
McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



McBits:

fast constant-time

code-based cryptography

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).



Objectives

Set new speed records

for public-key cryptography.

: : : at a high security level.

: : : including protection

against quantum computers.

: : : including full protection

against cache-timing attacks,

branch-prediction attacks, etc.

: : : using code-based crypto

with a solid track record.

: : : all of the above at once.

The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).



The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).



The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040



The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040



The track record

1978 McEliece proposed

public-key code-based crypto.

Has held up well after extensive

optimization of attack algorithms:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040



1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040



1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):



1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):



1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



Examples of the competition

Some cycle counts on h9ivy

(Intel Core i5-3210M, Ivy Bridge)

from bench.cr.yp.to:

mceliece encrypt 61440

(2008 Biswas–Sendrier, �280)

gls254 DH 77468

(binary elliptic curve; CHES 2013)

kumfp127g DH 116944

(hyperelliptic; Eurocrypt 2013)

curve25519 DH 182632

(conservative elliptic curve)

mceliece decrypt 1219344

ronald1024 decrypt 1340040

New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



New decoding speeds

�2128 security (n; t) = (4096; 41):

60493 Ivy Bridge cycles.

Talk will focus on this case.

(Decryption is slightly slower:

includes hash, cipher, MAC.)

�280 security (n; t) = (2048; 32):

26544 Ivy Bridge cycles.

All load/store addresses

and all branch conditions

are public. Eliminates

cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Constant-time fanaticism

The extremist’s approach

to eliminate timing attacks:

Handle all secret data

using only bit operations—

XOR (^), AND (&), etc.

We take this approach.

“How can this be

competitive in speed?

Are you really simulating

field multiplication with

hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.



Yes, we are.

Not as slow as it sounds!

On a typical 32-bit CPU,

the XOR instruction

is actually 32-bit XOR,

operating in parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

Ivy Bridge:

256-bit XOR every cycle,

or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).



Not immediately obvious

that this “bitslicing”

saves time for, e.g.,

multiplication in F212 .

But quite obvious that it

saves time for addition in F212 .

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.

Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of f = c41x
41 + � � �+ c0x

0.

For each � 2 F212 ,

compute f(�) by Horner’s rule:

41 adds, 41 mults.

Or use Chien search: compute

cig
i, cig

2i, cig
3i, etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Asymptotics:

normally t 2 Θ(n= lgn),

so Horner’s rule costs

Θ(nt) = Θ(n2= lgn).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.

Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.



Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.



Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.



Useless in char 2: � = ��.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.



Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.



Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.



Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.



Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Their main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.



We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.



We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.



We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.



We generalize to

f = c0 + c1x + � � �+ ctx
t

for any t < n.

) several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.



Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + � � �+ rn,

s1 = r1�1 + r2�2 + � � �+ rn�n,

s2 = r1�
2
1 + r2�

2
2 + � � �+ rn�

2
n,

...,

st = r1�
t
1 + r2�

t
2 + � � �+ rn�

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.



Compare to multipoint evaluation:

f(�1) = c0 + c1�1 + � � �+ ct�
t
1,

f(�2) = c0 + c1�2 + � � �+ ct�
t
2,

...,

f(�n) = c0 + c1�n + � � �+ ct�
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.



Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.



We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.



Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.



Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

Also 10� speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits



Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

Also 10� speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits



Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

Also 10� speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits



Secret permutation

Additive FFT ) f values at

field elements in a standard order.

This is not the order

needed in code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Beneš network.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

Also 10� speedup for CFS.

More information:

cr.yp.to/papers.html#mcbits


