Failures of

secret-key cryptography

D. J. Bernstein

University of lllinois at Chicago &

Technische Universiteit Eindhoven

A CRYPTO NERD'S
IMAGINATION -

—

—

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
t:u_ﬁTER To CRACK \T.

NO GOOD! TS
Uo5e -BIT REH‘

Euu, F'LHN
IS FOILED! %%%

WHAT WOULD
ACTUALLY HAPPEN: ——

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TELlS US THE. PASSWORD.

GOT 1T,

%&\

http://xkcd.com/538/

2011 Grigg—Gutmann (and again

2012 Gutmann):

In the past 15

years 'no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn't use home
or toy keys) in t

Drew crypto

ne Internet or

commercial worlds' .

Failures of
secret-key cryptography

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

A CRYPTO NERD's WHAT \WoULD
[IMAGINATION ¢ 7 | ACTUALLY HAPPEN: ——
HIS LAFTOPS ENCRYPTED. H'S LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
cu_nmn To CRACK \T- THIS $5 WRENCH UNTIL
oG5 *E'IT R‘EH" GOT T,

= f@‘% i

http://xkcd.com/538/

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds™ .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

of
Yy cryptography
rnstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

RD'¢ WHAT WoULD

K ACTVALLY HAPPEN:
NCRYPTED. HIS LAPTOP'S ENCRYPTED.
NILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
RACK \T. THIS $5 WRENCH UNTIL
1096 -BIT RSAL \ GOT IT.

SR

'xkcd.com/538/

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn't use homebrew crypto

or toy keys) in the Internet or

commercial worlds' .

2002 Shamir: “Cryptography is

usually

bypassed. | am not aware

of any major world-class security

system employing cryptography In

which t
system

ne hackers penetrated the

oy actually going through

the cryptanalysis.”

2013.03
"Do the
it's actu
to break

raphy

is at Chicago &
siteit Eindhoven

WHAT \WJOULD

IJ"-".CTUP‘LLT HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HM WITH
THIS $5 WRENCH UNTIL
HE TEUS U5 THE PASSWORD.

\ GoT T,

O O)
M)

n/538/

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds™ .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

2013.03 Bernstein
“Do these people
it's actually infeas
to break real-worlc

g0 &
hoven

i

(PTED.
HIM WITH

UNTIL
AISWORD.

T,

J

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds” .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible

to break real-world crypto?

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to

an attack on a properly designed

cryptosystem (meaning one that

didn't use homebrew crypto

or toy keys) in the Internet or

commercial worlds' .

2002 Shamir: “Cryptography is

usually

bypassed. | am not aware

of any major world-class security

system employing cryptography In

which t
system

ne hackers penetrated the

oy actually going through

the cryptanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible

to break real-world crypto?

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds” .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible

to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds” .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible

to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto I1s breakable;
Is in fact being broken:;

is one of many ongoing
disaster areas in security?”

2011 Grigg—Gutmann (and again
2012 Gutmann): In the past 15
years 'no one ever lost money to
an attack on a properly designed
cryptosystem (meaning one that
didn't use homebrew crypto

or toy keys) in the Internet or
commercial worlds” .

2002 Shamir: “Cryptography is
usually bypassed. | am not aware
of any major world-class security
system employing cryptography In
which the hackers penetrated the

system by actually going through
the cryptanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible

to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto I1s breakable;
Is in fact being broken:;

is one of many ongoing
disaster areas in security?”

Let's look at some examples.

gg—Gutmann (and again
tmann): In the past 15
0 one ever lost money to
k on a properly designed
stem (meaning one that
se homebrew crypto

ys) in the Internet or
cial worlds™ .

amir: “Cryptography is
yypassed. | am not aware
1ajor world-class security
mploying cryptography in
ie hackers penetrated the
oy actually going through
tanalysis.”

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible
to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto i1s breakable;

Is in fact being broken;
is one of many ongoing
disaster areas in security?”

Let's look at some examples.

Window

Flame b
spled on

2012.06
“We rec
of a con
malware
Immedia
ISsue. ..
through
compont
been sig
allow so
Was proc

ann (and again
n the past 15
- lost money to
yperly designed
aning one that
ew Ccrypto
Internet or

yptography is

| am not aware
l-class security

cryptography in
penetrated the
going through

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible
to break real-world crypto?

Or do they mean that
oreaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto I1s breakable;
Is in fact being broken:;

is one of many ongoing
disaster areas in security?”

Let's look at some examples.

Windows code sig

Flame broke into «
spied on audio, ke

2012.06.03 Micros
“We recently beca
of a complex piece
malware known as
iImmediately begar
issue. ... We hav
through our analy:
components of the
been signed by cel
allow software to :
was produced by |

1gain
- 15

ey to
gned
that

olg

y IS
ware
urity
phy In
d the
ough

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible
to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto i1s breakable;
is in fact being broken:;

is one of many ongoing
disaster areas in security?”

Let's look at some examples.

Windows code signatures

Flame broke into computers
spied on audio, keystrokes, ¢

2012.06.03 Microsoft:

“We recently became aware
of a complex piece of target
malware known as ‘Flame’ 3
immediately began examinir
issue. ... We have discovere
through our analysis that so
components of the malware
been signed by certificates t
allow software to appear as
was produced by Microsoft.’

2013.03 Bernstein:

"Do these people mean that
it's actually infeasible
to break real-world crypto?

Or do they mean that
breaks are feasible

out still not worthwhile
for the attackers?

Or are they simply wrong:

real-world crypto i1s breakable;

Is in fact being broken;
is one of many ongoing
disaster areas in security?”

Let's look at some examples.

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame' and
immediately began examining the
issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

Bernstein:

se people mean that
ally infeasible
real-world crypto?

ey mean that
re feasible

not worthwhile
ttackers?

ney simply wrong:

d crypto Is breakable;
= being broken:;

" many ongoing

areas In security?”

)k at some examples.

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame’ and
immediately began examining the
issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

2012.06
prefix cc
MD5 ha
More inf
publishe
attack w
new and

mean that
Ible
] crypto?

that

while

I Wrong:
s breakable:
ken;

o0INg
curity ?”

 examples.

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame' and
immediately began examining the
Issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

2012.06.07 Steven
prefix collision att:
MD5 has been use
More interestingly
published chosen-j
attack was used, |

new and unknown

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame’ and
immediately began examining the
issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

2012.06.07 Stevens: “A cho
prefix collision attack agains
MD5 has been used for Flar
More interestingly ... not o
published chosen-prefix colli
attack was used, but an ent

new and unknown variant.”

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame' and
immediately began examining the
Issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

Windows code signatures 2012.06.07 Stevens: “A chosen-

prefix collision attack against

Flame broke into computers,
MDb5 has been used for Flame.

spied on audio, keystrokes, etc.

More interestingly ... not our
2012.06.03 Microsoft: published chosen-prefix collision
"We recently became aware attack was used, but an entirely
of a complex piece of targeted new and unknown variant."

malware known as ‘Flame’ and

immediately began examining the CrySys: Flame file wavesup3.drv

issue. ... We have discovered appeared in logs in 2007; Flame

. “may have been active for as long
through our analysis that some

as five to eight years" .
components of the malware have ety
been signed by certificates that
allow software to appear as if it

was produced by Microsoft.”

Windows code signatures

Flame broke into computers,
spied on audio, keystrokes, etc.

2012.06.03 Microsoft:

“We recently became aware

of a complex piece of targeted
malware known as ‘Flame' and
immediately began examining the
issue. ... We have discovered
through our analysis that some
components of the malware have
been signed by certificates that
allow software to appear as if it
was produced by Microsoft.”

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD?5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long
as five to eight years" .

Was MD5 “homebrew crypto”?
No. Standardized, widely used.
Worthwhile to attack? Yes.

s code signatures

roke Into computers,
audio, keystrokes, etc.

03 Microsoft:

ently became aware
1plex piece of targeted
known as ‘Flame’ and
tely began examining the
. We have discovered
our analysis that some
ents of the malware have
ned by certificates that
ftware to appear as if it
luced by Microsoft.”

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD?5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long
as five to eight years" .

Was MD5 “homebrew crypto”?
No. Standardized, widely used.
Worthwhile to attack? Yes.

Compare
“Crypto:
magnitu

natures

“omputers,
ystrokes, etc.

oft:

me aware

> of targeted
'Flame’ and

1 examining the
> discovered

S1s that some

> malware have
tificates that
ppear as if it
Vicrosoft.”

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD?5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long
as five to eight years’ .

Was MD5 “homebrew crypto”?
No. Standardized, widely used.
Worthwhile to attack? Yes.

Compare to 2011
“Cryptosystem fai
magnitude below :

TC.

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD?5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long
as five to eight years’ .

Was MD5 “homebrew crypto”?
No. Standardized, widely used.
Worthwhile to attack? Yes.

Compare to 2011 Grigg—Gut
“Cryptosystem failure is ord
magnitude below any other

2012.06.07 Stevens: “A chosen-
prefix collision attack against
MD?5 has been used for Flame.
More interestingly ... not our
published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long
as five to eight years’ .

Was MD5 “homebrew crypto”?
No. Standardized, widely used.
Worthwhile to attack? Yes.

Compare to 2011 Grigg—Gutmann:
“Cryptosystem failure is orders of
magnitude below any other risk.”

2012.06.07 Stevens: “A chosen- Compare to 2011 Grigg—Gutmann:

prefix collision attack against “Cryptosystem failure is orders of
MD?5 has been used for Flame. magnitude below any other risk.”
More interestingly ... not our

ST

MiGSION ACCOME

published chosen-prefix collision
attack was used, but an entirely

new and unknown variant.”

CrySyS: Flame file wavesup3.drv
appeared in logs in 2007; Flame
“may have been active for as long

as five to eight years’ .

Was MD5 “homebrew crypto”? http://en.wikipedia.org/wiki
No. Standardized, widely used. /2003_Mission_Accomplished

Worthwhile to attack? Yes. _speech

07 Stevens: “A chosen-
llision attack against

s been used for Flame.
erestingly ... not our

d chosen-prefix collision
/as used, but an entirely

unknown variant.”

Flame file wavesup3.drv
1 in logs in 2007; Flame
ve been active for as long
0 eight years' .

)5 “homebrew crypto”?
ndardized, widely used.
nile to attack? Yes.

Compare to 2011 Grigg—Gutmann:
“Cryptosystem failure is orders of
magnitude below any other risk.”

http://en.wikipedia.org/wiki
/2003_Mission_Accomplished

_sSpeech

WEP

WEP in1
in 802.1

2001 Bo
24-bit
leaking |
allowing

2001 Ar
this also

2001 Flu
WEP bu

from sec
RC4 out

s: “A chosen-
ack against
d for Flame.

. hot our
refix collision
ut an entirely

variant.”

 wavesup3.drv
1 2007; Flame
ctive for as long

ars .

rew crypto’ ?

widely used.
ack? Yes.

Compare to 2011 Grigg—Gutmann:
“Cryptosystem failure is orders of
magnitude below any other risk.”

ST

b 1iGsion ATCOME

http://en.wikipedia.org/wiki
/2003_Mission_Accomplished

_speech

WEP

WEP introduced |
in 802.11 wireless

2001 Borisov—Golc
24-bit “nonce” fre
leaking plaintext x
allowing very easy

2001 Arbaugh—Sh:
this also breaks us

2001 Fluhrer—Man
WEP builds RC4 |
from secret k£, “nc
RC4 outputs leak

Sen-

NE.

sion
irely

3.drv
ame
s long

o7
ed.

Compare to 2011 Grigg—Gutmann:
“Cryptosystem failure is orders of
magnitude below any other risk.”

http://en.wikipedia.org/wiki
/2003_Mission_Accomplished

_sSpeech

WEP

WEP introduced in 1997
in 802.11 wireless standard.

2001 Borisov—Goldberg—Waj
24-bit “nonce”’ frequently re
leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh—Shankar—Wai
this also breaks user auth.

2001 Fluhrer—Mantin—Sham
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:

RC4 outputs leak bytes of &

Compare to 2011 Grigg—Gutmann:
“Cryptosystem failure is orders of
magnitude below any other risk.”

http://en.wikipedia.org/wiki
/2003_Mission_Accomplished

_speech

WEP

WEP introduced in 1997
iIn 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:
24-bit “nonce” frequently repeats,
leaking plaintext xor and

allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

= to 2011 Grigg—Gutmann:
system failure is orders of
de below any other risk.”

‘en.wikipedia.org/wiki
lission_Accomplished

|

WEP

WEP introduced in 1997
in 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Impleme

of k-rec

Stubblef
2004 Kc
d'Otrepj
Tews—W
Sepehrd
2013 S—

Grigg—Gutmann:
lure is orders of
any other risk.”

bedia.org/wiki

\ccomplished

WEP

WEP introduced in 1997
iIn 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Implementations,

of k-recovery atta

Stubblefield—loann
2004 KoreK, 2004
d'Otreppe, 2006 K
Tews—\Weinmann—
Sepehrdad—Vaude
2013 S-Susil-V-V

mann:

ars of
risk.”

r/wiki
shed

WEP

WEP introduced in 1997
in 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Implementations, optimizati
of k-recovery attack: 2001
Stubblefield—loannidis—Rubir
2004 KoreK, 2004 Devine, Z
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, Z
Sepehrdad—Vaudenay—Vuagi
2013 S-Susil-V-V, ...

WEP

WEP introduced in 1997
iIn 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

WEP

WEP introduced in 1997
iIn 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

WEP

WEP introduced in 1997
iIn 802.11 wireless standard.

2001 Borisov—Goldberg—\Wagner:

24-bit “nonce” frequently repeats,

leaking plaintext xor and
allowing very easy forgeries.

2001 Arbaugh—Shankar—Wan:
this also breaks user auth.

2001 Fluhrer—Mantin—=Shamir:
WEP builds RC4 key (k,n)
from secret k£, “nonce” n:
RC4 outputs leak bytes of k.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft
of 45 million credit-card numbers
from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

‘roduced in 1997
1 wireless standard.

risov—Goldberg—\Wagner:

once’ frequently repeats,

ylaintext xor and

very easy forgeries.

baugh—Shankar—\Wan:
breaks user auth.

threr—Mantin—Shamir:
ilds RC4 key (k,n)
ret k£, “nonce’ n;
puts leak bytes of k.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft
of 45 million credit-card numbers
from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keelog

Wikiped
used In |
entry sy:
as Chrys
GM, Ho
Volkswa
Shurlok,

2007 Inc
Biham-|
"How tc
recover |
using 21
only 244

n 1997
standard.

Iberg—\Wagner:

quently repeats,

or and
forgeries.

ankar—\Wan:
er auth.

tin—Shamir:
ey (k,n)
nce’ n:
bytes of k.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft
of 45 million credit-card numbers
from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keelog

Wikipedia: "Keel
used in many rem
entry systems by s
as Chrysler, Daew
GM, Honda, Toyo
Volkswagen Groug
Shurlok, Jaguar, e

2007 Indesteege—F
Biham—Dunkelmat
"How to steal car:
recover 64-bit Kee
using 216 known
only 2**2 encrypti

TNer:

peats,

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft
of 45 million credit-card numbers
from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keelog

Wikipedia: “"Keeloq is or w
used in many remote keyles:
entry systems by such comp
as Chrysler, Daewoo, Fiat,
GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 21° known plaintexts,
only 2%+ encryptions.

Implementations, optimizations
of k-recovery attack: 2001
Stubblefield—loannidis—Rubin,
2004 KoreK, 2004 Devine, 2005
d'Otreppe, 2006 Klein, 2007
Tews—Weinmann—Pyshkin, 2010
Sepehrdad—Vaudenay—Vuagnoux,
2013 S-Susil-V-V, ...

“These are academic papers!

Nobody was actually attacked.”

Fact: WEP blamed for 2007 theft
of 45 million credit-card numbers
from T. J. Maxx. Subsequent

lawsuit settled for $40900000.

Keelog

Wikipedia: “"Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars’:
recover 64-bit KeelLoq key
using 210 known plaintexts,
only 2% encryptions.

ntations, optimizations
overy attack: 2001
leld—loannidis—Rubin,
reK, 2004 Devine, 2005
e, 2006 Klein, 2007
einmann—Pyshkin, 2010
ad—Vaudenay—Vuagnoux,
Susil-V-V, ...

are academic papers!
was actually attacked.”

'EP blamed for 2007 theft

llion credit-card numbers
J. Maxx. Subsequent

ettled for $40900000.

Keelog

Wikipedia: “Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 21° known plaintexts,
only 2%+ encryptions.

2008 Eis
Paar-Sa

reCoOvere

d
C

lowing
oning ¢

optimizations
ck: 2001
1dis—Rubin,
Devine, 2005
Jdein, 2007
Pyshkin, 2010
nay—\Vuagnoux,

nic papers!
Ily attacked.”

d for 2007 theft
t-card numbers
Subsequent

$40900000.

Keelog

Wikipedia: “"Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars’:
recover 64-bit KeelLoq key
using 210 known plaintexts,
only 2%+ encryptions.

2008 Eisenbarth—F
Paar—Salmasizadel

recovered system's

d
C

lowing practicall
oning of Keelog

ons

005

010

10UX,

o I

" theft
nbers
Nt

Keelog

Wikipedia: “Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 21° known plaintexts,

244.5

only encryptions.

2008 Eisenbarth—Kasper—Mc
Paar—Salmasizadeh—Shalmat
recovered system’s master k
allowing practically instantal

cloning of KeelLoq keys.

Keelog

Wikipedia: “"Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 210 known plaintexts,

244.5

only encryptions.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani

recovered system’s master key,

d
C

lowing practically instantaneous
oning of KeelLoq keys.

Keelog

Wikipedia: “"Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 21° known plaintexts,

244.5

only encryptions.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,
allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

Keelog

Wikipedia: “"Keeloq is or was
used in many remote keyless
entry systems by such companies
as Chrysler, Daewoo, Fiat,

GM, Honda, Toyota, Volvo,
Volkswagen Group, Clifford,
Shurlok, Jaguar, etc.”

2007 Indesteege—Keller—
Biham—Dunkelman—Preneel
"How to steal cars":
recover 64-bit KeelLoq key
using 21° known plaintexts,

244.5

only encryptions.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,
allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X7 How often do
real attackers issue press releases?

la: "KeelLoq is or was
many remote keyless
stems by such companies
ler, Daewoo, Fiat,

nda, Toyota, Volvo,

gen Group, Clifford,
Jaguar, etc.”

lesteege—Keller—
Dunkelman—Preneel
 steal cars™:

04-bit Keeloq key
0 known plaintexts,

2 encryptions.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,
allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X? How often do
real attackers issue press releases?

VMW are

VMWare

desktop
many lo

Recomn
Dell, etc
to “SAL
user exp
slows do

oq IS or was
ote keyless
uch companies
00, Fiat,

ta, Volvo,

), Clifford,

tc.”

eller—
1—Preneel

.’, L]
) .

Loq key
laintexts,
ons.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,

allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X7 How often do
real attackers issue press releases?

VMWare View

VMWare View is :

desktop protocol <
many low-cost ter

Recommendation
Dell, etc.: switch
to “SALSA20-256
user experience’ .

slows down netwo

dS

anies

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,
allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X? How often do
real attackers issue press releases?

VMWare View

VMWare View Is a remote
desktop protocol supported
many low-cost terminals.

Recommendation from VM\
Dell, etc.: switch from “AE!
to "SALSA20-256" for the
user experience . Apparentl
slows down network graphic:

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,

allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X7 How often do
real attackers issue press releases?

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,
Dell, etc.: switch from “AES-128"
to “"SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

2008 Eisenbarth—Kasper—Moradi—
Paar—Salmasizadeh—Shalmani
recovered system’s master key,
allowing practically instantaneous

cloning of KeelLoq keys.

1. Setup phase of this attack
watches power consumption
of Keeloq device. Is this
“bypassing” the cryptography?

2. If all the “X is weak” press
comes from academics, is it safe
to conclude that real attackers
aren't breaking X7 How often do
real attackers issue press releases?

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,
Dell, etc.: switch from “AES-128"
to “"SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

Closer look at documentation:
“AES-128" and “SALSA20-256"
are actually “AES-128-GCM”
and “Salsa20-256-Round12".

enbarth—Kasper—Moradi—
Imasizadeh—Shalmani

d system’'s master key,
practically instantaneous
of Keeloq keys.

) phase of this attack
power consumption

q device. Is this

ng’ the cryptography?

the “X Is weak™ press
om academics, is it safe
ude that real attackers
eaking X? How often do
ckers issue press releases?

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128"

to “SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

Closer look at documentation:
“"AES-128" and “SALSA20-256"
are actually “AES-128-GCM”
and “Salsa20-256-Round12”.

AES-12¢

and mes

No indic
“Salsa2(
any mes
Can attz
One can
with me
but doe:

Salsa20

advanta;
both Sal
unauthe
User nee¢

Lasper—Moradi—
—Shalmani

5 master key,

vy Instantaneous
keys.

this attack
1Isumption
Is this

yptography?

weak’ press
mics, Is it safe
eal attackers

’ How often do
> press releases?

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128"

to “SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

Closer look at documentation:
“AES-128" and “SALSA20-256"
are actually “AES-128-GCM”
and “Salsa20-256-Round12".

AES-128-GCM inc
and message auth

No indication that
“Salsa20-256-Rou
any message auth
Can attacker forge
One can easily cor
with message autt

but does VMWare

Salsa20 has speed
advantages over A
both Salsa20 and
unauthenticated c
User needs auther

yradi—
11

ey,
neous

1y 7

2SS
safe
ors

en do
cases’

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128"

to “SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

Closer look at documentation:
“"AES-128" and “SALSA20-256"
are actually “AES-128-GCM”
and “Salsa20-256-Round12”.

AES-128-GCM includes AES
and message authentication

No indication that VMWare
“Salsa20-256-Round12” incl
any message authentication.
Can attacker forge packets?
One can easily combine Sals

with message authenticatior
but does VMWare do this?

Salsa20 has speed and secur
advantages over AES, but
both Salsa20 and AES are
unauthenticated ciphers.
User needs authenticated ci

VMWare View

VMWare View Is a remote
desktop protocol supported by
many low-cost terminals.

Recommendation from VMWare,

Dell, etc.: switch from “AES-128"

to “SALSA20-256" for the “best
user experience” . Apparently AES
slows down network graphics.

Closer look at documentation:
“AES-128" and “SALSA20-256"
are actually “AES-128-GCM”
and “Salsa20-256-Round12".

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20

with message authentication,
but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

> View

> View IS a remote
protocol supported by
N-cOost terminals.

iendation from VMWare,

. switch from “AES-128"

SA20-256" for the “best
erience” . Apparently AES
wn network graphics.

ok at documentation:
8" and “SALSA20-256"
ally "AES-128-GCM”
1sa20-256-Round12”.

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20

with message authentication,
but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

SSL/TL

Standare
of a pac
send rar
co = AE
c1 = AE
co = AE

) remote
upported by

minals.

from VMWare,

from “AES-128"

" for the “best
Apparently AES
'k graphics.

umentation:
>ALSA20-256"
-128-GCM”
Round12".

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20
with message authentication,

but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CB

of a packet (g, P
send random v,

co = AES;(po @ v
c1 = AES,(p1 ®
co = AES,(p2 @ ¢

Vare,

>-128"

‘best
v AES

n.
256"

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20

with message authentication,
but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encrypti

of a packet (pg, p1,P2):
send random v,

co = AES(po ® v),
c1 = AESk(pl &%) Co),
cg = AES,(p2 @ c1).

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20

with message authentication,
but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption
of a packet (pg, p1,P2):

send random v,

co = AES,(po @ v),

c1 = AES,(p1 & <o),

cg = AES,(p2 & 1)

AES-128-GCM includes AES
and message authentication.

No indication that VMWare's
“Salsa20-256-Round12” includes
any message authentication.
Can attacker forge packets?
One can easily combine Salsa20

with message authentication,
but does VMWare do this?

Salsa20 has speed and security
advantages over AES, but

both Salsa20 and AES are
unauthenticated ciphers.

User needs authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (pg, p1,P2):
send random v,

co = AESk(p()) ‘U),
c1 = AES(p1 @ ¢p),
co = AESk(p2 @ c1).

AES-CBC encryption in SSL;
retrieve last block c_1

from previous ciphertext; send
co = AESk(po ® c-1),

c1 = AES,(p1 @ o),

co = AES,(p2 & 1)

3-GCM includes AES
sage authentication.

ation that VMWare's
)-256-Round12” includes
sage authentication.
icker forge packets?
easily combine Salsa20

ssage authentication,
5 VMWare do this?

has speed and security
ses over AES, but

sa20 and AES are
nticated ciphers.

ds authenticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (pg, p1,P2):
send random v,

co = AES(po ® v),
c1 = AES,(p1 & cp),
cg = AESk(p2 @ c1).

AES-CBC encryption in SSL;
retrieve last block ¢_1

from previous ciphertext; send
co = AESk(po ® c-1),

c1 = AES,(p1 @ <o),

c2 = AES,(p2 & 1)

SSL lets
as funct

2002 Mc
To chec
choose 1
compare

2006 Ba
maliciou

be able-

especiall
s split a

2011 Do
fast atta

including

ludes AES
entication.

VMW are's
nd12" includes
antication.

» packets?
nbine Salsa20

ientication,
» do this?

and security

ES, but

AES are
iphers.
ticated cipher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (pg, p1,P2):
send random v,

co = AESk(p()) ‘U),
c1 = AES,(p1 @ cp),
cg = AESk(p2 @ c1).

AES-CBC encryption in SSL;
retrieve last block ¢_1

from previous ciphertext; send
co = AESk(po @ c-1),

c1 = AES,(p1 & <o),

cg = AES,(p2 & 1)

SSL lets attacker
as function of ¢_1

2002 Moller:

To check a guess
choose pg = ¢c_1 €
compare ¢g to c_-

2006 Bard:
malicious code In
be able to carry ol
especially if high-e

Is split across bloc

2011 Duong—Rizz
fast attack fully in
including controlle

pher.

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (pg, p1,P2):
send random v,

co = AESk(po %) ’U),
c1 = AES,(p1 @ cp),
cg = AES,(p2 @ c1).

AES-CBC encryption in SSL;
retrieve last block ¢_1

from previous ciphertext; send
co = AESk(po ® c-1),

c1 = AES,(p1 @ <o),

c2 = AES,(p2 & 1)

SSL lets attacker choose pg
as function of ¢c_1! Very ba

2002 Moller:
To check a guess g for (e.g.

choose pg = c_1 @ g ® c_4,
compare cg to c_3.

2006 Bard:

malicious code Iin browser skt
be able to carry out this att
especially if high-entropy da

Is split across blocks.

2011 Duong—Rizzo "BEAST
fast attack fully implemente

including controlled variable

SSL/TLS/HTTPS

Standard AES-CBC encryption

of a packet (pg, p1,P2):
send random v,

co = AES(po ® v),
c1 = AES,(p1 & <o),
cg = AESk(p2 @ c1).

AES-CBC encryption in SSL;:
retrieve last block c_1

from previous ciphertext; send
co = AES,(pg @ c_1),

c1 = AESg(p1 & <),

Cy) = AESk(pQ D Cl).

SSL lets attacker choose pg
as function of ¢_1! Very bad.

2002 Moller:
To check a guess g for (e.g.) p_3,

choose pg = c_1 ® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,
including controlled variable split.

S/HTTPS SSL lets attacker choose pg Counter
| AES-CBC encryption as function of ¢c_7! Very bad. .send aC
ket (pg, D1, P2): 2002 Mbller: just befc
dom v, To check a guess g for (e.g.) p_3,
Si(po @ v), choose pg = c_1 ® g ® c_4,
Si(p1 ® cp), compare ¢ to c_3.
k(P2 & c1) 2006 Bard:
C encryption in SSL: malicious code in browser should
last block ¢_1 be able to carry out this attack,
vious ciphertext; send especially if high-entropy data
Si(po®c_1), is split across blocks.
>k(P1® c0), 2011 Duong—Rizzo “BEAST":
>k(P2 & c1), fast attack fully implemented,
including controlled variable split.

)

C encryption
1 P2);

,),
0):

1).

ion in SSL:
C—1
ertext: send

~1),
0),
1).

SSL lets attacker choose pg
as function of c¢_1! Very bad.

2002 Moller:
To check a guess g for (e.g.) p_3,

choose pg = c_1 ® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,
including controlled variable split.

Countermeasure Ir
send a content-fre
just before sending

on

1d

SSL lets attacker choose pg
as function of ¢_1! Very bad.

2002 Moller:
To check a guess g for (e.g.) p_3,

choose pg =c_1® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,
including controlled variable split.

Countermeasure in browsers
send a content-free packet
just before sending real pacl

SSL lets attacker choose pg Countermeasure in browsers:
as function of c¢_1! Very bad. send a content-free packet

2002 Méller: just before sending real packet.

To check a guess g for (e.g.) p_3,

choose pg = c_1 ® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,
including controlled variable split.

SSL lets attacker choose pg
as function of c¢_1! Very bad.

2002 Moller:

To check a guess g for (e.g.) p_3,

choose pg =c_1® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:
send a content-free packet
just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

SSL lets attacker choose pg
as function of c¢_1! Very bad.

2002 Moller:

To check a guess g for (e.g.) p_3,

choose pg =c_1® g ® c_4,
compare ¢g to c_3.

2006 Bard:

malicious code in browser should
be able to carry out this attack,
especially if high-entropy data

Is split across blocks.

2011 Duong—Rizzo “BEAST":
fast attack fully implemented,

including controlled variable split.

Countermeasure in browsers:
send a content-free packet
just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

attacker choose pg

on of c_1! Very bad.

Hller:

< a guess g for (e.g.) p_3,

)0 = C_1D gD c_g4,
- Ccg To c_3.
rd:

s code Iin browser should

to carry out this attack,

y if hig
cross b

n-entropy data

ocks.

ong—Rizzo "BEAST":
ck fully implemented,

r controlled variable split.

Countermeasure in browsers:
send a content-free packet

just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“"Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

2001 Va
This Is ¢
if attack
padding

choose pg
I Very bad.

g for (e.g.) p—3,
D g ® c_4,

)
' n

browser should
1t this attack,

ntropy data
ks.

> "BEAST":
1plemented,
d variable split.

Countermeasure in browsers:
send a content-free packet

just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

2001 Vaudenay:

This 1s completely
If attacker can dis
padding failure frc

) p_3,

ould
ack,
ta

split.

Countermeasure in browsers:

send a content-free packet

just before sending real packet.

Attacker can also try to attack

CBC by forging ciphertexts,
but each SSL packet
includes an authenticator.

“"Authenticate-then-encrypt”:

SSL appends an aut
pads reversibly to fu
encrypts with CBC.

2001 Krawczyk:

nenticator,

| block,

This Is provably secure.

2001 Vaudenay:
This Is completely broken
if attacker can distinguish

padding failure from MAC f

Countermeasure in browsers: 2001 Vaudenay:
send a content-free packet This is completely broken
just before sending real packet. if attacker can distinguish

Attacker can also try to attack padding failure from MAC failure.

CBC by forging ciphertexts,
but each SSL packet
includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

Countermeasure in browsers:
send a content-free packet

just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish
padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Countermeasure in browsers:
send a content-free packet

just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish
padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

Countermeasure in browsers:
send a content-free packet

just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.

2001 Krawczyk:
This Is provably secure.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish
padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

measure in browsers:
ontent-free packet

re sending real packet.

- can also try to attack
forging ciphertexts,

' SSL packet
an authenticator.

ticate-then-encrypt”:
ends an authenticator,

ersibly to full block,
~with CBC.

awczyk:

yrovably secure.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:

Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even If padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Crypto,

1 browsers:
e packet

r real packet.

try to attack
phertexts,

et

1ticator.

n-encrypt’:
uthenticator,
full block,

—

Cure.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic al;

cet.

1ck

2001 Vaudenay:
This Is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even If padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm ag

2001 Vaudenay:
This Is completely broken

if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even If padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm agility" :

2001 Vaudenay:

This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm agility" :

(1) the pretense that bad crypto
is okay if there's a backup plan

2001 Vaudenay:

This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm agility" :
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

2001 Vaudenay:
This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm agility" :
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

2001 Vaudenay:

This Is completely broken
if attacker can distinguish

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

“Cryptographic algorithm agility" :
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

The software does support
one non-CBC option:

2001 Vaudenay:
This Is completely broken

“Cryptographic algorithm agility" :
(1) the pretense that bad crypto

if attacker can distinguish is okay if there's a backup plan +

padding failure from MAC failure.

2003 Canvel:
Obtain such a padding oracle
by observing SSL server timing.

Response in OpenSSL etc.:
always compute MAC
even if padding fails.

2013.02 AlFardan—Paterson
“Lucky 13": watch timing
more closely; attack still works.

(2) the pretense that there
is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

The software does support
one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

udenay:
ompletely broken
er can distinguish

faillure from MAC failure.

nvel:
uch a padding oracle
ving SSL server timing.

e in OpenSSL etc.:
ompute MAC
adding fails.

AlFardan—Paterson
13": watch timing
sely; attack still works.

“Cryptographic algorithm agility”:
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as s

nash to
2001 Rn
do not 3

... |pro
RC4] sh

broken
tinguish

m MAC failure.

ding oracle
server timing.

SSL etc.:
IAC

ls.

-Paterson

h timing

~k still works.

“Cryptographic algorithm agility" :
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as scary as W

nash to avoid rela
2001 Rivest: “The
do not apply to R
... |protocol] desi
RC4] should not b

Jilure.

ing.

ks.

“Cryptographic algorithm agility”:
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as scary as WEP: SSL

nash to avoid related RC4 k
2001 Rivest: “The new atta
do not apply to RC4-based !
... |protocol| designers [usit

RC4| should not be concern

“Cryptographic algorithm agility":
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’'t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4] should not be concerned.”

“Cryptographic algorithm agility":
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’'t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4] should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

“Cryptographic algorithm agility":
(1) the pretense that bad crypto
is okay if there's a backup plan +
(2) the pretense that there

is in fact a backup plan.

SSL has a crypto switch
that in theory allows
switching to AES-GCM.
But most SSL software
doesn’'t support AES-GCM.

The software does support

one non-CBC option: RC4.
2013.01: widely recommended,
used for 50% of SSL traffic.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4] should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

oraphic algorithm agility™ :
oretense that bad crypto
f there's a backup plan +
oretense that there

= a backup plan.

a crypto switch
heory allows

g to AES-GCM.

t SSL software
support AES-GCM.

ware does support
-CBC option: RC4.
- widely recommended,

50% of SSL traffic.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4] should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The sing

2001 M:
zo> — 0.

yorithm agility™ :

1at bad crypto
backup plan +

1at there

) plan.

switch
WS
GCM.

‘ware

ES-GCM.

support
on: RC4.

commended,
SL traffic.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte b,

2001 Mantin=Shai
z> — 0.

rility” :
ypto
lan +

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4] should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

Not as scary as WEP: SSL uses a
nash to avoid related RC4 keys.
2001 Rivest: “The new attacks
do not apply to RC4-based SSL.
... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,
“On the security of RC4 in TLS":
Force target cookie into many
RC4 sessions. Use RC4 biases

to find cookie from ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,
contrary to Mantin—Shamir claim.

nash to avoid related RC4 keys.
2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,

“On the security of RC4 in TLS":

Force target cookie into many
RC4 sessions. Use RC4 biases
to find cookie from ciphertexts.

Not as scary as WEP: SSL uses a

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,
contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

nash to avoid related RC4 keys.
2001 Rivest: “The new attacks

do not apply to RC4-based SSL.

... |protocol| designers [using
RC4| should not be concerned.”

Problem: many nasty biases in
RC4 output bytes 21, 29,

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt,

“On the security of RC4 in TLS":

Force target cookie into many
RC4 sessions. Use RC4 biases
to find cookie from ciphertexts.

Not as scary as WEP: SSL uses a

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,
contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

cary as WEP: SSL uses a
avoid related RC4 keys.
/est: “The new attacks
pply to RC4-based SSL.
rocol| designers [using
ould not be concerned.”

. many nasty biases In
put bytes 21, 29,

-ardan—Bernstein—
—Poettering—Schuldt,
security of RC4 in TLS":
rget cookie into many
sions. Use RC4 biases
ookie from ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
23 0,24 —0, ..., 2055 — 0,

contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

2013 All
Patersor
accurate
for all 2

found ~
used all
via prop

EP: SSL uses a

ted RC4 keys.
> new attacks

C4-based SSL.

gners [using
e concerned.”

sty biases In
21,22,

rnstein—
ng—Schuldt,

f RC4 in TLS":

e Into many
' RC4 biases
n ciphertexts.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,

contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

2013 AlFardan—Be
Paterson—Poetteri
accurately compu
for all 2 € {1,...,
found ~65536 sin
used all of them i

via proper Bayesia

USES 4

eys.
cks

SSL.

18
ed.”

1N

TLS":

1y
es
X1S.

The single-byte biases:

2001 Mantin=Shamir:
zo> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
23 0,24 —0, ..., 2055 — 0,

contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul-
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

2013 AlFardan—Bernstein—

Paterson—Poettering—Schuld
accurately computed Pr|z; -
forall 2 € {1,..., 256}, all ;
found ~65536 single-byte b
used all of them in SSL att:
via proper Bayesian analysis

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,

contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:
accurately computed Pr|z; = 7]
for all 2 € {1, ..., 256}, all 7;
found ~65536 single-byte biases;
used all of them in SSL attack
via proper Bayesian analysis.

The single-byte biases:

2001 Mantin=Shamir:
z> — 0.

2002 Mironov:
21 20,21 A1, 21 = 2, etc.

2011 Maitra—Paul-Sen Gupta:
z3 > 0,24 —0, ..., 2055 — 0,

contrary to Mantin—Shamir claim.

2011 Sen Gupta—Maitra—Paul—
Sarkar: z16 — 240.
(This is specific to 128-bit keys.)

But wait: there's morel

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:
accurately computed Pr|z; = 7]
for all 2 € {1, ..., 256}, all 7;
found ~65536 single-byte biases;
used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)

by 2013 Watanabe—lsobe—
Ohigashi—Morii, 2013 Isobe—
Ohigashi—Watanabe—Morii:
z30 — 224, z48 — 208, etc.;
z3 — 131; z; — 1; 2956 A~ 0.

le-byte biases:

yntin—Shamir:

ronov:
21 A~ 1, 21 — 2, etc.

vitra—Paul-Sen Gupta:
za — 0, ..., 2055 — 0,

to Mantin=Shamir claim.

n Gupta—Maitra—Paul—
216 — 240.
specific to 128-bit keys.)

- there's morel

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1€41,..., 256}, all 7;
~05536 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—Ilsobe—

O
O

nIgas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph o

1.010
1.005 -

1.000

0.995 -

09901

1Ses: 2013 AlFardan—Bernstein— Graph of 256 Pr|z

. Paterson—Poettering—Schuldt:
nir. 1.010

accurately computed Pr|z; = 7]

for all 2 € {1,..., 256}, all 7; .

found ~65536 single-byte biases; 00T
1 — 2, etc. used all of them in SSL attack N
Sen Gupta: via proper Bayesian analysis. 1.000
.., 2255 = 0, ~256 of these biases were found 0005
—Shamir claim. independently (slightly earlier) N
Naitra—Paul— by 2013 Watanabe—lsobe— N I
) Ohigashi—Morii, 2013 Isobe— 0 50 100
 128-bit keys.) Ohigashi—Watanabe—Morii:

z30 — 224, z48 — 208, etc.;
more!

z3 — 131; z; — 1; 2956 A~ 0.

> 0,

claim.

|-

eys.)

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1€41,..., 256}, all 7;
~05536 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—Ilsobe—

O
O

nIgas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, z48 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1 = z]:

1.00r————7 1

1.005 -
1.000
0.995}

0.990 —1——

e,

I ISR SR RTINS T RS
100 150 200

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1 = z]:

1010~
1.005
1.000:2
0.995:2

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zo = z]:

1.010 -
1.005
1.000
0.995

0.990 —

I I
0 50 10 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z3 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z4 = z]:

.00

1.005- |

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z5 = z]:

.00

1.005 |

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg = z]:

.00

1.005- |

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z7 = z]:

.00

1.005- |

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg = z]:

.00

1.005- |

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z19 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z11 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1» = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z13 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z14 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z15 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z16 = z]:

1.00————7—— 17

1.005-

_—

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z17 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z1g = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z19 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo9 = z]:

.00

1.005-

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z01 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

I

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zoo = z]:

.00

1.005-
1.000
0.995-

0.990 bt

-

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z03 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo4 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

R

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo5 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z06 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

D

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z07 = z]:

.00

1.005-
1.000
0.995-

0.990 bt

——

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zog = z]:

.00

1.005F
1.000
0.995-

0.990 bt

-

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zo9 = z]:

.00

1.005F
1.000
0.995-

0.990 bt

-

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z39 = z]:

.00

1.005F
1.000
0.995-

0.990 bt

-

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z3; = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

M

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z3> = z]:

1.00—r———7— 17T

1.005F
1.000
0.995-

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z33 = z]:

.00

1.005F
1.000
0.995-

0.990 bt

R

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z34 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

——

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z35 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z36 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z37 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z35 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

-

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z39 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

—

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z49 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z41 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

L

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z4> = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

_—

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z43 = z]:

.00

1.005 -

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z44 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z45 = z]:

.00

1.005 -

1

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z46 = z]:

.00

1.005 -

L

0.995-

1.000

0.990 bt

PRI IS S IR I S RIS SR R
50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z47 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z45 = z]:

1.010
1.005:
1.000:
0.995:

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z49 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z5q = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z5; = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z50 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z53 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z54 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z55 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z56 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z57 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z5g = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z59 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgq = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z61 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg0 = z]:

.00

1.005 -
1.000
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zg3 = z]:

.00

1.005 -

SR

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[ze4 = z]:

1.010 -
1.005
1.000
0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zg5 = z]:

.00

1.005 -

SR

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgs = z]:

.00

1.005 -

L

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg7 = z]:

.00

1.005 -

NI

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgg = z]:

.00

1.005 -

-

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg9 = z]:

.00

1.005 -

R

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z79 = z]:

.00

1.005 -

S

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z7; = z]:

.00

1.005 -

N

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z70 = z]:

.00

1.005 -

N

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z73 = z]:

.00

1.005 -

L

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z74 = z]:

.00

1.005 -

I

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z75 = z]:

.00

1.005 -

A

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z7¢ = z]:

.00

1.005 -

I

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z77 = z]:

.00

1.005 -

N

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z7g = z]:

.00

1.005 -

I

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z79 = z]:

.00

1.005 -

B

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zgy = z]:

1.005 - :

1.000 - L//J//)

0.995- -

0 50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg; = z]:

.00

1.005 -

B

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zgy = z]:

.00

1.005 -

I

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zg3 = z]:

.00

1.005 -

I

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg4 = z]:

.00

1.005 -

-

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgs = z]:

.00

1.005 -

B

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgs = z]:

.00

1.005 -

B

0.995-

1.000

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg7 = z]:

1.005 -

B

0.995-

1.000

099901 1
0 50 100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zgg = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zgg = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zgg = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z9; = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg> = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg3 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg4 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zg5 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z96 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg97 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zgg = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zg9 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z190 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z101 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z100 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z103 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z104 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z105 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z106 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z197 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z108 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z199 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z119 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z111 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z112 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z113 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z114 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z115 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z116 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z117 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z115 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z119 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z19¢ = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z101 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z100 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z123 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z104 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z125 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z126 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z107 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z128 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z129 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z130 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z131 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z13> = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z133 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z134 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z135 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z136 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z137 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z135 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z139 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z149 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z141 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z140 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z143 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z144 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z145 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z146 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

PRI IS S IR I S RIS SR R
100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z147 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z148 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z149 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

PRI IS S IR I S RIS SR R
100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z150 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z151 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z150 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z153 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z154 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z155 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

PRI IS S IR I S RIS SR R
100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z156 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z157 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z158 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z159 = z]:

1.010 -
1.005
1.000
0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z160 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z161 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z160 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|z163 = x|

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z164 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z165 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z166 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z167 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|z165 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z169 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z179 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z171 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z170 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z173 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z174 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z175 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z17¢ = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z177 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z17g = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z179 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z150 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g1 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g0 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z153 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g4 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z155 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z156 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z157 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z135 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z159 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z190 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z191 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z190 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z193 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z194 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z195 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z196 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z197 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z195 = z]:

.00

1.005 -
1.000 -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|z199 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo00 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zp91 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zo00 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zp03 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z004 = z]:

.00

1.005 -
1.000 -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zop5 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zop6 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zop7 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zp0g = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zop9 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z219 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z211 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z212 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z213 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z014 = x|

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z215 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z216 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|z017 = z]:

.00

1.005 -
1.000 -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z015 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z219 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z000 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z001 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z000 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z003 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z004 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z005 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z006 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z007 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z008 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z009 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z230 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z031 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z230 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z033 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z034 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo35 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z236 = x|

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo37 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z035 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z239 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z040 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z041 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z040 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|z043 = x|

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z044 = x|

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|zo45 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z046 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo47 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z048 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I R
200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z049 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo50 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[zo51 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo50 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo53 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I R
200

250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo54 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|zo55 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250

-ardan—Bernstein—
—Poettering—Schuldt:

ly computed Pr|z; = j]
c{l1,..., 256}, all 7;
65536 single-byte biases;
of them in SSL attack
er Bayesian analysis.

‘these biases were found
lently (slightly earlier)

Watanabe—Isobe—
I—Morii, 2013 Isobe—
I—\VWatanabe—Morii:
24, z48 — 208, etc.;
1; z; — 1; 2056 A 0.

Graph of 256 Pr|zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 Ll

2013 All
Patersor
SuCcess
for recoy
from 2%

no prior

Later by

rnstein—
ng—Schuldt:

ed Pr[zi — j]
256}, all 7;
gle-byte biases;
1 SSL attack

n analysis.

ses were found
rhtly earlier)
—|sobe—
)13 Isobe—
re—Morii:

203, etc.;
2256 7+ 0.

Graph of 256 Pr|[zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 —1——

2013 AlFardan—Be
Paterson—Poetteri
success probability

for recovering byte
224

from ciphertex

no prior plaintext

Later bytes: see p

1ases;
ck

und

r)

Graph of 256 Pr|zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 L+

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuld
success probability (256 tria
for recovering byte x of plai
from 224 ciphertexts (with
no prior plaintext knowledge

L ater bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 -
1.005
1.000
0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

from 224 ciphertexts (with
no prior plaintext knowledge):

Later bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

from 22> ciphertexts (with
no prior plaintext knowledge):

Later bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

from 22° ciphertexts (with
no prior plaintext knowledge):

Later bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 —

1.005

1.000

0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

from 227 ciphertexts (with
no prior plaintext knowledge):

Later bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 -
1.005
1.000
0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)

for recovering byte z of plaintext
228

from ciphertexts (with

no prior plaintext knowledge):

W T
0.8

Later bytes: see paper.

Graph of 256 Pr|[zo56 = z]:

1.010 -
1.005
1.000
0.995

0.990 —————

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext
from 227 ciphertexts (with

no prior plaintext knowledge):

1 W SN
0.8

Later bytes: see paper.

Graph of 256 Pr[zo56 = z]: 2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt

1.010 1 1t '
N success probability (256 trials)

u | for recovering byte z of plaintext
1.005 - - . .
- - from 230 ciphertexts (with

no prior plaintext knowledge):

1.000 - r//M _

0.995 -

0 50 100 150 200 250

Later bytes: see paper.

Graph of 256 Pr[zo56 = z]: 2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt

1.010 1 1t '
N success probability (256 trials)

u | for recovering byte z of plaintext
1.005 - - . .
- - from 23! ciphertexts (with

no prior plaintext knowledge):

1.000 - r//M _

0.995 -

0 50 100 150 200 250

Later bytes: see paper.

Graph of 256 Pr[zo56 = z]: 2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt

1.010 1 1t '
N success probability (256 trials)

u | for recovering byte z of plaintext
1.005 - - . .
- - from 232 ciphertexts (with

no prior plaintext knowledge):

1.000 - r//M _

0.995 -

0 50 100 150 200 250

Later bytes: see paper.

f 256 Pr|zo56 = z]:

50

PTIRN IS SRR NN RIS R R ST SR R
100 150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext
from 232 ciphertexts (with

no prior plaintext knowledge):

L ater bytes: see paper.

Why do:

For year
AES-GC

vVarious ¢

We simy
software
choosing

56 = Z:
-]
150 200 250

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

232

from ciphertexts (with

no prior plaintext knowledge):

Later bytes: see paper.

Why does this hay

For years we've ha
AES-GCM: defens
various side-chann

We simply have tc
software and hards
choosing crypto pi

2013 AlFardan—Bernstein— Why does this happen?
Paterson—Poettering—Schuldt

For years we've had AES;

- success pro.bablllty (256 trla.ls) AES-GCM: defenses against
| for recovering byte z of plaintext . .
) 3 . | various side-channel attacks
: from 2°< ciphertexts (with
no prior plaintext knowledge): We simply have to educate |
o software and hardware engir
choosing crypto primitives, t
250

L ater bytes: see paper.

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

232

from ciphertexts (with

no prior plaintext knowledge):

Later bytes: see paper.

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

232

from ciphertexts (with

no prior plaintext knowledge):

Later bytes: see paper.

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt
success probability (256 trials)
for recovering byte z of plaintext

232

from ciphertexts (with

no prior plaintext knowledge):

Later bytes: see paper.

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

Often it doesn't.

Most obvious issue: performance.

-ardan—Bernstein—
—Poettering—Schuldt
probability (256 trials)
/ering byte x of plaintext
- ciphertexts (with
plaintext knowledge):

tes: see paper.

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

Often it doesn't.

Most obvious issue: performance.

e.g. 200
RC4 is 1
and extr
random
likely to
choice f
embedd:

e.g. Ope
based In
for speet
leaking |
2012 We

e.g. RFI

rnstein—
ng—Schuldt
(256 trials)

> ¢ of plaintext
ts (with
knowledge):

aper.

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

Often it doesn't.

Most obvious issue: performance.

e.g. 2001 Rivest:

RC4 is its exceptic
and extremely effie
random generator.
likely to remain th
choice for many a
embedded system:

e.g. OpenSSL still
based implementa
for speed on most

leaking many key
2012 Weil—Heinz-

e.g. RFIDs need si

s)

ntext

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

Often it doesn't.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘hea
RC4 is its exceptionally simj
and extremely efficient pseu
random generator. ... RC4
likely to remain the algorithi
choice for many applications
embedded systems.”

e.g. OpenSSL still uses table
based implementations of A
for speed on most CPUs,
leaking many key bits; see, «
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphe

Why does this happen?

For years we've had AES;
AES-GCM; defenses against
various side-channel attacks.

We simply have to educate the
software and hardware engineers
choosing crypto primitives, right?

Maybe, maybe not.
Does AES-GCM actually do
what the users need?

Often it doesn't.

Most obvious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of
RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

e.g. OpenSSL still uses table-
based implementations of AES
for speed on most CPUs,
leaking many key bits; see, e.g.,
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphers.

s this happen?

s we've had AES:

M: defenses against
side-channel attacks.

ly have to educate the
and hardware engineers
r crypto primitives, right?

maybe not.
-S-GCM actually do
> users need?

doesn't.

vious issue: performance.

e.g. 2001 Rivest: “The ‘heart’ of
RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

e.g. OpenSSL still uses table-
based implementations of AES
for speed on most CPUs,
leaking many key bits; see, e.g.,
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphers.

Major re
achieve
than AE

without

Fit into
low area
sometim
minimize
minimize
Many di
ASIC m:

Many di

DreCcompg

ypen?

d AES:

es against
el attacks.

) educate the
yare engineers
‘imitives, right?

.

ctually do
d”?

2: performance.

e.g. 2001 Rivest: “The ‘heart’ of
RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

e.g. OpenSSL still uses table-
based implementations of AES
for speed on most CPUs,
leaking many key bits; see, e.g.,
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphers.

Major research dir
achieve better per
than AES-GCM

without sacrificing

Fit into low power
low area (square n
sometimes low lat
mIinimize area X Sec
minimize energy (

Many different CF
ASIC manufacturi

Many different inf

orecomputation p¢

the
eers
ight?

1IdNCE.

e.g. 2001 Rivest: “The ‘heart’ of
RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

e.g. OpenSSL still uses table-
based implementations of AES
for speed on most CPUs,
leaking many key bits; see, e.g.,
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:
achieve better performance

than AES-GCM
without sacrificing security.

Fit into low power (watts),

low area (square micrometet
sometimes low latency (secc
minimize areaxseconds /byt
minimize energy (joules)/by

Many different CPUs, FPGA
ASIC manufacturing technol

Many different input sizes,

orecomputation possibilities,

e.g. 2001 Rivest: “The ‘heart’ of
RC4 is its exceptionally simple
and extremely efficient pseudo-
random generator. ... RC4 is
likely to remain the algorithm of
choice for many applications and
embedded systems.”

e.g. OpenSSL still uses table-
based implementations of AES
for speed on most CPUs,
leaking many key bits; see, e.g.,
2012 WeiB—Heinz—Stumpf.

e.g. RFIDs need small ciphers.

Major research direction:
achieve better performance

than AES-GCM
without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,
ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

1 Rivest: “The ‘heart’ of

ts exceptionally simple
emely efficient pseudo-
generator. ... RC4 is
remain the algorithm of
or many applications and
2d systems.”

nSSL still uses table-
plementations of AES
1 on most CPUs,

many key bits; see, e.g.,
iB—Heinz—Stumpf.

Ds need small ciphers.

Major research direction:
achieve better performance
than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

Can one
In hardw

Some in
Trivium
are “‘har
but not

“The ‘heart’ of

nally simple

clent pseudo-
... RC4 s

e algorithm of

oplications and

N
).

uses table-
tions of AES

CPUs,
bits; see, e.g.,
-Stumpf.

mall ciphers.

Major research direction:
achieve better performance
than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

Can one design dc
iIn hardware and s

Some inspirational
Trivium and Kecc:
are “hardware’ de
but not bad in sof

rt’ of
le
do-
IS

M of
; and

\v
|

ES

[S.

Major research direction:
achieve better performance

than AES-GCM
without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

Can one design do very well
in hardware and software?

Some inspirational examples
Trivium and Keccak

are “hardware’ designs

but not bad in software.

Major research direction:
achieve better performance
than AES-GCM

without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

Can one design do very well
in hardware and software?

Some inspirational examples:
Trivium and Keccak

are “hardware” designs
but not bad in software.

Major research direction:
achieve better performance

than AES-GCM
without sacrificing security.

Fit into low power (watts),

low area (square micrometers),
sometimes low latency (seconds);
minimize areaxseconds/byte;
minimize energy (joules)/byte.

Many different CPUs, FPGAs,

ASIC manufacturing technologies.

Many different input sizes,

orecomputation possibilities, etc.

Can one design do very well
in hardware and software?

Some inspirational examples:
Trivium and Keccak

are “hardware” designs
but not bad in software.

Another approach:
replace ARX with "ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

but friendlier to hardware.

search direction:
better performance
S-GCM

sacrificing security.

low power (watts),
(square micrometers),
es low latency (seconds);
> area xseconds/byte;

> energy (joules)/byte.

fferent CPUs, FPGAs,

anufacturing technologies.

fferent input sizes,
utation possibilities, etc.

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with “"ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

bout friendlier to hardware.

Another
achieve
than AE

without

Typical
are start
Limit im

Use larg

ection:
formance

- Security.

- (watts),
nicrometers),
ency (seconds);
onds/byte;
joules) /byte.

'Us, FPGASs,

ng technologies.

ut sizes,
yssibilities, etc.

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with "ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

but friendlier to hardware.

Another major res
achieve better sec
than AES-GCM

without sacrificing

Typical 128-bit blc
are starting to feel
Limit impact of cc
Use larger blocks?

ogies.

- etc.

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with “"ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

bout friendlier to hardware.

Another major research dire:
achieve better security

than AES-GCM
without sacrificing performa

Typical 128-bit blocks

are starting to feel too smal
Limit impact of collisions?
Use larger blocks?

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with "ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

but friendlier to hardware.

Another major research direction:
achieve better security

than AES-GCM
without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with "ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

but friendlier to hardware.

Another major research direction:
achieve better security

than AES-GCM
without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Typical 128-bit pipe
s starting to feel too small.

Limit reforgeries? Use wider pipe?

Can one design do very well
in hardware and software?

Some inspirational examples:

Trivium and Keccak
are “hardware’ designs
but not bad in software.

Another approach:
replace ARX with "ORX".
Skein-type mix doesn’'t work

but can imitate Salsa20:
compose a"=((b|c)<<<r).
Needs a few more rounds,

but friendlier to hardware.

Another major research direction:
achieve better security

than AES-GCM
without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Typical 128-bit pipe
s starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?
(We've started some work.)

design do very well
rare and software?

spirational examples:

and Keccak
dware” designs
bad in software.

approach:

ARX with "ORX".
pe mix doesn’'t work
imitate Salsa20:
a”=((bl|c)<<k<r).
few more rounds,

dlier to hardware.

Another major research direction:

achieve better security
than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe
s starting to feel too sma

Limit reforgeries? Use wic

.
er pipe’

Has anyone tried optimizing
192-bit /256-bit poly hashes?

(We've started some work

)

Allow re

User has
encrypti
will tell

) very well
oftware?

- examples:

1k
SIgNS
tware.

"ORX".
esn't work
1[sa20:
c)<<<r).
rounds,
ardware.

Another major research direction:

achieve better security
than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe
s starting to feel too sma

Limit reforgeries? Use wic

.
er pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?

(We've started some work

)

Allow repeated me

User has to expect
encrypting (n, m)
will tell attacker w

Another major research direction:

achieve better security
than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe
s starting to feel too sma

Limit reforgeries? Use wic

.
er pipe’

Has anyone tried optimizing
192-bit /256-bit poly hashes?

(We've started some work

)

Allow repeated message nur

User has to expect that
encrypting (n,m) and (n,n
will tell attacker whether m

Another major research direction:

achieve better security
than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.

Limit impact of collisions?

Use larger blocks?

Typical 128-bit pipe
s starting to feel too sma

Limit reforgeries? Use wic

.
er pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?

(We've started some work

)

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')
will tell attacker whether m = m'.

Another major research direction:
achieve better security
than AES-GCM

without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Typical 128-bit pipe
s starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?
(We've started some work.)

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')
will tell attacker whether m = m'.

But user is surprised if repeated
message number leaks more

information, allows forgeries, etc.

Another major research direction:
achieve better security

than AES-GCM
without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Typical 128-bit pipe
s starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?
(We've started some work.)

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')
will tell attacker whether m = m'.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Another major research direction:
achieve better security

than AES-GCM
without sacrificing performance.

Typical 128-bit blocks

are starting to feel too small.
Limit impact of collisions?
Use larger blocks?

Typical 128-bit pipe
s starting to feel too small.

Limit reforgeries? Use wider pipe?

Has anyone tried optimizing
192-bit /256-bit poly hashes?
(We've started some work.)

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')
will tell attacker whether m = m'.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

major research direction:
better security

S-GCM

sacrificing performance.

128-bit blocks

ing to feel too small.
pact of collisions?

er blocks?

128-bit pipe
g to feel too small.

forgeries? Use wider pipe?

one tried optimizing
256-bit poly hashes?
started some work.)

Allow repeated message numbers?

User has to expect that
encrypting (n,m) and (n, m')

will tell attacker whether m = m/'.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Many ci
“free” n
e.g., AE

Is this c

with rep

earch direction:

urity

- performance.

ycks
' too small.
lisions?

e
00 small.

Use wider pipe?

ptimizing
ly hashes?
ne work.)

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')

will tell attacker whether m = m/.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Many ciphers inte;
“free” message au
e.g., AES-OCB, H

Is this compatible

with repeated mes

ction:

NCe.

- pipe’

Allow repeated message numbers?

User has to expect that
encrypting (n,m) and (n, m')

will tell attacker whether m = m/'.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Many ciphers integrate
“free’ message authenticatis

e.g., AES-OCB, Helix, Pheli

Is this compatible

with repeated message num

Allow repeated message numbers? Many ciphers integrate
“free’ message authentication:

e.g., AES-OCB, Helix, Phelix.

User has to expect that
encrypting (n, m) and (n, m')
will tell attacker whether m = m'. s this compatible

with repeated message numbers?

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')

will tell attacker whether m = m/.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Many ciphers integrate

“free’ message authentication:

e.g., AES-OCB, He

Is this compatible

X, Phelix.

with repeated message numbers?

Is this compatible

with fast forgery rej

ection?

Allow repeated message numbers?

User has to expect that
encrypting (n, m) and (n, m')

will tell attacker whether m = m/.

But user is surprised if repeated
message number leaks more
information, allows forgeries, etc.

2006 Rogaway—Shrimpton:
first authenticate (n, m),
then use the authenticator
as a nonce to encrypt m.

Is this protection compatible
with fast forgery rejection?

Many ciphers integrate
“free” message authentication:

e.g., AES-OCB, Helix, Phelix.

Is this compatible

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build

HF F H Feistel block cipher;
reuse first H for fast auth

with repeated message numbers;
reuse last H for another auth
with fast forgery rejection.

But this consumes bandwidth.

peated message numbers?

, to expect that
ng (n, m) and (n, m')

attacker whether m = m/'.

- Is surprised if repeated
number leaks more
ion, allows forgeries, etc.

gaway—Shrimpton:
henticate (n, m),
' the authenticator
ce to encrypt m.

rotection compatible
- forgery rejection?

Ma

ny ciphers integrate

“free’ message authentication:

e.g.

Is t
wit
Is t

wit

, AES-OCB, Helix, Phelix.

nis compatible

n repeated message numbers?

nis compatible

n fast forgery rejection?

One approach: build
HF F H Feistel block cipher;
reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many m
In authe

AES-GC
the end

Can buil

using sa

Can buil
combine

Can buil
block cij

Can bull
authenti

ssage numbers?

t that
and (n, m')

thether m = m/.

ed if repeated
caks more
s forgeries, etc.

rimpton:
(N, m),
nticator
ypt m.

“ompatible
ejection?

Many ciphers integrate

“free” message aut
e.g., AES-OCB, He

Is this compatible

nentication:

X, Phelix.

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build
HF F H Feistel block cipher;
reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directi
In authenticated c

AES-GCM is clear
the end of the sto

Can build better n
using same MAC,

Can build better N
combine with sam

Can build better
block ciphers, stre

Can build better i
authenticated cipr

nbers?

o
S,
N—

]
S

1ted

, etcC.

Ma

ny ciphers integrate

“free” message authentication:

e.g.

Is t
wit
Is t

wit

, AES-OCB, Helix, Phelix.

nis compatible

n repeated message numbers?

nis compatible

n fast forgery rejection?

One approach: build
HF F H Feistel block cipher;
reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions
in authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better
block ciphers, stream cipher

Can build better integrated
authenticated ciphers.

Many ciphers integrate

“free” message aut
e.g., AES-OCB, He

Is this compatible

nentication:

X, Phelix.

with repeated message numbers?

Is this compatible

with fast forgery rejection?

One approach: build
HF F H Feistel block cipher;
reuse first H for fast auth

with repeated message numbers;

reuse last H for another auth

with fast forgery rejection.

But this consumes bandwidth.

Many more directions
in authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better
block ciphers, stream ciphers.

Can build better integrated
authenticated ciphers.

phers Iintegrate

1essage authentication:
S-OCB, Helix, Phelix.

ompatible
eated message numbers?

ompatible
- forgery rejection?

roach: build

Feistel block cipher;

st H for fast auth

eated message numbers;
t H for another auth

t forgery rejection.
consumes bandwidth.

Many more directions
in authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated
authenticated ciphers.

CAESAF

“Compe

Encrypti
Applicak

compet:

Mailing
compet:

Qgoogle

NIST is
to run a
but has
a $3330
competr

Irate

t
€

nentication:

X, Phelix.

sage numbers?

ejection?

ild

ck cipher;

st auth

sage numbers;

1other auth

ejection.
, bandwidth.

Many more directions
iIn authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated
authenticated ciphers.

CAESAR

“Competition for ,
Encryption: Secur
Applicability, and

competitions.cl

Mailing list: cryp
competitions+st

@googlegroups.«

NIST is much too
to run another cor

but has generously

a $333099 “Crypt
competitions” gra

on.

bers?

bers:

Many more directions
in authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated
authenticated ciphers.

CAESAR

“Competition for Authentic:

Encryption: Security,
Applicability, and Robustnes

competitions.cr.yp.to

Mailing list: crypto-
competitions+subscribe

Qgooglegroups.com

NIST is much too busy
to run another competition
but has generously provided

a $333099 “Cryptographic
competitions’ grant to UIC.

Many more directions
iIn authenticated ciphers.

AES-GCM is clearly not
the end of the story.

Can build better modes
using same MAC, cipher.

Can build better MACs,
combine with same cipher.

Can build better

block ciphers, stream ciphers.

Can build better integrated
authenticated ciphers.

CAESAR

“Competition for Authenticated

Encryption: Security,
Applicability, and Robustness”

competitions.cr.yp.to

Mailing list: crypto-
competitions+subscribe

@googlegroups.com

NIST is much too busy
to run another competition
but has generously provided

a $333099 “Cryptographic
competitions’ grant to UIC.

