2200 s adequate;

{ ~ 2%°0 is conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there ¢
no “transfers’ to clocks etc.

Curve selection

Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.

2000 SEC 2.

2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2011 ANSSI FRP256V1.

Our new evaluation site:
http://safecurves.cr.yp.to

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by

a large prime number £.
Standard attacks take time /2.
¢ ~ 2200 s adequate;

{ ~ 2%°0 is conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

lection

fferent standards:
IS| X9.62.

-E P1363.

C 2.

ST FIPS 186-2.
IS| X9.63.
ainpool.

A Suite B.

ISSI FRP256V1.

' evaluation site:

'safecurves.cr.yp.to

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
¢ ~ 2%°0 is conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

Avoiding

Simplify
avoid pc
even if r

Require
discrimir
SafeCur

Brainpo
SafeCunr

Brainpo
prohibit
p'lc —1f

ndards:

30-2.

56V 1.

n site:

es.Ccr.yp.to

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
{ ~ 2290 is conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

Avoliding unnecess

Simplify the secur
avold possible att:
even If no attacks

Require large “CIV
discriminant” . Se
SafeCurves.

Brainpool, Suite E
SafeCurves: requil

Brainpool and Saf
prohibit £ dividing
p* — 1 for each k

%

.to

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
{ ~ 22°0 js conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

Avoiding unnecessary struct

Simplify the security story:
avoid possible attack vector:
even If no attacks are knowr

Require large "CM field
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ — 1)

Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
¢ ~ 22°0 js conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even If no attacks are known.

Require large “"CM ftield
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

r known attacks

ve must be elliptic.

nber of curve points
divisible by

yYime number £.

1 attacks take time \/Z

Is adequate;
IS conservative.

1ot divide
- p° — 1;
o p20 — 1.
irantees that there are
sfers’ to clocks etc.

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even if no attacks are known.

Require large "CM field
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another
of securi
e there'
a smal
e public
has m
e the at
figurec
e the at
choice
to allo

ttacks

e elliptic.

rve points

Y
ber £.

‘ake time \/Z

te;
/ative.

1.

1at there are
-locks etc.

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even If no attacks are known.

Require large “"CM ftield
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another conceivak
of security problen
e there's another
a small fraction
e public ECC cryp
has missed this .
e the attacker has
figured out this
e the attacker has
choices of stand
to allow the att:

145

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even if no attacks are known.

Require large "CM field
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack aga
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipul:
choices of standard curves
to allow the attack.

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even If no attacks are known.

Require large “"CM ftield
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

 unnecessary structure

the security story:
ssible attack vectors
0 attacks are known.

large “"CM field

1ant”. See, e.g.,
/€S.

ol, Suite B, ANSSI,
Ves: require prime p.

ol and SafeCurves:
£ dividing
or each k£ < (£ —1)/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST cu

“verifiab

2 = g3

b is deri
SHA-1 |

ary structure

ty story:
\ck vectors
are known.

| field
, e.g.,

>, ANSSI,
‘e prime p.

eCurves:

< (£ —1)/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST curves claim
“verifiably randormr
v =1z3 -3z +b
b is derived from

SHA-1 hash of a

/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST curves claim to be
“verifiably random":

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seec

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST curves claim to be

“verifiably
2 = g3 —
b 1s derivec

random’ :
3z + b where
from

SHA-1 has

n of a public seed.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipulated
choices of standard curves
to allow the attack.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’ curve Instead.

concelvable source

ty problems:

> another attack against
| fraction of curves;
ECC cryptanalysis
ssed this attack:

tacker has

| out this attack;

tacker has manipulated
s of standard curves

w the attack.

NIST curves claim to be
“verifiably random”:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’’ curve Instead.

Rigidity
that can
by a cur

Brainpo
b Is som
of digits

le source

NS:

attack against
of curves:
tanalysis
attack:

attack:
manipulated

ard curves
1ck.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’ curve Instead.

Rigidity limits nui

that can be gener:
by a curve-generat

Brainpool, somew
b is some sort of |
of digits of m and

nst

1ited

NIST curves claim to be
“verifiably random"

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’’ curve Instead.

Rigidity limits number of ct

that can be generated
by a curve-generation proce:

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’ curve Instead.

Rigidity limits number of curves

that can be generated
by a curve-generation process.

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried
many seeds to find a curve with

a one-in-a-billion weakness.
Not “verifiable” at alll

ANSSI response: use our
“random’ curve Instead.

Rigidity limits number of curves

that can be generated
by a curve-generation process.

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

Not completely explained:

why this particular hash?
why 7 and not /27 etc.
But not much flexibility.

NIST curves claim to be
“verifiably random™:

y? = 23 — 3z + b where

b is derived from

SHA-1 hash of a public seed.

But is the seed actually random?

Attacker could have tried

many seeds to find a curve with
a one-in-a-billion weakness.

Not “verifiable” at alll

ANSSI response: use our
“random’ curve Instead.

Rigidity limits number of curves

that can be generated
by a curve-generation process.

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

Not completely explained:

why this particular hash?
why 7 and not /27 etc.
But not much flexibility.

Our recommendation, fully rigid:
b Is smallest positive integer
passing explained criteria.

rves claim to be
ly random™:

— 3z + b where
/ed from

1ash of a public seed.
1e seed actually random?

- could have tried

eds to find a curve with
-a-billion weakness.
riflable” at alll

esponse: use our
' curve Instead.

Rigidity
that can

imits number of curves

e generated

by a curve-generation process.

Brainpool, somewhat rigid:

b 1s some sort of hash

of digits of m and e.

Not completely explained:

why this particular hash?
why 7 and not /27 etc.

But not much flexibility.

Our recommendation, fully rigid:

b Is smallest positive integer

passing explained criteria.

ECC sec

Covered
hard to .
secret ke

But real
1s still b

ECC imj
e produc
for sor
e |leak se
for in
e |eak se
throug
etc. Att

' to be

where

yublic seed.
tually random?

/e tried

1 a curve with
veakness.

= alll

Ise our
1Istead.

Rigidity
that can

imits number of curves

e generated

by a curve-generation process.

Brainpool, somewhat rigid:

b 1s some sort of hash

of digits of m and e.

Not completely explained:

why this particular hash?
why 7 and not /27 etc.

But not much flexibility.

Our recommendation, fully rigid:

b Is smallest positive integer

passing explained criteria.

ECC security

Covered so far:
hard to compute |
secret key from pt

But real-world EC
s still being broke

ECC implementati
e produce Incorrec
for some rare in|
e |eak secret data
for input points
e |eak secret data
through timing;
etc. Attackers exf

Rigidity limits number of curves

that can be generated
by a curve-generation process.

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

Not completely explained:

why this particular hash?

why 7 and not /27 etc.
But not much flexibility.

Our recommendation, fully rigid:

b Is smallest positive integer
passing explained criteria.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Rigidity limits number of curves

that can be generated
by a curve-generation process.

Brainpool, somewhat rigid:
b is some sort of hash
of digits of m and e.

Not completely explained:

why this particular hash?

why 7 and not /27 etc.
But not much flexibility.

Our recommendation, fully rigid:

b Is smallest positive integer
passing explained criteria.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

imits number of curves

e generated
ve-generation process.

ol, somewhat rigid:
e sort of hash
of m and e.

\pletely explained:

- particular hash?
nd not /2?7 etc.
much flexibility.

ymmendation, fully rigid:

llest positive integer
explained criteria.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Better ¢
allow sir
to be se

This is t
motivati

mber of curves
1ted
ION process.

hat rigid:
ash
e.

plained:

- hash?
)7 etc.
ibility.

ion, fully rigid:

ve Integer
criteria.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce Incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Better choices of «
allow simple impl

to be secure mpl

This Is the priman
motivation for Saf

IF'VES

1gid:

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce Incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Better choices of curves
allow simple implementatiol

to be secure implementatio

This Is the primary
motivation for SafeCurves.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce Incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

ECC security

Covered so far:
hard to compute ECC user's
secret key from public key.

But real-world ECC
is still being broken!

ECC implementations
e produce Incorrect results
for some rare inputs;
e |eak secret data
for input points off curve;
e |eak secret data
through timing;
etc. Attackers exploit this.

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

Example of new requirement:
twist security.

If curve isn't twist-secure:
Twist attacks break

ladder implementations
that don't check whether
Input point IS on curve.
Security-simplicity conflict.

urity

so far:
compute ECC user's
2y from public key.

-world ECC
2ing broken!

slementations

e Incorrect results
ne rare Inputs;

cret data

ut points off curve;
cret data

h timing;

ackers exploit this.

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

Example of new requirement:
twist security.

If curve isn't twist-secure:
Twist attacks break

ladder implementations
that don't check whether
Input point Is on curve.
Security-simplicity conflict.

Cunrel

Anomalous

M-221

E-222

NIST P-224

Curvellsd

Curvez5519

BN(2,254)

brainpoolP2

ANSSI FRPZ!

NIST P-256

secp25bkl

E-382

M-383

Curve3B8318

brainpoolP3

NIST P-384

Curve3bl’

-CC user's
iblic key.

C

n!

ons
t results
Outs;

off curve:

o1t this.

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

Example of new requirement:
twist security.

If curve isn't twist-secure:
Twist attacks break
ladder implementations
that don't check whether
Input point Is on curve.
Security-simplicity conflict.

Curve Safe? | |
Anomalous False [Ty
M-221 True?’ Tf
E-222 TrueV’ Tf
NIST P-224 False Tf
Curvel174 True ¢ |
Curve25519 e
BN(2,254) False ||
brainpoolP256t1 |False |Tr
ANSSI FRP256v1 |False Trl
NIST P-256 False [Ty
secp25bkl False |[Tr
E-38.2 True ¥ Tf
M-383 True?’ Trl
Curve3s3187 |[true? |
brainpoolP384tl1l |False Tf
NIST P-384 False ||
Curve3617 o |

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

Example of new requirement:
twist security.

If curve isn't twist-secure:
Twist attacks break

ladder implementations
that don't check whether
Input point Is on curve.
Security-simplicity conflict.

Pa rametei

Curve Safe? | field Equatinr:
Anomalous False Truell"" Truell"r I
M-221 True ¥ [True ¥ [True v
E-222 True ¥ [True v |[True v
NIST P-224 False [(true¥ [True?
Curvellid True ¥ [True ¥ [True
Curve25519 True? Mrue? Mrue v
BN(2,254) False [(true¥ [True?
brainpoolP256t1 |False Tru.;glll"'Ir True'l"r
ANSSI FRP256v1 |False |[true v MusV
NIST P-256 False [true¥ [True?
secp25bkl False True'l" Tru.elmlIIIIIr
E-382 True [True? [True v
M-383 True ¥ [True v |[True v
Curve383187 |[True¥ (True¥ (True?
brainpoolP384tl1 |False Tru.;glll"'Ir True'l"r
NIST P-384 False |frue? (True?
Curvedel’ True ¥ [True? [True?

4

Better choices of curves
allow simple implementations

to be secure implementations.

This Is the primary
motivation for SafeCurves.

Example of new requirement:
twist security.

If curve isn't twist-secure:
Twist attacks break
ladder implementations
that don't check whether
Input point Is on curve.
Security-simplicity conflict.

Parameters:

Curve Safe? | field |[equation| base u'
Anomalous False Tru.glll""r True'l"r True'l"r Trueu"'l
M-221 True? |[True? ([True?” [True? True'l"i
E-222 True? |[True? ([True? [True? True'l"'l
NIST P-224 Faise |true? [rue? |[true |[True v
Curvelli4d True? [True? [True v True ¥ True'l'"l
Curvez5519 True? [True? [Tue? |[True? True'l'"l
BN(2,254) False [True? [True? True ¥ True"'l
brainpoolP256t1 |False Truell" Truelf True'l"r Truell'"
ANSSI FRP256v1 |[False |[rue ¢ [rue? |rue? e v
NIST P-256 Faise |true? [rue? |[true |[True v
secp25bkl False True'lliIIIr Trueli" Tn_u;-'lllIIIr True'l"l
E-3862 True? [True? ([True?” |[True? True'l'"l
M-383 True? [True? [True? [True? True'l"'l
Curve3s3187 True? [True? [True v True ¥ True'l"i
brainpoolP384tl1l |False Truell" Truelf True'l"r Truell'"
NIST P-384 False |[true? [True [[rue TmEJ
Curve3bl’ True ¥ [True? [True v True ¥ True'l'"l

- |

F

ol

hoices of curves

nple implementations

cure imp

he primary
on for SafeCurves.

- of new requirement:
curity.

Isn't twist-secure:
tacks break
nplementations

't check whether
Int IS on curve.
-simplicity conflict.

ementations.

Parameters: ECDLP secuﬂ

Curve Safe? | field [equation| base rho (transfer dlﬁ
Anomalous False Truell"" Tmell"" Truell"' Truell"" False Falﬁ
M-221 True? [True? [True?” ([True? [True? [True? [True
E-222 True? (True? [True? |[True? |[True¥ [True? Tmel
NIST P-224 False (TrueV (Truev |[True? |[True? |[True? Tmel
Curvellid True? [True? [True? [True? [True? |[Truev Truel
Curve25519 True? [True? [Truev |[True? [True ¥ |[True v Truel
BN(2,254) False |true? |[rue? |[true |[rue? |False [[Fals
brainpoolP256t1 |False True ¥ (True ¥ True ¥ [True? [True |[True
ANSSI FRP256vl |False [True [True? |[True? [True ¥ [True |[True
NIST P-256 False [True? [True? |[True? |[True? [True? Tmel
secp25bkl False Tru.;glll"'Ir True'l'r True'l'r TrL“;glll"'Ir True'l'r Falﬁ
E-382 True? [True? [True? [True? [True? |[True? |[True
M-383 True? [True? [Tue? |[True? |[True ¥ [Truev Truel
Curve383187 True? [True? [True? [True? [True? [Truev Tmel
brainpoolP384tl1 |False True ¥ (True ¥ True ¥ [True? [True |[True
NIST P-384 Faise |true? |[Truev [True? |[True ¥ [True |[True
Curve3bl/ True? [True? [True? |[True? [True? |[True? Tmel

ar |

ar

4

-

_Urves

smentations

ementations.

y
eCurves.

quirement:

-secure:
'k
tions
vhether
urve.

conflict.

Parameters: ECDLP security:

Curve Safe? | field |[equation| base rho |transfer| disc | rigid |lad
Anomalous False True'l"r Tme'l" True'l"r True'! False False Truell"' Fal:
M-221 True? [True [True? [True? [True ¥ [True? |[True? [True v Tmé
E-222 True? [True? [True? |[True? [True? [True? |[True? [True v Trué
NIST P-224 Faise (true? |[rue? |[true? |[rue? e |ruev |Faise [|Fat
Curvelli4g True? [True [True? |[True? [True [True? |[True [True ¥ [[True
CurveZ5519 True? True? [True? [True? [True [True |True? [True v Trué
BN(2,254) Fatse |true? |[rue? |[true? |tue ¢ |[Faise |[Faise |true ¢ ||Fat
brainpoolP256t1 |False Truell" Tmell" True'l"r True'l‘* Tmell"’ True'l"r True'l"r Falﬁ
ANSSI FRP256v1 ([False [frue? [True? [true? [True |[true¥ |[True ¥ |False Fal:
NIST P-256 Faise [tue? |[rue? |[tue? |[tue? [rue? |uev |Faise [|Fat
secp25bkl False True'lf True'l"' True'l'r Tru.;gllli""r TmEi"" False True'l'r Falﬁ
E-3862 True? [True? [True? [True? [True [True?’ |[True [True ¥ |[True
M-383 True? True? [Tue? [True? [True [True? |True? [Truev Trué
Curve3s3187 True? [True? [True v True ¥ True'w True? |[True? [Truev Tmé
brainpoolP384tl1l |False Truell" Tmell" True'l"r True'l‘* Tmell"’ True'l"r True'l"r Falﬁ
MIST P-384 False e fue? (e [true |[true? |[True? [False Fal:
Curve3el/’ True? [True? [rue? [True? [rue? [Tue?’ |True? [True v |[True

- |

F

ol

1S

nS.

Parameters: ECDLP security: ECC sect

Curve Safe? .I‘IEI:I equation | base rho (transfer| disc | rigid .Ia:l:ler twist :ni
Anomalous False Truell"" Tme'l"' True'lr Truell"" False False True'l"' False |False Fall
M-221 True? |[True? [True? ([True? [True? [True? [True¥ |[True ¥ [True ¥ [True ¥ [Tru
E-222 True? [True? [True? [True? [True? [True¥ [True? |[True ¥ [True v [True v Tru:l
NIST P-224 False Truell" True'l"r Tmell'" True'lf True'lr Tru.glll""r False |False ||[False Fall
Curvellid True? [True? [True? [True? [True? [True? [True? |[True ¥ [True ¢ [True ¥ [Tru
Curvel5519 True? [True? [True? [True? [True? [True? [True? |[True ¥ [True ¥ [True v Tru:l
BN(Z2.254) False Tme'll"r Tme'll"r True'l'r Tmell'" False False True'l'r False |False Fall
brainpoolP256t1 |False Truell"' Tme'l'r True'l"r Truell"' Tmell"’ Tmell" True'l'r False |[False Fall
ANSSI FRP256v1 [Faise [true |[ue? |[rue? e |[tue? |tue ¥ |[Faise [False |Faise |[Fai
NIST P-256 False Tme'l'f Tme'l"' Trueli" Tm.;glll"'Ir Tme'l"' TFUEI" False |False Tme'l"' Fall
secp25bkl False True'l"' True'l"r Tmell'" True'l"' True'l"r False TmEll" False True'l"r Fall
E-382 True? [True? [True? [True? [True? |[True? [True? |[True ¥ [True ¢ [True ¥ [Tru
M-383 True? [True? [True? [True? [True? [True? [True? |[True ¥ [True ¥ [True v Tru:l
Curve383187 True? [True? [True? [True? [True? [True? [True? |[True ¥ [True ¥ [True v Tru:l
brainpoolP384tl1 |False Truell"' Tme'l'r True'l"r Truell"' Tmell"’ Tmell" True'l'r False Tme'l'r Fall
NIST P-384 False |tue? [mue? [True? |[True? [True¥ |[True¥ |False (False |truev” Fal
Curve36l7 True? [True? [True? [True? [True? ([True? [True? |[True ¥ [True ¥ [True ¥ |[Tru

ar |

ar

4

-

Parameters: ECDLP security: ECC security:

Curve Safe? .ﬂE|l:| equation | base rho (transfer| disc | rigid -Ia:l:ler fwist complete| Ind
Anomalous False True'l"r Tme'l" True'lf True'w False False True'lf False |False |[False False
!

M-221 Tue? [True? [True? [True? [True? [Tue? [Tue? (True? [Tue? [True ¥ |[True True?
E-222 True? |[True? ([True? [True? Truel Tue? |[True? [True? [True? [True? |[True? [True?
NIST P-224 False True'll'" Tmeif True'i'r True'l'f True'lf Tme'l"" False |False |[False |False False
Curvelli4g Tue? [True? [rue? [True? [True? [Tue? [Tue? [True [True? [True ¥ [True ¥’ True?
CurveZ5519 Tue? |Tue? [Tue? |Tue? |Tue? [ue? |Tue? |[Tue? |Tue? [Tue? |Tue? |Tue?
BN(2,254) False Tmell'" Tmell'" True'l"' Trueﬁ False False True'l"' False |False |[False False
brainpoolP256t1 |False Truell" Tmell" True'l"r True'l‘* Tmell"’ Tmell'" True'l"r False |[False |False False
ANSSI FRP256v1 |False [true¥ True? [True? [True¥ [True¥ |True ¥ |False |False |False |[False False
NIST P-256 False Tm.glll"'Ir Tme'l"' Trueli" Tmelf Tme'l"' True'l'r False |False Tme'l"' False False
secp25bkl False True'l"' TmEi"" True'lf Truell" True'l'"r False Truell"’ False True'l"r False False
E-3862 Tue? [True? [True? [True? [True? [Tue? ([mue? (True? |[True? [True ¥ |[True ¥’ True?
M-383 Tue? e e |Tue? |Tue? [ue? [Tue? |Tue? |Tue? [Tue? |Tue? |Tue?
Curve383187 True? [True? [True? [True? Trun:aJr True? |[True [True ¥ [True? [True? |[Truev True?
brainpoolP384tl1l |False Truell" Tmell" True'l"r True'l‘* Tmell"’ Tmell'" True'l"r False Tme'l'r False False
NIST P-384 False [true [True? |[true? |[True¥ |[True¥’ [TrueV |False |False |fuev |False False
Curve3el/’ True? [True? [rue? [rue? [rue? [Tue? [Tue? [True [True? [Tue ¥ |[True True?

- |

F

ol

|

ar

F

