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at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.
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Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.
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not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.
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r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.
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