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Public-key signatures:

e.g., RSA, DSA, ECDSA.
Some uses: signed OS updates,
SSL certificates, e-passports.

Public-key encryption:
e.g., RSA, DH, ECDH.
Some uses: SSL key exchange,
locked iIPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.
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to break original DH and RSA.

Long history, including
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(sin(ay + ap), cos(ag + as)) = for the clock z% + y? = 1.

(sin a1 cos as + cos aj sin apo, sum of (z1,y1) and (z2,¥2) is
COS (x] COS axp — Sin aq Sin ). (Z1Yy2 + Y172, Yy1¥2 — T1T2).




' on the clock:

Y

} neutral = (0, 1)
Pr = (z1,91)

S
' P3 = (23, y3)

— 1, parametrized by
Y, Yy = cosa. Recall

+ as),cos(a1 + aj)) =
0S o + COS &y SIn a9,
0S ap — Sin a1 sin ay).

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P1 = (z1,91)

l\ > I
' P3 = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1.
sum of (z1,%1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1Z2).




ock:

itral = (0, 1)

metrized by
sa. Recall
(o1 +a2)) =
S a1 SIn Ao,

n o sinao).

Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

/ P> = (22, yY2)
l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:

sum of (z1,¥1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1Z2).

Examples of clock
"2:00" 4+ “5:00"
= (4/3/4,1/2) +
= (—1/2,—/3/4
"5:00" 4+ "9:00"
= (1/2, —\/ /4) -
= (V3/4,1/2) =

(5:5) = (s



Clock addition without sin, cos:

Y

} neutral = (0, 1)
P1 = (z1,91)

| — I
‘ P = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1.
sum of (z1,y1) and (z2,y2) is
(z1y2 + Y122, Y192 — T1T2).

Examples of clock addition:

“2:00" + “5:00”
= (1/3/4,1/2) + (1/2, -/
= (—1/2,—+/3/4) = “T:00’
“5:00" + "9:00"

(1/2,—/3/4) +(~1,0)
(v/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525 )




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula

for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is
(z1y2 + Y122, Y192 — T122).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525/




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

234 (24 T
5'5/) \ 2525/

; 3 4\ (117 —44
5'5/) \ 125" 125 /°




Clock addition without sin, cos:

mu"'/ \'""In
o .,

Y

} neutral = (0, 1)
P = (z1,91)

P2 _ ($2,y2)
>~ T
' P3 = (23, y3)

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(3 4) (24 7)
55 2525 )
3(3 4) (117 —44)

55 125" 125 )

- (336 —527
-\ 625" 625 /)




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock z2 4+ y2 = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

(s55) = (33
55 2525 )
3(§ ﬂ) _ (117 —44)
55 125" 125 /
4(§ ﬂ) _ (336 —527)
55 625 625 |

(z1,91) +(0,1) =




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

(s55) = (33
55 2525 )
3(§ ﬂ) _ (117 —44)
55 125" 125 /
4(§ ﬂ) _ (336 —527)
55 625 625 |

(z1,91) +(0,1) = (21, v1)-




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(33) - (5 =)

5' 5 2525 )

3(§ ﬂ) _ (117 —44)
5' 5 125" 125 )

4(§ ﬂ) _ (336 —527)
5' 5 625" 625 )

(1,91) +(0,1) = (21, 91).

(z1,91) + (—21,91) =




Clock addition without sin, cos:

Y

} neutral = (0, 1)
P = (z1,91)

l\ > T

Use Cartesian coordinates for
addition. Addition formula
for the clock 2 + y? = 1:
sum of (z1,¥1) and (z2,y2) is

(Z1Y2 + Y122, y1y2 — T1%2).

Examples of clock addition:
“2:00" + "5:00"

= (4/3/4,1/2) + (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(35) = (Ge%s)
3(55) = (25 1)
j(? é;) (0(12)33(655572-
z1,y1) + (0,1) = (21, v1).
(mi,yi) + (—z1,91) i (01, 1).




ldition without sin, cos:

Y

} neutral = (0, 1)
Pr = (z1,91)

P2 _ (3;2,y2)
el
' P3 = (23, y3)

resian coordinates for
. Addition formula
lock 2?2 + y? = 1:
z1,Y1) and (z2,y2) is
Y1Z2, Y1Y2 — T1Z2).

Examples of clock addition:

"2:00" + "5:00"

= (V/3/4.1/2) + (1/2.—/3/4)
= (—1/2,—+/3/4) = “7:00".
"5:00" + "9:00"

= (1/2,—+/3/4) + (-1,0)

(v/3/4,1/2) = “2:00".
3 4 24 7
(E’E) B (25’ 25)'
3(§ ﬂ) _ (117 —44)
55 125’ 125 )
4(§ ﬂ) _ (336 —527)
5" 5 625" 625 )

(z1,91) +(0,1) = (z1,91).

NO

Clocks ¢

Clock(F
{(z.9)
Here F~
=40, 1,
with arit
eg. 2!



hout sin, cos:

itral = (0, 1)

P = (21,91
,\ (z1,91)

o P2 = (22, 92)

l>$
>P3—333y3

rdinates for
 formula

y° = 1.

d (z2,y2) is
> — T1T2).

Examples of clock addition:

“2:00" + "5:00"

= (v/3/4,1/2) + (1/2,—/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ “9:00"

= (1/2,—+/3/4) + (~1,0)
= (1/3/4,1/2) = “2:00" .

2(55) = (5525)
i(5:5) = (s s)
(5:5) = (65 a8 )
(z1,91) +(0,1) = (21, y1):
(z1,91) + (—z1,91) = (0, 1).

Clocks over finite

Clock(F7) =

{(a:,y) cF7 xFy
Here F7 = {0, 1,2
=40,1,2,3, -3, -
with arithmetic m
eg. 2-5b =3 and



COS.

1, Y1)
(z2, y2)

(23, y3)

1

1S

Examples of clock addition:

"2:00" + "5:00"

= (V/3/4.1/2) + (1/2.—/3/4)
= (—1/2,—+/3/4) = “T:00".
"5:00" + "9:00"

= (1/2,—+/3/4) + (-1,0)

(v/3/4,1/2) = “2:00".
NEEAWENAY
Gk
5’5 125’ 125 )
(5:5) = (o5 025 )
(z1,91) +(0,1) = (21, 91).
(z1,91) + (—z1,91) = (0, 1).

Clocks over finite fields

Clock(F7) =

{(:I;,y) cF7; xFy: z° +y2
Here F7 ={0,1,2,3,4,5,6}
=4{0,1,2,3,-3,-2, -1}
with arithmetic modulo 7.
eg. 2-5=3and3/2=5i



Examples of clock addition:
“2:00" + "5:00"

(v/3/4,1/2) 4+ (1/2, —+/3/4)
=(—1/2,—+/3/4) = "“7:00".
“5:00" 4+ "9:00"
=(1/2,—+/3/4) + (—1,0)

= (4/3/4,1/2) = “2:00".

2(55) = ()
e lm)
4(5’ 5) B (625' 625 )
T1, 1) = (z1, .
v+ oerm) (1)

Clocks over finite fields

Clock(F7) =
{(:cy) € F; x F7: 2?2 + 4% = 1}.
Here F7 =40,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.



s of clock addition:
- “5:00"

4,1/2) +(1/2,—+/3/4)
), —+/3/4) = “7:00".

- “9:00”
—1/3/4) + (~1,0)
1/2) = “2:00".

24 7
(25’25)'
117 —44
(125’ 125)'
336 —527
(625, 5 )

0,1) = (z1,91).

)
)
)

+ (—$1,y1) = (0,1).

Clocks over finite fields

Clock(F7) =

{(a;y) € F7 x F7:$2+y2:1}.

Here F7 =40,1,2,3,4,5,6}
~{0,1,2,3, -3, -2, —1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F7.

Larger e

Example
on Cloc}

2(1000,



addition:

(1/2,=1/3/4)

) = “7:00"

-(—1,0)
"2:00".

=)
)
(21, 91).
1) =(0,1).

Clocks over finite fields

Clock(F7) =

{(:cy) € F7 x F7:332—|—y2:1}.

Here F7 =40,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in Fy.

Larger example: C

Examples of addit

on C|OCk(F1000003
2(1000, 2) = (400



Clocks over finite fields

Clock(F7) =

{(a;y) € F7 x F7:$2+y2:1}.

Here F7 =40,1,2,3,4,5,6}
~{0,1,2,3, -3, -2, —1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F7.

Larger example: Clock(Fqgo

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).



Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).

Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.




Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):
2(1000, 2) = (4000, 7).
4(1000, 2) = (56000, 97).

Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.




Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

o o
. 2(1000, 2) = (4000, 7).
. e 4(1000, 2) = (56000, 97).
. 8(1000, 2) = (863970, 18817).
o o
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.




Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

® o
. 2(1000, 2) = (4000, 7).
. . e 4(1000, 2) = (56000, 97).
. 8(1000, 2) = (863970, 18817).
. . 16(1000, 2) = (549438, 156853).
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.




Clocks over finite fields Larger example: Clock(F1000003)-

Examples of addition
on C|OCk(F1000003):

° . ’ 2(1000, 2) = (4000, 7).
o 4(1000, 2) = (56000, 97).
) 8(1000, 2) = (863970, 18817).
. ) 16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).
Clock(F7) =

{(:cy) € F; x F7: 2?2 + 9% = 1}.
Here F7 ={0,1,2,3,4,5,6}
={0,1,2,3,-3, -2, -1}

with arithmetic modulo 7.

e.g. 2-5=3and 3/2=5in F;.




Clocks over finite fields Larger example: Clock(F1000003)-
Examples of addition
o o on C|OCk(F1000003):
. 2(1000, 2) = (4000, 7).
. e 4(1000, 2) = (56000, 97).
e 8(1000, 2) = (863970, 18817).
. . 16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).
Clock(F7) = “Scalar multiplication”
{(a:y) cF; xF7: 12 +y2 — 1}_ on a clock:
Here F; = {0,1,2,3,4,5,6} Given integer n > 0
={0,1,2,3,-3,-2, -1} and clock point (z,y),
with arithmetic modulo 7. compute n(z, y).
e.g 2-5=3and3/2=5in Fy.




ver finite fields

EF7><F7::1:2+y2:1}.

=4{0,1,2,3,4,5,6}
2,3,—3,-2,—1}

hmetic modulo 7.

> =3 and 3/2 =5 in F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary
If n is e
by doub
Otherwi
by addin
This 1s \



flelds

odulo 7.
3/2 =51In F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,vy),
compute n(z, y).

“Binary method" :
If n is even, comp
by doubling (n/2)
Otherwise comput
by adding (z, y) t
This is very fast.



1 F7.

Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :

If n is even, compute n(z,y
by doubling (n/2)(z,vy).
Otherwise compute n(z, y)
by adding (z,y) to (n — 1)(
This is very fast.



Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :
If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.



Larger example: Clock(F1000003)-

Examples of addition

on C|OCk(F1000003):

2(1000, 2) = (4000, 7).

4(1000, 2) = (56000, 97).
8(1000, 2) = (863970, 18817).
16(1000, 2) = (549438, 156853).
17(1000, 2) = (951405, 877356).

“Scalar multiplication”
on a clock:

Given integer n > 0
and clock point (z,y),
compute n(z, y).

“Binary method" :

If n is even, compute n(z, y)
by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,y) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?



xample: Clock(F1000003)-

s of addition

<(F1000003):

) = (4000, 7).

) = (56000, 97).

) — (863970, 18817).
2) — (549438, 156853).
) — (951405, 877356).

multiplication”
ck:

teger n > 0

k point (z,y),

“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,y).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?
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lock(F1000003)-
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), 7).

)0, 97).

)70, 18817).
0438, 156853).
1405, 877356).
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“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptograph

Standardize a larg
and some (z,y) €

Alice chooses big
Computes her puk

Bob chooses big s
Computes his pub

Alice computes a(
Bob computes b(a
They use this shar
to encrypt with Al

Warning #1:
Many choices of p
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“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z,y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p
and some (z,y) € Clock(F,

Alice chooses big secret a.
Computes her public key af:

Bob chooses big secret 6.
Computes his public key b(a

Alice computes a(b(z,y)).
Bob computes b(a(z,vy)).
They use this shared secret
to encrypt with AES-GCM e

Warning #1:
Many choices of p are bad!



“Binary method" :

If n is even, compute n(z, y)

by doubling (n/2)(z,vy).
Otherwise compute n(z, y)

by adding (z,v) to (n — 1)(z, y).
This is very fast.

But figuring out n

given (z,y) and n(z, y)
is much more difficult.

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.
Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!
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Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, vy).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!
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Clock cryptography

Standardize a large prime p
and some (z,y) € Clock(Fy).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z,vy).

Alice computes a(b(z,y)).
Bob computes b(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!
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Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!
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Clock cryptography

Standardize a large prime p
and some (z,vy) € Clock(Fyp).

Alice chooses big secret a.

Computes her public key a(z, y).

Bob chooses big secret 6.
Computes his public key b(z, y).

Alice computes a(b(z,y)).
Bob computes 6(a(z,vy)).
They use this shared secret

to encrypt with AES-GCM etc.

Warning #1:
Many choices of p are bad!

Alice’s Bob's
secret key a secret key 0

' '

Alice's Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z,y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 2130
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Alice’s Bob's
secret key a secret key b

' '

Alice’s Bob's
public key public key
a(z,y) >< b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
ab(z,y) ba(z,y)

Warning #2:

Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p ~s 2130

Timing attacks

Attacker sees more than
a(z,y) and b(z,y).

Attacker sees time for
Alice to compute a(b(z,y))
Often attacker can see
time for each operation
performed by Alice,

not just total time.
This reveals secret a.

Fix: constant-time code,
performing same operations
no matter what scalar is.



Alice’s Bob's Timing attacks

secret key a secret key 0
i ¢ Attacker sees more than
alz,y) and b6(z, v).
Alice's Bob's (z.9) (.9)
public key public key Attacker sees time for

a(z.9) >< oz, y) Alice to compute a(b(z,y)).
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Warning #2: not just total time.

Clocks aren't elliptic! This reveals secret a.

Can use index calculus Fix: constant-time code,
to attack clock cryptography. performing same operations
To match RSA-3072 security no matter what scalar is.
need p ~s 2130
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More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

“The Edwards addition law' :
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Choose an odd prime .
P P What if the denominators are 07"

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' :
(z1,91) + (22, 92) = (23, ¥3)

where
_ T1Y2 T Y122
T3 = ,
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More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' : This proof relies on

choosing non-square d.
(z1,91) + (22, 92) = (23, ¥3) . !

where
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T3 = ,
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More elliptic curves "Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Choose an odd prime ».

Choose a non-square d € Fy.
1(z,y) € Fp X Fp

z° + y° = 1+ dzy°}
Is a ‘complete Edwards curve”.

Answer: Can prove that
the denominators are never O.
Addition law is complete.

“The Edwards addition law' : This proof relies on

choosing non-square d.
(z1,91) + (22, 92) = (23, ¥3) . !

where If we instead choose square d:
£y — T1Y2 + Y1T2 | curve is still elliptic, and
1 + dziz2Y1Y2 addition seems to work,
 Y1Y2 — T1T but there are failure cases,
43 = 1 —dz1zoY1Y> often exploitable by attackers.

Safe code is more complicated.
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"Hey, there are divisions
In the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
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"Hey, there are divisions
In the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never O.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example
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"Hey, there are divisions
In the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example

Choose p = 2%°° — 19.

Choose d = 121665/121666
this i1s non-square in F.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.



"Hey, there are divisions
in the Edwards addition law!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

A safe example

Choose p = 2%°° — 19

Choose @ = 121665/121666;
this i1s non-square in Fy.

z° + y° = 1+ dz’y?
Is a safe curve for ECC.



"Hey, there are divisions A safe example
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What if the denominators are 07"

Choose p = 2%°° — 19
Choose @ = 121665/121666;
Answer: Can prove that this is non-square in Fy,.

’X]dedfie.nona.tors are Inever 0. 22 yg 14 d$2y2
'tion law is complete. Is a safe curve for ECC.

This proof relies on —z2 492 = 1 — dg2y?

choosing non-square d. .
Is another safe curve

If we instead choose square d: using the same p and d.
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.
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Answer: Can prove that
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Addition law is complete.

This proof relies on
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Actually, the second curve

is the first curve in disguise:

replace z in first curve

by v/—1-z, using -1 € Fy,.
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A safe example Even more elliptic curves

Choose p = 2%°° — 19 Edwards curves:
Choose d = 121665/121666; z° + y° = 1+ dz’y°.
this i1s non-square in Fy.
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22 + y? = 1 + dzy? az? + y2 =1+ dz?y?.
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Is another safe curve
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Edwards curves:
z° + y° = 1 + dz’y°.
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e.g., substitute z = u /v,

y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

Addition on Welerstrass cur
v2 = ud +aqu 4+ b



Even more elliptic curves

Edwards curves:
z° + y° = 1 + dzy°.

Twisted Edwards curves:
az? + y% = 1+ dz?y?.
Welerstrass curves:

v =u3 +au -+ b

Montgomery curves:
bv? = u3 + au® + u.

Many relationships:
e.g., substitute z = u /v,

y=(u—1)/(u+1) in Edwards

to obtain Montgomery.

Addition on Weierstrass curves
v2 = ud + au + b



Even more elliptic curves Addition on Welerstrass curves
v? = ud + au + b:

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with uz = A2 — u1 — uo,
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e.g., substitute £ = u/v, 00 + (u2,v2) = (u2, v2);
y=(u—1)/(u+1) in Edwards X 1 00 = Q.

to obtain Montgomery.




Even more elliptic curves Addition on Welerstrass curves
v? = ud + au + b:

for uy # w2, (u1,v1) + (u2,v2) =
(u3,v3) with uz = A2 — u1 — uo,

Edwards curves:
z° + y° = 1+ dz’y°.

Twisted Edwards curves: v3 = AMu1 — u3) — v1,

a$2 + y2 =1+ d$2y2- A= (?}2 — ’Ul)/(’UQ — ul); for

Weierstrass curves: v1 70, (u1,v1) + (u1,v1) =

v2 = ud +au—+b (u3,v3) with ugz)\z—ul—ug,
v3 = AMu1 — u3) — vy,

Montgomery curves: ) — (3u% +a)/2u1;

2 _ .3 2
bve = u” + au® + u. (ulr'vl) N (ul,—vl):oo;

Many relationships: (u1,v1) + 00 = (u1,v1);
e.g., substitute £ = u/v, 00 + (u2,v2) = (u2, v2);
y=(u—1)/(u+1) in Edwards X 1 00 = Q.

to obtain Montgomery. Messy to implement and test.
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Addition on Welerstrass curves
v2 = ud +au + b

for u1 # uo, (u1,v1)+ (U2, v2) =
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v =ud +au+ b

for u1 # uo, (u1,v1)+ (U2, v2) =
(u3,v3) with u3 = A2 — u1 — uo,
v3 = AMu1 — u3) — vy,
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Much nicer than Welerstrass:
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Montgomery ladder works
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Many different standards:
1999 ANSI X9.62.

2000 IEEE P1363.
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Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
{ ~ 22°0 js conservative.

£ must not divide

p; p—1; p* — 1;
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This guarantees that there are
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Simplify the security story:
avoid possible attack vector:
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Require large "CM field
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SafeCurves.
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SafeCurves: require prime p

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ — 1)



Avoiding known attacks

The curve must be elliptic.

The number of curve points
must be divisible by
a large prime number £.

Standard attacks take time /2.

{ ~ 2200 is adequate;
¢ ~ 22°0 js conservative.

£ must not divide

p; p—1; p* — 1;

p3—1; ...;p20—1.

This guarantees that there are
no “transfers’ to clocks etc.

Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
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Brainpool, Suite B, ANSSI,
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prohibit £ dividing
p* — 1 for each k < (£ —1)/100.
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Avoiding unnecessary structure

Simplify the security story:
avold possible attack vectors
even if no attacks are known.

Require large "CM field
discriminant”. See, e.g.,
SafeCurves.

Brainpool, Suite B, ANSSI,
SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another conceivable source
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e there's another attack aga
a small fraction of curves:
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has missed this attack:

e the attacker has
figured out this attack;

e the attacker has manipul:
choices of standard curves
to allow the attack.
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Simplify the security story:
avold possible attack vectors
even If no attacks are known.
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discriminant”. See, e.g.,
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SafeCurves: require prime p.

Brainpool and SafeCurves:
prohibit £ dividing
p* — 1 for each k < (£ —1)/100.

Rigidity

Another conceivable source

of security problems:

e there's another attack against
a small fraction of curves:

e public ECC cryptanalysis
has missed this attack:
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figured out this attack;

e the attacker has manipulated
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to allow the attack.
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twist security.

If curve isn't twist-secure:
Twist attacks break

ladder implementations
that don't check whether
Input point Is on curve.
Security-simplicity conflict.

Pa rametei
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Anomalous False Truell"" Truell"r I
M-221 True ¥ [True ¥ [True v
E-222 True ¥ [True v |[True v
NIST P-224 False [(true¥ [True?
Curvellid True ¥ [True ¥ [True
Curve25519 True? Mrue? Mrue v
BN(2,254) False [(true¥ [True?
brainpoolP256t1 |False Tru.;glll"'Ir True'l"r
ANSSI FRP256v1 |False |[true v MusV
NIST P-256 False [true¥ [True?
secp25bkl False True'l" Tru.elmlIIIIIr
E-382 True [True? [True v
M-383 True ¥ [True v |[True v
Curve383187  |[True¥ (True¥ (True?
brainpoolP384tl1 |False Tru.;glll"'Ir True'l"r
NIST P-384 False |frue? (True?
Curvedel’ True ¥ [True? [True?
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brainpoolP256t1 |False Truell" Truelf True'l"r Truell'"
ANSSI FRP256v1 |[False |[rue ¢ [rue?  |rue? e v
NIST P-256 Faise |true? [rue? |[true |[True v
secp25bkl False True'lliIIIr Trueli" Tn_u;-'lllIIIr True'l"l
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M-383 True? [True? [True?  [True? True'l"'l
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Curvellid True? [True? [True?  [True? [True? |[Truev Truel
Curve25519 True? [True? [Truev  |[True? [True ¥ |[True v Truel
BN(2,254) False |true? |[rue? |[true |[rue? |False  [[Fals
brainpoolP256t1 |False True ¥ (True ¥ True ¥ [True? [True  |[True
ANSSI FRP256vl |False [True [True?  |[True? [True ¥ [True  |[True
NIST P-256 False [True? [True?  |[True? |[True? [True? Tmel
secp25bkl False Tru.;glll"'Ir True'l'r True'l'r TrL“;glll"'Ir True'l'r Falﬁ
E-382 True? [True? [True?  [True? [True? |[True? |[True
M-383 True? [True? [Tue?  |[True? |[True ¥ [Truev Truel
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E-3862 True? [True? [True?  [True? [True [True?’  |[True [True ¥ |[True
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E-222 True? [True? [True?  [True? [True? [True¥ [True? |[True ¥ [True v [True v Tru:l
NIST P-224 False Truell" True'l"r Tmell'" True'lf True'lr Tru.glll""r False |False ||[False Fall
Curvellid True? [True? [True?  [True? [True? [True? [True? |[True ¥ [True ¢ [True ¥ [Tru
Curvel5519 True? [True? [True?  [True? [True? [True? [True? |[True ¥ [True ¥ [True v Tru:l
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ANSSI FRP256v1 [Faise [true |[ue?  |[rue? e |[tue?  |tue ¥ |[Faise [False |Faise |[Fai
NIST P-256 False Tme'l'f Tme'l"' Trueli" Tm.;glll"'Ir Tme'l"' TFUEI" False |False Tme'l"' Fall
secp25bkl False True'l"' True'l"r Tmell'" True'l"' True'l"r False TmEll" False True'l"r Fall
E-382 True? [True? [True?  [True? [True? |[True? [True? |[True ¥ [True ¢ [True ¥ [Tru
M-383 True? [True? [True?  [True? [True? [True? [True? |[True ¥ [True ¥ [True v Tru:l
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E-222 True? |[True? ([True?  [True? Truel Tue? |[True? [True? [True? [True? |[True?  [True?
NIST P-224 False True'll'" Tmeif True'i'r True'l'f True'lf Tme'l"" False |False |[False |False False
Curvelli4g Tue? [True? [rue?  [True? [True? [Tue?  [Tue? [True [True? [True ¥ [True ¥’ True?
CurveZ5519 Tue? |Tue? [Tue? |Tue? |Tue? [ue? |Tue? |[Tue? |Tue? [Tue? |Tue? |Tue?
BN(2,254) False Tmell'" Tmell'" True'l"' Trueﬁ False False True'l"' False |False |[False False
brainpoolP256t1 |False Truell" Tmell" True'l"r True'l‘* Tmell"’ Tmell'" True'l"r False |[False |False False
ANSSI FRP256v1 |False [true¥ True?  [True? [True¥ [True¥ |True ¥ |False |False |False |[False False
NIST P-256 False Tm.glll"'Ir Tme'l"' Trueli" Tmelf Tme'l"' True'l'r False |False Tme'l"' False False
secp25bkl False True'l"' TmEi"" True'lf Truell" True'l'"r False Truell"’ False True'l"r False False
E-3862 Tue? [True? [True?  [True? [True? [Tue? ([mue? (True? |[True? [True ¥ |[True ¥’ True?
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Curve383187 True? [True? [True?  [True? Trun:aJr True? |[True [True ¥ [True? [True? |[Truev True?
brainpoolP384tl1l |False Truell" Tmell" True'l"r True'l‘* Tmell"’ Tmell'" True'l"r False Tme'l'r False False
NIST P-384 False [true [True? |[true? |[True¥ |[True¥’ [TrueV |False |False |fuev |False False
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