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Is split across blocks.
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including controlled variable split.

Countermeasure in browsers:
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just before sending real packet.

Attacker can also try to attack
CBC by forging ciphertexts,
but each SSL packet

includes an authenticator.

“Authenticate-then-encrypt’:
SSL appends an authenticator,

pads reversibly to full block,
encrypts with CBC.
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founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z19¢ = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250



2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
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used all of them in SSL attack
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;
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used all of them in SSL attack
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for al
founc
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~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z174 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z175 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z17¢ = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z177 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z17g = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z179 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z150 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS SR IR IR S T
100 150 200

250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g1 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g0 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z153 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z1g4 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z155 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z156 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z135 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
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Graph of 256 Pr[z159 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z190 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z191 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z190 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr[z194 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O
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nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z195 = z]:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O
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nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[zp91 = z]:

.00

1.005 -
1.000 - -
0.995-

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O
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ni—Morii, 2013 Isobe—
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Graph of 256 Pr[zo00 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z211 = z]:

1.010 —

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O
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ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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ni—VWatanabe—Morii:
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z005 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
O

nigas

nigas

ni—Morii, 2013 Isobe—

ni—VWatanabe—Morii:

z30 — 224, 248 — 208, etc.;
z3 — 131; z; = 1; 2956 A~ 0.

Graph of 256 Pr|[z009 = z]:

L.010

1.005

1.000

0.995

0.990 bt

I IS S R
100 150

I IT S ST T
200 250




2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—

O
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2013 AlFardan—Bernstein—
Paterson—Poettering—Schuldt:

accurately computed Pr[z; = 7]

for al
founc

1 e41,..., 256}, all 7;
~055306 single-byte biases;

used all of them in SSL attack
via proper Bayesian analysis.

~256 of these biases were found

independently (slightly earlier)
by 2013 Watanabe—lsobe—
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2013 AlFardan—Bernstein—
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