
Failures of

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://xkcd.com/538/

2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.



Failures of

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://xkcd.com/538/

2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”



Failures of

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://xkcd.com/538/

2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?



Failures of

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://xkcd.com/538/

2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?



Failures of

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

http://xkcd.com/538/

2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”



2011 Grigg–Gutmann (and again

2012 Gutmann): In the past 15

years “no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn’t use homebrew crypto

or toy keys) in the Internet or

commercial worlds”.

2002 Shamir: “Cryptography is

usually bypassed. I am not aware

of any major world-class security

system employing cryptography in

which the hackers penetrated the

system by actually going through

the cryptanalysis.”

2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”



2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”



2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”



2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”



2013.03 Bernstein:

“Do these people mean that

it’s actually infeasible

to break real-world crypto?

Or do they mean that

breaks are feasible

but still not worthwhile

for the attackers?

Or are they simply wrong:

real-world crypto is breakable;

is in fact being broken;

is one of many ongoing

disaster areas in security?”

Let’s look at some examples.

Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”



Windows code signatures

Flame broke into computers,

spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted

malware known as ‘Flame’ and

immediately began examining the

issue. : : : We have discovered

through our analysis that some

components of the malware have

been signed by certificates that

allow software to appear as if it

was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”



2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”



2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech



2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.



2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.



2012.06.07 Stevens: “A chosen-

prefix collision attack against

MD5 has been used for Flame.

More interestingly : : : not our

published chosen-prefix collision

attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv

appeared in logs in 2007; Flame

“may have been active for as long

as five to eight years”.

Was MD5 “homebrew crypto”?

No. Standardized, widely used.

Worthwhile to attack? Yes.

Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.



Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.



Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :



Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :



Compare to 2011 Grigg–Gutmann:

“Cryptosystem failure is orders of

magnitude below any other risk.”

http://en.wikipedia.org/wiki

/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.



WEP

WEP introduced in 1997

in 802.11 wireless standard.

2001 Borisov–Goldberg–Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh–Shankar–Wan:

this also breaks user auth.

2001 Fluhrer–Mantin–Shamir:

WEP builds RC4 key (k; n)

from secret k, “nonce” n;

RC4 outputs leak bytes of k.

Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.



Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.



Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.



Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.



Implementations, optimizations

of k-recovery attack: 2001

Stubblefield–Ioannidis–Rubin,

2004 KoreK, 2004 Devine, 2005

d’Otreppe, 2006 Klein, 2007

Tews–Weinmann–Pyshkin, 2010

Sepehrdad–Vaudenay–Vuagnoux,

2013 S–Sušil–V–V, : : :

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft

of 45 million credit-card numbers

from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.



Keeloq

Wikipedia: “KeeLoq is or was

used in many remote keyless

entry systems by such companies

as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,

Volkswagen Group, Clifford,

Shurlok, Jaguar, etc.”

2007 Indesteege–Keller–

Biham–Dunkelman–Preneel

“How to steal cars”:

recover 64-bit KeeLoq key

using 216 known plaintexts,

only 244:5 encryptions.

2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.



2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.



2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.



2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.



2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.



2008 Eisenbarth–Kasper–Moradi–

Paar–Salmasizadeh–Shalmani

recovered system’s master key,

allowing practically instantaneous

cloning of KeeLoq keys.

1. Setup phase of this attack

watches power consumption

of Keeloq device. Is this

“bypassing” the cryptography?

2. If all the “X is weak” press

comes from academics, is it safe

to conclude that real attackers

aren’t breaking X? How often do

real attackers issue press releases?

VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.



VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.



VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).



VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).



VMWare View

VMWare View is a remote

desktop protocol supported by

many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128”

to “SALSA20-256” for the “best

user experience”. Apparently AES

slows down network graphics.

Closer look at documentation:

“AES-128” and “SALSA20-256”

are actually “AES-128-GCM”

and “Salsa20-256-Round12”.

AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).



AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).



AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).



AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.



AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.



AES-128-GCM includes AES

and message authentication.

No indication that VMWare’s

“Salsa20-256-Round12” includes

any message authentication.

Can attacker forge packets?

One can easily combine Salsa20

with message authentication,

but does VMWare do this?

Salsa20 has speed and security

advantages over AES, but

both Salsa20 and AES are

unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.



SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.



SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.



SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.



SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (p0; p1; p2):

send random v,

c0 = AESk(p0 � v),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

AES-CBC encryption in SSL:

retrieve last block c�1

from previous ciphertext; send

c0 = AESk(p0 � c�1),

c1 = AESk(p1 � c0),

c2 = AESk(p2 � c1).

SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.



SSL lets attacker choose p0

as function of c�1! Very bad.

2002 Möller:

To check a guess g for (e.g.) p�3,

choose p0 = c�1 � g � c�4,

compare c0 to c�3.

2006 Bard:

malicious code in browser should

be able to carry out this attack,

especially if high-entropy data

is split across blocks.

2011 Duong–Rizzo “BEAST”:

fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:



Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,

but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt”:

SSL appends an authenticator,

pads reversibly to full block,

encrypts with CBC.

2001 Krawczyk:

This is provably secure.

2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option:



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”



2001 Vaudenay:

This is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle

by observing SSL server timing.

Response in OpenSSL etc.:

always compute MAC

even if padding fails.

2013.02 AlFardan–Paterson

“Lucky 13”: watch timing

more closely; attack still works.

“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.



“Cryptographic algorithm agility”:

(1) the pretense that bad crypto

is okay if there’s a backup plan +

(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch

that in theory allows

switching to AES-GCM.

But most SSL software

doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.

2013.01: widely recommended,

used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.



Not as scary as WEP: SSL uses a

hash to avoid related RC4 keys.

2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

: : : [protocol] designers [using

RC4] should not be concerned.”

Problem: many nasty biases in

RC4 output bytes z1; z2; : : :.

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt,

“On the security of RC4 in TLS”:

Force target cookie into many

RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.



The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.



The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.



The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z1 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z1 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



The single-byte biases:

2001 Mantin–Shamir:

z2 ! 0.

2002 Mironov:

z1 6! 0, z1 6! 1, z1 ! 2, etc.

2011 Maitra–Paul–Sen Gupta:

z3 ! 0, z4 ! 0, : : : , z255 ! 0,

contrary to Mantin–Shamir claim.

2011 Sen Gupta–Maitra–Paul–

Sarkar: z16 ! 240.

(This is specific to 128-bit keys.)

But wait: there’s more!

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z1 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z1 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z2 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z3 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z4 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z5 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z6 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z7 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z8 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z9 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z10 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z11 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z12 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z13 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z14 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z15 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z16 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z17 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z18 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z19 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z20 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z21 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z22 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z23 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z24 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z25 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z26 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z27 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z28 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z29 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z30 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z31 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z32 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z33 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z34 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z35 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z36 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z37 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z38 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z39 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z40 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z41 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z42 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z43 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z44 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z45 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z46 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z47 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z48 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z49 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z50 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z51 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z52 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z53 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z54 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z55 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z56 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z57 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z58 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z59 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z60 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z61 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z62 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z63 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z64 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z65 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z66 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z67 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z68 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z69 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z70 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z71 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z72 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z73 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z74 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z75 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z76 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z77 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z78 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z79 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z80 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z81 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z82 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z83 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z84 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z85 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z86 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z87 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z88 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z89 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z90 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z91 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z92 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z93 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z94 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z95 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z96 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z97 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z98 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z99 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z100 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z101 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z102 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z103 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z104 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z105 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z106 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z107 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z108 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z109 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z110 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z111 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z112 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z113 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z114 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z115 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z116 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z117 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z118 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z119 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z120 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z121 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z122 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z123 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z124 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z125 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z126 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z127 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z128 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z129 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z130 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z131 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z132 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z133 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z134 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z135 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z136 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z137 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z138 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z139 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z140 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z141 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z142 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z143 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z144 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z145 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z146 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z147 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z148 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z149 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z150 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z151 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z152 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z153 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z154 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z155 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z156 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z157 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z158 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z159 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z160 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z161 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z162 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z163 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z164 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z165 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z166 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z167 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z168 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z169 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z170 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z171 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z172 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z173 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z174 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z175 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z176 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z177 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z178 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z179 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z180 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z181 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z182 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z183 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z184 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z185 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z186 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z187 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z188 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z189 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z190 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z191 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z192 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z193 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z194 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z195 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z196 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z197 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z198 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z199 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z200 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z201 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z202 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z203 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z204 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z205 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z206 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z207 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z208 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z209 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z210 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z211 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z212 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z213 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z214 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z215 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z216 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z217 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z218 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z219 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z220 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z221 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z222 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z223 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z224 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z225 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z226 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z227 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z228 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z229 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z230 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z231 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z232 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z233 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z234 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z235 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z236 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z237 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z238 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z239 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z240 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z241 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z242 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z243 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z244 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z245 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z246 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z247 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z248 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z249 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z250 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z251 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z252 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z253 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z254 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z255 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 224 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 224 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt:

accurately computed Pr[zi = j]

for all i 2 f1; : : : ; 256g, all j;

found �65536 single-byte biases;

used all of them in SSL attack

via proper Bayesian analysis.

�256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe–Isobe–

Ohigashi–Morii, 2013 Isobe–

Ohigashi–Watanabe–Morii:

z32 ! 224, z48 ! 208, etc.;

z3 ! 131; zi ! i; z256 6! 0.

Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 224 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 224 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 225 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 226 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 227 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 228 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 229 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 230 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 231 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?



Graph of 256 Pr[z256 = x]:

0 50 100 150 200 250
0.990

0.995

1.000

1.005

1.010

2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.



2013 AlFardan–Bernstein–

Paterson–Poettering–Schuldt

success probability (256 trials)

for recovering byte x of plaintext

from 232 ciphertexts (with

no prior plaintext knowledge):

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Later bytes: see paper.

Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.



Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.



Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.



Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.



Why does this happen?

For years we’ve had AES;

AES-GCM; defenses against

various side-channel attacks.

We simply have to educate the

software and hardware engineers

choosing crypto primitives, right?

Maybe, maybe not.

Does AES-GCM actually do

what the users need?

Often it doesn’t.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.



e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.



e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.



e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.



e.g. 2001 Rivest: “The ‘heart’ of

RC4 is its exceptionally simple

and extremely efficient pseudo-

random generator. : : : RC4 is

likely to remain the algorithm of

choice for many applications and

embedded systems.”

e.g. OpenSSL still uses table-

based implementations of AES

for speed on most CPUs,

leaking many key bits; see, e.g.,

2012 Weiß–Heinz–Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.



Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.



Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.



Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?



Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?



Major research direction:

achieve better performance

than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),

sometimes low latency (seconds);

minimize area�seconds/byte;

minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

precomputation possibilities, etc.

Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.



Can one design do very well

in hardware and software?

Some inspirational examples:

Trivium and Keccak

are “hardware” designs

but not bad in software.

Another approach:

replace ARX with “ORX”.

Skein-type mix doesn’t work

but can imitate Salsa20:

compose a^=((b|c)<<<r).

Needs a few more rounds,

but friendlier to hardware.

Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?



Another major research direction:

achieve better security

than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe

is starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing

192-bit/256-bit poly hashes?

(We’ve started some work.)

Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.



Allow repeated message numbers?

User has to expect that

encrypting (n;m) and (n;m0)

will tell attacker whether m = m0.

But user is surprised if repeated

message number leaks more

information, allows forgeries, etc.

2006 Rogaway–Shrimpton:

first authenticate (n;m),

then use the authenticator

as a nonce to encrypt m.

Is this protection compatible

with fast forgery rejection?

Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.



Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.



Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.

CAESAR

“Competition for Authenticated

Encryption: Security,

Applicability, and Robustness”

competitions.cr.yp.to

Mailing list: crypto-

competitions+subscribe

@googlegroups.com

NIST is much too busy

to run another competition

but has generously provided

a $333099 “Cryptographic

competitions” grant to UIC.



Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.

CAESAR

“Competition for Authenticated

Encryption: Security,

Applicability, and Robustness”

competitions.cr.yp.to

Mailing list: crypto-

competitions+subscribe

@googlegroups.com

NIST is much too busy

to run another competition

but has generously provided

a $333099 “Cryptographic

competitions” grant to UIC.



Many ciphers integrate

“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HFFH Feistel block cipher;

reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.

CAESAR

“Competition for Authenticated

Encryption: Security,

Applicability, and Robustness”

competitions.cr.yp.to

Mailing list: crypto-

competitions+subscribe

@googlegroups.com

NIST is much too busy

to run another competition

but has generously provided

a $333099 “Cryptographic

competitions” grant to UIC.



Many more directions

in authenticated ciphers.

AES-GCM is clearly not

the end of the story.

Can build better modes

using same MAC, cipher.

Can build better MACs,

combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated

authenticated ciphers.

CAESAR

“Competition for Authenticated

Encryption: Security,

Applicability, and Robustness”

competitions.cr.yp.to

Mailing list: crypto-

competitions+subscribe

@googlegroups.com

NIST is much too busy

to run another competition

but has generously provided

a $333099 “Cryptographic

competitions” grant to UIC.


