Non-uniform
cracks in the concrete:
the power of free precomputation

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Concrete security: an example

Full 53-page paper,

including progress towards
formalizing collision resistance:
eprint.iacr.org/2012/318

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

Non-uniform
cracks in the concrete:
the power of free precomputation

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Concrete security: an example

Full 53-page paper,

including progress towards
formalizing collision resistance:
eprint.iacr.org/2012/318

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability;
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

form
' the concrete:
er of free precomputation

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Inge
‘he Universiteit Eindhoven

Concrete security: an example

Dage paper,
y progress towards
ng collision resistance:

iacr.org/2012/318

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability:
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

P-256 d
total TL
Should ~

rete:
precomputation

is at Chicago &
siteit Eindhoven

siteit Eindhoven

Concrete security: an example

[,
towards

n resistance:
r/2012/318

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability;
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

P-256 discrete-log
total TLS-ECDHE
Should TLS users

ation

g0 &
hoven

hoven

Concrete security: an example

ce:
18

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability:
analyze tradeoffs between

“time’ and success probability.
This talk focuses on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 br
Should TLS users worry?

Concrete security: an example

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability;
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!

Should TLS users worry?

Concrete security: an example

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability;
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Concrete security: an example

What is the best NIST P-256
discrete-log attack algorithm?

ECDL input: P-256 points P, Q,
where P Is a standard generator.

ECDL output: logp @.

Standard definition of “best”:

minimize “time’ .

More generally, allow attacks with
<100% success probability;
analyze tradeoffs between

“time” and success probability.
This talk focuses on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!
Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

> security: an example

the best NIST P-256
log attack algorithm?

put: P-256 points P, @,

]

Is a standard generator.

utput: logp @.

1 definition of “best’ :

> “time” .

nerally, allow attacks with
success probability;
tradeoffs between

ind success probability.

< focuses on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!
Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128701/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

Concrets

Another
Each TL
with suc
takes “t

~an example

NIST P-256
- algorithm?

6 points P, Q,
lard generator.

pQ.

N of “best’:

ow attacks with
obability;
yetween

s probability.

on high prob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!
Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

Concrete reductiot

Another conjectur
Each TLS-ECDHE
with success prob:
takes “time’ >21

s with

ob.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!

Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128701/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 at
with success probability >p
takes “time” 22128;01/2.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!
Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128701/2.

P-256 discrete-log attack =
total TLS-ECDHE-P-256 break!
Should TLS users worry?

No. Many researchers have
tried and failed to find good
P-256 discrete-log attacks.

Standard conjecture:

For each p € [0, 1],

each P-256 ECDL algorithm
with success probability >p
takes “time” 22128;01/2.

Similar conjectures for AES-128,

RSA-3072, etc.: see, e.g.,
2005 Bellare—Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128701/2.

Why should users have any
confidence in this conjecture?

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?
Far less attention than for ECDL.

screte-log attack =
S-ECDHE-P-256 break!
['LS users worry?

ny researchers have
] failed to find good
screte-log attacks.

1 conjecture;

p € [0, 1],

256 ECDL algorithm
cess probability >p
me” >212851/2

onjectures for AES-128,

/2, etc.: see, e.g.,
llare—=Rogaway.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128;01/2.

Why should users have any
confidence in this conjecture?

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?
Far less attention than for ECDL.

Provable

Prove: |
a TLS-E
then the
a P-256

with sim

dNd SUC(

attack =

-P-256 break!
worry?

hers have
find good
attacks.

re.

algorithm
\bility >
8,1/2

s for AES-128,

ce, e.g.,
way.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128701/2.

Why should users have any
confidence in this conjecture?

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?
Far less attention than for ECDL.

Provable security -

Prove: if there is
a TLS-ECDHE-P-
then there Is

a P-256 discrete-Ic

with similar “time

and success proba

oq k!

123,

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128;01/2.

Why should users have any
confidence in this conjecture?

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?
Far less attention than for ECDL.

Provable security to the resc

Prove: if there is

a TLS-ECDHE-P-256 attacl
then there is

a P-256 discrete-log attack
with similar “time"

and success probability.

Concrete reductions Provable security to the rescuel

Another conjecture: Prove: if there Is

Each TLS-ECDHE-P-256 attack a TLS-ECDHE-P-256 attack
with success probability >p then there is

takes “time” 22128701/2. a P-256 discrete-log attack

with similar “time”
Why should users have any

. . . . and success probability.
confidence in this conjecture? P Y

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?
Far less attention than for ECDL.

Concrete reductions

Another conjecture:

Each TLS-ECDHE-P-256 attack
with success probability >p
takes “time” 22128701/2.

Why should users have any
confidence in this conjecture?

How many researchers

have really tried to break
ECDHE-P-2567 ECDSA-P-2567
ECIES-P-2567 ECMQV-P-2567
Other P-256-based protocols?

Far less attention than for ECDL.

Provable security to the rescuel

Prove: if there is

a TLS-ECDHE-P-256 attack
then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.
But changing DL to DDH

+ adding more assumptions

allows a proof: Crypto 2012
Jager—Kohlar—Schage—Schwenk
“On the security of TLS-DHE

In the standard model".

> reductions

conjecture:
S-ECDHE-P-256 attack

cess probability >p
me”’ 22128301/2-

uld users have any
ce in this conjecture?

ny researchers

lly tried to break
-P-2567 ECDSA-P-2567
-2567 ECMQV-P-2567
-256-based protocols?

attention than for ECDL.

Provable security to the rescuel

Prove: if there is

a TLS
then t

-ECDHE-P-256 attack
here Is

a P-256 discrete-log attack

with s

imilar “time”

and success probability.

Oops:

This turns out to be hard.

But changing DL to DDH

4+ adoa
allows

Ing more assumptions
a proof: Crypto 2012

Jager—Kohlar—-Schage—Schwenk

“On t
In the

he security of TLS-DHE
standard model" .

Similar |
“provab|

Protoco!
that har

(e.g., P-
security

After ex
maybe g
of P, an

1S

e:
-P-256 attack

\bility >p
8.,,1/2

have any
conjecture?

hers

> break
CDSA-P-2567
MQV-P-2567
1 protocols?

than for ECDL.

Provable security to the rescuel

Prove: if there is

a TLS-ECDHE-P-256 attack
then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH
+ adding more assumptions

allows a proof: Crypto 2012
Jager—Kohlar—Schage—Schwenk
“On the security of TLS-DHE

In the standard model".

Similar pattern thi
“provable security’

Protocol designers
that hardness of a
(e.g., P-256 DDH
security of various

After extensive cry
maybe gain confid
of P, and hence ir

tack

2567
567

CDL.

Provable security to the rescuel

Prove: if there is

a TLS-ECDHE-P-256 attack
then there Is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH
-+ adding more assumptions

allows a proof: Crypto 2012
Jager—Kohlar—-Schage—Schwenk
“On the security of TLS-DHE

In the standard model".

Similar pattern throughout t
“provable security” literatur:

Protocol designers (try to) f
that hardness of a problem .
(e.g., P-256 DDH) implies

security of various protocols

After extensive cryptanalysis
maybe gain confidence in hz
of P, and hence in security

Provable security to the rescuel

Prove: if there is

a TLS-ECDHE-P-256 attack
then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH
+ adding more assumptions

allows a proof: Crypto 2012
Jager—Kohlar—Schage—Schwenk
“On the security of TLS-DHE

In the standard model".

Similar pattern throughout the
“provable security” literature.

Protocol designers (try to) prove
that hardness of a problem P
(e.g., P-256 DDH) implies
security of various protocols .

After extensive cryptanalysis of P,
maybe gain confidence in hardness
of P, and hence in security of Q.

Provable security to the rescuel

Prove: if there is

a TLS-ECDHE-P-256 attack
then there is

a P-256 discrete-log attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing DL to DDH
+ adding more assumptions

allows a proof: Crypto 2012
Jager—Kohlar—Schage—Schwenk
“On the security of TLS-DHE

In the standard model".

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a pro
(e.g., P-256 DDH) im

D

D

em P
les

security of various protocols .

After extensive cryptanalysis of P,

maybe gain confidence in hardness

of P, and hence in security of Q.

Why not directly cryptanalyze (7

Cryptanalysis is hard work: have

to focus on a few problems P.

Proofs scale to many protocols .

> security to the rescuel

f there Is
CDHE-P-256 attack
re Is

discrete-log attack
ilar “time”

“ess probability.

‘his turns out to be hard.

nging DL to DDH

g more assumptions
proof: Crypto 2012
ohlar—-Schage—Schwenk
security of TLS-DHE

andard model”.

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a pro
(e.g., P-256 DDH) im

D

D

em P
les

security of various protocols .

After extensive cryptanalysis of P,

maybe gain confidence in hardness

of P, and hence in security of Q.

Why not directly cryptanalyze Q7

Cryptanalysis is hard work: have

to focus on a few problems P.

Proofs scale to many protocols .

Interlude

How mu
following
def pic
1f n(
if

]

]

if

ret

if ni
if

ret

1if n.

retul

o the rescuel

256 attack

g attack

bility.

out to be hard.

to DDH
sumptions
ypto 2012
age—Schwenk
f TLS-DHE
odel” .

Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a pro
(e.g., P-256 DDH) im

D

D

em P
les

security of various protocols .

After extensive cryptanalysis of P,

maybe gain confidence in hardness

of P, and hence in security of Q.

Why not directly cryptanalyze (7

Cryptanalysis is hard work: have

to focus on a few problems P.

Proofs scale to many protocols .

Interlude regarding

How much “time"
following algorithn
def pidigit(n0O
if nO == 0:
if nl ==
1f n2 ==
return
if n2 == 0
return
if nl ==
if n2 == 0
return
if n2 == 0: 1

return

hard.

Similar pattern throughout the
“provable security” literature.

Protocol designers (try to) prove
that hardness of a problem P
(e.g., P-256 DDH) implies
security of various protocols (.

After extensive cryptanalysis of P,
maybe gain confidence in hardness
of P, and hence in security of Q.

Why not directly cryptanalyze @7
Cryptanalysis is hard work: have
to focus on a few problems P.
Proofs scale to many protocols .

Interlude regarding "time”

How much “time’ does the

following algorithm take?

def pidigit(nO
if nO == 0O:
if nl ==

if n2 ==

return

if n2 ==
return
1if nl ==

1f n2 ==
return
if n2 ==

return

,nl,n2):

: retu

: return

: return

. return

Similar pattern throughout the
“provable security” literature.

Protocol designers (try to) prove
that hardness of a problem P
(e.g., P-256 DDH) implies
security of various protocols .

After extensive cryptanalysis of P,
maybe gain confidence in hardness
of P, and hence in security of Q.

Why not directly cryptanalyze @7
Cryptanalysis is hard work: have
to focus on a few problems P.
Proofs scale to many protocols .

Interlude regarding "time”

How much “time’

" does the

following algorithm take?

def pidigit(nO
if nO == 0O:
if nl ==

if n2 ==

return

if n2 ==
return
if nl ==

1f n2 ==
return
if n2 ==

return

,nl,n2):

. return

: return

: return

: return

= D =W

oy N O O

battern throughout the
e security’ literature.

| designers (try to) prove
dness of a problem P
256 DDH) implies

of various protocols Q.

tensive cryptanalysis of P,
ain confidence in hardness
d hence in security of Q.

- directly cryptanalyze Q7
alysis Is hard work: have
on a few problems P.
cale to many protocols (.

Interlude regarding “time”

How much “time’ does the

following algorithm take?

def pidigit(nO,nl1,n2):

if nO == 0:
if nl ==
if n2 ==
return
if n2 ==
return
if nl ==
1f n2 ==
return
if n2 ==

return

. return

: return

: return

: return

= D P, W

oy N O O

Student:
learn to

Skipped
This alg

-oughout the
" literature.

(try to) prove

problem P
) implies
protocols .

/ptanalysis of P,
ence In hardness
1 security of Q.

ryptanalyze @7
ird work: have
problems P.
any protocols Q.

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
if nl ==
if n2 == 0: return 5
return 9
if n2 == 0: return 2
return 6

Students in algorit
learn to count exe
Skipped branches

This algorithm use

he

)IOVE

, of P,
rdness

of Q.
ze Q7

have

ols (.

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

1if nl1 ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return

return

= D P, W

oy N O O

Students in algorithm course
learn to count executed “ste
Skipped branches take 0 “st

This algorithm uses 4 “step:s

Interlude regarding “time” Students in algorithm courses
How much “time” does the learn to count executed “steps’.
following algorithm take? Skipped branches take 0 “steps”.
def pidigit(n0,n1,n2): This algorithm uses 4 “steps’.
if nO == O0:
if nl ==
if n2 == 0: return 3
return 1
if n2 == 0: return 4
return 1
1f nl ==
if n2 == 0: return 5
return 9
if n2 == 0: return 2
return 6

Interlude regarding “time” Students in algorithm courses

How much “time” does the learn to count executed “steps’ .

following algorithm take? Skipped branches take 0 “steps”.

def pidigit(n0,n1,n2): This algorithm uses 4 “steps’.
1t n0 == 0: Generalization: There exists an
1t nl == algorithm that, given n < 2%,
1t n2 == 0: return 3 prints the nth digit of
return L using £ + 1 “steps”.
1f n2 == 0: return 4
return 1
1f nl ==
if n2 == 0: return 5
return 9
1if n2 == 0: return 2
return 6

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return
return

= D =W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2‘“,
prints the nth digit of 7

using £ + 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).

Interlude regarding "time”

How much “time” does the
following algorithm take?
def pidigit(nO,nl1,n2):

1f nO == 0:

if nl ==
if n2 == 0: return
return
if n2 == 0: return
return
if nl ==
if n2 == 0: return
return
if n2 == 0: return
return

= D =W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2‘“,
prints the nth digit of 7

using £ + 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

> regarding “time”

ch “time’

" does the

r algorithm take?

ligit (nO
) == 0:
nl ==
f n2 ==
“eturn
n2 ==
urn

| ==

n2 ==

,urn

) ==

1

,nl,n2):

: return

: return

: return

. return

= D P, W

oy N O O

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

1994 Be
“We say
Ais a (1
A runs i

makes a

r “time” Students in algorithm courses 1994 Bellare—Kilia

does the learn to count executed “steps’. “We say that
| take? Skipped branches take 0 “steps”. A is a (t, g)-adver:
. _ A :
nl,n2): This algorithm uses 4 “steps’ . runs in at most

makes at most q «
Generalization: There exists an

algorithm that, given n < 2%,

0: return 3 prints the nth digit of 7
L using £ + 1 “steps”.
. return 4
1 Variant: There exists a 258-
“step” P-256 discrete-log attack
. return & (with 100% success probability).
9 If “time” means “steps’ then the
~eturn o standard conjectures are wrong.
6

Students in algorithm courses 1994 Bellare—Kilian—Rogawa
learn to count executed “steps’. “We say that

Skipped branches take 0 “steps” . A is a (t, q)-adversary if

A runs in at most t steps ar

This algorithm uses 4 “steps’. _
makes at most q queries to

Generalization: There exists an
algorithm that, given n < 2/‘“,

n 3 prints the nth digit of 7
L using £+ 1 “steps’.
4
1 Variant: There exists a 258-

"step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

oy N O O

Students in algorithm courses 1994 Bellare—Kilian—Rogaway:
learn to count executed “steps’. “We say that

Skipped branches take 0 “steps’ . A is a (t, q)-adversary if

A runs in at most t steps and

This algorithm uses 4 “steps”. _)
makes at most q queries to O.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

Students in algorithm courses
learn to count executed “steps’.
Skipped branches take 0 “steps”.

This algorithm uses 4 “steps’.

Generalization: There exists an
algorithm that, given n < 2%,
prints the nth digit of 7

using £+ 1 “steps”.

Variant: There exists a 258-
“step” P-256 discrete-log attack
(with 100% success probability).
If “time” means “steps’ then the
standard conjectures are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

s In algorithm courses
count executed “steps’.
branches take 0 “steps’”.

orithm uses 4 “steps’ .

zation: There exists an
n that, given n < 2/‘“,
e nth digit of 7

+ 1 “steps’.

There exists a 258-
-256 discrete-log attack
0% success probability).
" means ‘steps’ then the
| conjectures are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Be
“We fix
Access |
model o
running
executio
of A's d
convent
caused |
tables ..

hm courses
cuted “steps’.
take 0 “steps’.

s 4 “steps’ .

1ere exIsts an
en n < 2‘“,
t of

11
) .

sts a 258-
ete-log attack
s probability).
steps’ then the
‘€S are wrong.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilia
“We fix some part
Access Machine (I
model of computa
running time [mea
execution time plt
of A’s description
convention elimin:
caused [by] arbitre
tables . .."

S .

eps .

an

tack

ity).
n the

ng.

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilian—Rogawa
“We fix some particular Rar
Access Machine (RAM) as
model of computation. ... ,
running time [means| A'’s ac
execution time plus the leng
of A’s description ... This
convention eliminates patho
caused [by] arbitrarily large
tables ..."

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

1994 Bellare—Kilian—Rogaway:
“We say that

A is a (t, q)-adversary if

A runs in at most t steps and
makes at most q queries to O."

Oops: table-lookup attack
has very small ¢.

Paper conjectured “useful” DES
security bounds. Any reasonable
interpretation of conjecture was
false, given paper’s definition.

Theorems In paper were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

Main point of our paper:
There are more pathologies!

lllustrative example: ECDL.

llare—Kilian—Rogaway:

- that

., q)-adversary if

n at most t steps and
t most q queries to O."

able-lookup attack
small ¢.

onjectured “useful” DES
bounds. Any reasonable
ation of conjecture was
/en paper's definition.

1S IN paper were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A’s
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by| arbitrarily large lookup
tables ..."

Main point of our paper:
There are more pathologies!

lllustrative example: ECDL.

The rho

Simplifie
Make a
Ro, R1,.

where cl
the next

Birthday
Random
elements
after abi
P-256: |

The wal
Cycle-fir
(e.g., FI

n—Rogaway:

sary If
t steps and
jueries to O."

p attack

“useful” DES

\ny reasonable
onjecture was
s definition.

T Were vacuous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

Main point of our paper:
There are more pathologies!

lllustrative example: ECDL.

The rho method

Simplified, non-pa

Make a pseudo-ral
Ro, R1, Ry, ... In 1
where current poir
the next point: R.

Birthday paradox:
Randomly choosin
elements picks one

after about /7f/

P-256: £ ~s 2290 g,

The walk now ent
Cycle-finding algol
(e.g., Floyd) quick

d
O."

DES

1able
Was

uous.

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by| arbitrarily large lookup
tables ..."

Main point of our paper:
There are more pathologies!

lllustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random wall
Ro, Rl, RQ, ... In the group
where current point determi
the next point: R;11 = f(R

Birthday paradox:
Randomly choosing from £
elements picks one element

after about \/m{/2 draws.
P-256: £ a2 2%°° so m21%8 d

The walk now enters a cycle
Cycle-finding algorithm
(e.g., Floyd) quickly detects

2000 Bellare—Kilian—Rogaway:
“We fix some particular Random
Access Machine (RAM) as a
model of computation. ... A's
running time [means| A's actual
execution time plus the length

of A’s description ... This
convention eliminates pathologies
caused [by] arbitrarily large lookup
tables ..."

Main point of our paper:
There are more pathologies!

lllustrative example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk
Ro, Rl, RQ, ... In the group (P),
where current point determines

the next point: R, 1

Birthday paradox:

= f(Ry).

Randomly choosing from ¢

elements picks one e

ement twice

after about /m{/2 c

Fraws.

P-256: £ ~ 2290 5o ~s2128 draws.

The walk now enters

a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

llare—Kilian—Rogaway:
some particular Random
Viachine (RAM) as a

f computation. ... A’s
time [means| A’s actual

n time plus the length
escription ... This

on eliminates pathologies
by arbitrarily large lookup

int of our paper:
e more pathologies!

ve example: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

Ro, Rl, RQ, ... In the

group (P),

where current point determines

the next point: R, 1

Birthday paradox:

= f(Ry).

Randomly choosing from £

elements picks one e

after about /m{/2 c

ement twice

raws.

P-256: £ ~ 2290 5o 2128 {raws.

The walk now enters

a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: C

Assume
we know
so that .

Then Rz'
y,,;P + T
SO (y; —

n—Rogaway:
icular Random
RAM) as a
tion. ... A’s
ns| A’s actual
s the length

. This
1ites pathologies
rily large lookup

paper:
thologies!

e: ECDL.

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk
Ro, Rl, RQ, ... In the group (P),
where current point determines
the next point: R;.1 = f(R;).

Birthday paradox:
Randomly choosing from ¢
elements picks one element twice

after about \/m{/2 draws.
P-256: £~ 2°°° so ~s21%°% draws.

The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute lo

Assume that for e
we know z;,y; € .
so that R, = y; P

Then R; = Rj me
YiP +z;,00 = y; P
so (y; —y;)P = (
If z; # z; the DL
logp @ = (yj — ¥s

idom

A’s
tual
th

logies
lookup

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

Ro, Rl, RQ, ... In the

group (P),

where current point determines

the next point: R, 1

Birthday paradox:

= f(Ry).

Randomly choosing from £

elements picks one e

after about /m{/2 c

ement twice

raws.

P-256: £ ~ 2290 5o 2128 {raws.

The walk now enters

a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.

Goal: Compute logp Q.

Assume that for each 2
we know z;,vy; € Z/4Z
so that R; = y; P + =;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (yi — yj)P = (zj — 2;)Q
If ©; # x; the DLP is solvec
logp Q@ = (y; — vi)/(zi — .

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk
Ro, Rl, RQ, ... In the group (P),
where current point determines
the next point: R;11 = f(R;).

Birthday paradox:
Randomly choosing from ¢

elements picks one element twice
after about \/m{/2 draws.
P-256: £ ~ 22°° so ~521%% draws.

The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute logp Q.

Assume that for each 2
we know x;,vy; € Z/4Z
so that R; = y; P + z;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (y; —y;)P = (zj — 24)Q.
If z; # x; the DLP is solved:
logp Q@ = (y; — vi)/(zi — 7).

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk
Ro, R1, Ry, ...
where current point determines
the next point: R;.1 = f(R;).

in the group (P),

Birthday paradox:
Randomly choosing from ¢
elements picks one element twice

after about \/m{/2 draws.
P-256: £~ 2°°° so ~s21%° draws.

The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.

Goal: Compute logp Q.

Assume that for each 2
we know x;,vy; € Z/4Z
so that R; = y; P + z;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (y; —y;)P = (zj — 24)Q.
If z; # x; the DLP is solved:
logp Q@ = (y; — vi)/(zi — 7).

e.g. “base-(P, Q) r-adding walk":
precompute S1, 5o, ..., Sy

as random combinations aP + bQ:
define f(R) = R + SH(R)

where H hashes to {1,2,..., rt.

‘method

d, non-parallel rho:

pseudo-random walk
R>, ... in the group (P),
irrent point determines
point: R;1 1 = f(RZ)

' paradox:
ly choosing from £
5 picks one element twice

out /L /2 draws.
/x5 22°0 50 ~s21%8 draws.

k now enters a cycle.
iding algorithm
oyd) quickly detects this.

Goal: Compute logp Q.

Assume that for each 2
we know z;,vy; € Z/4Z
so that R; = y; P + =;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (yi —y;)P = (zj — 24)Q.
If ©; # z; the DLP is solved:
logp Q = (y; — v4)/(zi — zj):

e.g. "base-(P, Q) r-adding walk":
precompute S1, 57, ..., S,

as random combinations aP + bQ):
define f(R) = R + SH(R)

where H hashes to {1,2,..., r}.

Parallel

1994 vai

Declare
the set ¢
e.g., all
bits of n

Perform
different
but sam

Termina
once It |
Report
Server r
all distin

rallel rho:

ndom walk
the group (P),
1t determines

]

1 = f(Ry).

g from ¢

> element twice

2 draws.

> ~2128 draws.

ers a cycle.
‘1thm
ly detects this.

Goal: Compute logp Q.

Assume that for each 2
we know x;,vy; € Z/4Z
so that R; = y; P + z;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (y; —y;)P = (zj — 24)Q.
If z; # x; the DLP is solved:
logp Q@ = (y; — vi)/(zi — 7).

e.g. “base-(P, Q) r-adding walk":
precompute S1, 5o, ..., Sy

as random combinations aP + bQ:
define f(R) = R + SH(R)

where H hashes to {1,2,..., rt.

Parallel rho

1994 van Qorscho

Declare some subs
the set of distingu
e.g.,all Re (P) v
bits of representat

Perform, in paralle
different starting
but same update f

Terminate each w.
once It hits a disti
Report point to ce
Server receives, st
all distinguished p

twice

Fraws.

this.

Goal: Compute logp Q.

Assume that for each 2
we know z;,vy; € Z/4Z
so that R; = y; P + =;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (yi —y;)P = (zj — 24)Q.
If ©; # z; the DLP is solved:
logp Q = (y; — v4)/(zi — zj):

e.g. "base-(P,Q) r-adding walk":
precompute S1, 57, ..., S,

as random combinations aP + bQ:
define f(R) = R + SH(R)

where H hashes to {1,2,..., r}.

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P)
the set of distinguished poir
e.g., all R € (P) where last
bits of representation of R &

Perform, in parallel, walks fc
different starting points Q@+
but same update function f

Terminate each walk

once It hits a distinguished |
Report point to central serv
Server receives, stores, and
all distinguished points.

Goal: Compute logp Q.

Assume that for each 2
we know z;,vy; € Z/4Z
so that R; = y; P + z;Q.

Then R; = R; means that
YiP + 2,0 = y; P+ z,;Q

so (y; —y;)P = (zj — 24)Q.
If z; # x; the DLP is solved:
logp Q@ = (y; — vi)/(zi — 7).

e.g. "base-(P, Q) r-adding walk":
precompute S1, 5o, ..., Sy

as random combinations aP + bQ:
define f(R) = R + SH(R)

where H hashes to {1,2,..., rt.

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P) to be
the set of distinguished points:

e.g., all R € (P) where last 20
bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.

ompute logp .

that for each 1
1z, Y; € Z/LZ
R, =y; P+ z;Q.

= R;j means that

i@ =y; P +z;Q
y;)P = (zj — z;)Q.
; the DLP is solved:
= (Y5 — ¥i)/(zi — z5).

se-(P, Q) r-adding walk”:
ute S1,5-,...,5,

m combinations aP + bQ):
(R) = R+ Sy(r)

hashes to {1,2, ..., r}.

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P) to be
the set of distinguished points:

e.g., all R € (P) where last 20
bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.

State of

Can bre:
£ in ﬁ
Use neg
factor v/

Solving
takes ~:

This s t
cryptanc

° Is solved:
)/(z; — x;).

r-adding walk™:
e Sy

ations aP + bQ:

|_5H(R)

Parallel rho

1994 van Oorschot—Wiener:

Declare some subset of (P) to be
the set of distinguished points:

e.g., all R € (P) where last 20
bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.

State of the art

Can break DLP in
£in \/ml/2 group

Use negation map
factor v/2 for ellip

Solving DLP on N
takes ~2128 grour

This is the best al
cryptanalysts have

valk' :

'+ bQ);

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P) to be
the set of distinguished points:

e.g., all R € (P) where last 20
bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.

State of the art

Can break DLP in group of

£ in \/m{/2 group operatior

Use negation map to gain

factor /2 for elliptic curves.

Solving DLP on NIST P-25¢
takes ~2128 group operatior

This 1s the best algorithm tt
cryptanalysts have publishec

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P) to be
the set of distinguished points:

e.g., all R € (P) where last 20
bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.

State of the art

Can break DLP in group of order

£ in \/m{/2 group operations.

Use negation map to gain

factor v/2 for elliptic curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This is the best algorithm that
cryptanalysts have published.

Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (P) to be

the set of distinguished points:
e.g., all R € (P) where last 20

bits of representation of R are 0.

Perform, in parallel, walks for
different starting points Q+yP
but same update function f.

Terminate each walk

once It hits a distinguished point.

Report point to central server.
Server receives, stores, and sorts
all distinguished points.

State of the art

Can break DLP in group of order

£ in \/m{/2 group operations.

Use negation map to gain

factor v/2 for elliptic curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This is the best algorithm that
cryptanalysts have published.

But is it the best algorithm
that exists?

rho

1 Qorschot—Wiener:

some subset of (P) to be

ot distinguished points:
R € (P) where last 20
epresentation of R are 0.

~in parallel, walks for
starting points Q+vy P
e update function f.

te each walk

1its a distinguished point.

yoint to central server.
acelves, stores, and sorts
guished points.

State of the art

Can break DLP in group of order

£ in \/m{/2 group operations.

Use negation map to gain

factor /2 for elliptic curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This Is the best algorithm that
cryptanalysts have published.

But Is it the best algorithm
that exists?

This pag

Assumin
overwhe
compute

There e
algorithr
and has

“Time”

Inescapa
standar
P-256 E
ECDHE

t—\Wiener:

et of (P) to be

1shed points;
vhere last 20
ion of R are 0.

| walks for

oints Q+y P
unction f.

a1k

nguished point.

ntral server.
ores, and sorts
oints.

State of the art

Can break DLP in group of order

£ in \/m{/2 group operations.

Use negation ma
factor v/2 for elli

0 to gain

htiC curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This is the best algorithm that
cryptanalysts have published.

But is it the best algorithm

that exists”?

This paper's ECD|

Assuming plausibl
overwhelmingly ve
computer experim

There exists a P-2
algorithm that tak
and has success pt

“Time" includes a

Inescapable conclL
standard conject
P-256 ECDL hard
ECDHE security, ¢

to be

ts:
20
re Q.

r

yoint.
ar
sorts

State of the art

Can break DLP in group of order

£ in \/m{/2 group operations.

Use negation map to gain

factor /2 for elliptic curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This Is the best algorithm that
cryptanalysts have published.

But iIs it the best algorithm
that exists?

This paper's ECDL algorithr

Assuming plausible heuristic
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time"
and has success probability :

“Time" Includes algorithm |

Inescapable conclusion: The
standard conjectures (regz
P-256 ECDL hardness, P-25
ECDHE security, etc.) are f:

State of the art

Can break DLP in group of order

£ in \/ml/2 group operations.

Use negation map to gain

factor v/2 for elliptic curves.

Solving DLP on NIST P-256
takes ~21%8 group operations.

This is the best algorithm that
cryptanalysts have published.

But is it the best algorithm
that exists?

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time” =282
and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

the art

ak DLP in group of order
3/—2 group operations.

ation map to gain

[~ ..
2 for elliptic curves.

DLP on NIST P-256

123 group operations.

he best algorithm that
lysts have published.

the best algorithm
Sts

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” as28°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should |
be worri
P-256 E

Nol!

We have
that prir
but B t:

We con|
nobody

group of order
operations.

to gain
tic curves.

IST P-256
 operations.

gorithm that
» published.

algorithm

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” =s28°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECIL
be worried about 1
P-256 ECDL algor

No!

We have a progral
that prints out A,
but B takes “time

We conjecture tha
nobody will ever

order

1S.

1at

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time” as28°
and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

Nol!

We have a program B
that prints out A,
but B takes “time” ~2170

We conjecture that
nobody will ever print out A

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL
algorithm that takes “time” =s28°
and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

No!

We have a program B
that prints out A,
but B takes “time” ~2170.

We conjecture that
nobody will ever print out A.

This paper's ECDL algorithms

Assuming plausible heuristics,
overwhelmingly verified by
computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” =s28°

and has success probability ~1.

“Time" Includes algorithm length.

Inescapable conclusion: The
standard conjectures (regarding
P-256 ECDL hardness, P-256
ECDHE security, etc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

No!

We have a program B
that prints out A,
but B takes “time” ~2170.

We conjecture that
nobody will ever print out A.

But A exists, and the standard
conjecture doesn't see the 2170

ver's ECDL algorithms

g plausible heuristics,
Imingly verified by
r experiment:

asts a P-256 ECDL
n that takes “time’ ~s28°
success probability /1.

includes algorithm length.

ble conclusion: The
d conjectures (regarding
CDL hardness, P-256

security, etc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

Nol!

We have a program B
that prints out A,
but B takes “time” ~2170

We conjecture that
nobody will ever print out A.

But A exists, and the standard

conjecture doesn't see the 2170,

Cryptan.

Commot
1 2170 7
(indeper
3 28 “p

For cryp
2170 mi

For the
definitio
The mai

much be

| algorithms

> heuristics,
ent:

50 ECDL
es “time” ~206
-obability ~1.

lgorithm length.

sion: The
ures (regarding
ness, P-256
tc.) are false.

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

No!

We have a program B
that prints out A,
but B takes “time” ~2170.

We conjecture that
nobody will ever print out A.

But A exists, and the standard

conjecture doesn't see the 2170

Cryptanalysts do

Common parlance
a 2170 “precompu
(independent of @

a 25 “main comp

For cryptanalysts:

2170, much worse

For the standard s
definitions and col
The main comput
much better than

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

Nol!

We have a program B
that prints out A,
but B takes “time” ~2170

We conjecture that
nobody will ever print out A.

But A exists, and the standard

conjecture doesn't see the 2170,

Cryptanalysts do see the 21

Common parlance: We have
a 2170 “precomputation”
(independent of @) followed

a 292 “main computation’ .

For cryptanalysts: This cost

2170, much worse than 2128

For the standard security
definitions and conjectures:
The main computation cost:
much better than 2128

Should P-256 ECDHE users
be worried about this
P-256 ECDL algorithm A?

No!

We have a program B
that prints out A,
but B takes “time” ~2170.

We conjecture that
nobody will ever print out A.

But A exists, and the standard

conjecture doesn't see the 2170

Cryptanalysts do see the 2179

Common parlance: We have

a 2170 “precomputation”

(independent of) followed by
a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security

definitions and conjectures:

The main computation costs 235

much better than 2128,

2-256 ECDHE users
ed about this
CDL algorithm A?

> a program B
1ts out A,
kes “time” ~2170

ecture that
will ever print out A.

xists, and the standard

re doesn’t see the 2170

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of @) followed by

a 292 “main computation’ .

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost ¢
redefine
on P on
c; chose

JHE users
his
1thm A?

n B
& %2170_

1
rint out A.

the standard

see the 2170

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of) followed by

a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard v
redefine steps 5; t
on Ponly; ie., S;
c; chosen uniform|

ard

170

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of @) followed by

a 292 “main computation’ .

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard walk functi
redefine steps S; to depend
on Ponly;ie., S;=c;P wi
c; chosen uniformly at rand

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of) followed by

a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard walk function:
redefine steps S; to depend

on P only; i.e., S; = ¢; P with
c; chosen uniformly at random.

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of) followed by

a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard walk function:
redefine steps S; to depend

on P only; i.e., S; = ¢; P with
c; chosen uniformly at random.

Precomputation:

Start some walks at yP
for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of) followed by

a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard walk function:
redefine steps S; to depend

on P only; i.e., S; = ¢; P with
c; chosen uniformly at random.

Precomputation:

Start some walks at yP
for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Main computation:
Starting from @, walk to

distinguished point Q + yP.
Check for @ + yP in table.

Cryptanalysts do see the 2179

Common parlance: We have
a 2170 “precomputation”
(independent of) followed by

a 2%° “main computation’.

For cryptanalysts: This costs

2170, much worse than 2125

For the standard security
definitions and conjectures:
The main computation costs
much better than 2128

285

Almost standard walk function:
redefine steps S; to depend

on P only; i.e., S; = ¢; P with
c; chosen uniformly at random.

Precomputation:

Start some walks at yP
for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Main computation:
Starting from @, walk to

distinguished point Q + yP.
Check for @ + yP in table.
(If this fails, rerandomize @.)

alysts do see the 2170,

1 parlance: We have
precomputation”

ident of) followed by
1ain computation’ .

tanalysts: This costs

ich worse than 2128,

standard security

ns and conjectures:
n computation costs
tter than 2128

285

Almost standard walk function:

redefine steps S; to depend

on P only; i.e., S; = ¢; P with

c; chosen

uniformly at random.

Precomputation:

Start some walks at yP

for random choices of .

Build tab
distinguis
along wit

e of distinct
ned points D

N logp D.

Main computation:

Starting from @, walk to

distinguished point Q + yP.

(If this fa

Check for @ 4+ yP in table.

ils, rerandomize Q.)

What yc

P-256 Is
There e
AES-12¢
at cost |
e.g., tim
(Assumi

= Very
between
and actlt

Also: Al
for fixing

eprint.

ee the 2170

- We have

Fation”
) followed by
utation’ .

This costs
than 2128

ecurity

1jectures:

ation costs 285,

2128

Almost standard walk function:

redefine steps S; to depend
on P only; i.e., S; = ¢; P with

c; chosen uniformly at random.

Precomputation:

Start some walks at yP
for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Main computation:
Starting from @, walk to

distinguished point Q + yP.
Check for @ + yP in table.
(If this fails, rerandomize @.)

What you find in 1

P-256 isn't the on
There exist algorit

AES-128, RSA-30
at cost below 2128
e.g., time 265 to |

(Assuming standal

= Very large sepa
between standard
and actual securit

Also: Analysis of
for fixing the defir

eprint.iacr. org

Almost standard walk function:

redefine steps S; to depend

on P only; i.e., S; = ¢; P with

c; chosen uniformly at random.

Precomputation:

Start some walks at yP

for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Main computation:

Starting from @, walk to

distinguished point + yP.

C

(I

neck for @ + yP in table.

f this fails, rerandomize @.)

What you find in the full pa

P-256 isn't the only problen
There exist algorithms breal
AES-128, RSA-3072, DSA-3
at cost below 2128;

e.g., time 285 to break AES.
(Assuming standard heuristi

= Very large separation
between standard definition
and actual security.

Also: Analysis of various ide
for fixing the definitions.

eprint.iacr.org/2012/3

Almost standard walk function:

redefine steps S; to depend
on P only; i.e., S; = ¢; P with

c; chosen uniformly at random.

Precomputation:

Start some walks at yP
for random choices of .
Build table of distinct
distinguished points D

along with logp D.

Main computation:
Starting from @, walk to

distinguished point Q + yP.
Check for + yP in table.
(If this fails, rerandomize @.)

What you find in the full paper:

P-256 isn't the only problem!
There exist algorithms breaking
AES-128, RSA-3072, DSA-3072
at cost below 2128;

e.g., time 285 to break AES.

(Assuming standard heuristics.)

= Very large separation
between standard definition
and actual security.

Also: Analysis of various ideas
for fixing the definitions.

eprint.iacr.org/2012/318

