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Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”;
“knapsack problem™; etc.
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(499, 852, 1927, 2535, 3596, 3608,
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Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.
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What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.
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finds this root using
~20-2" quantum evaluations
on superpositions of inputs.

Cost of quantum evaluation
~ cost of evaluation of f
if cost counts qubit “operat
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Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.
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Apply to the function
J = 2(J)—t where

2(J) = ZieJ Ly

Cost 2™ to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.
We suppress poly factors in cost.
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Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 25 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 35 x (Step 1 4 Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

oo '

This Is also easy. : j
Repeat steps 1 and 2 _
051 .- -0.5-
about 0.58 - 2 times. -
Measure the n qubits. Lol

With high probability this finds
the unique J such that >(J) = t. Good moment to stop, measure.




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 45 x (Step 1 + Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

0.0

This Is also easy. -
Repeat steps 1 and 2 :
0.57 4 B

about 0.58 - 2 times. -
Measure the n qubits. ol

With high probability this finds
the unique J such that X(J) = t.




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.0

-0.5+

-1.0

Traditional stopping point.



Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 60 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 70 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 80 x (Step 1 + Step 2):
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-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 90 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

-0.5+

-1.0

0.0 b o

Very bad stopping point.



Set a < b where
y if X(J) = ¢,
otherwise.

bout as easy
uting 2.

“Grover diffusion” .
b where

. +(2/2%) ) s ay.
Iso easy.

steps 1 and 2
58 - 2097 times.

the n qubits.
rh probability this finds

ue J such that X(J) =t¢.

Graph of J — a

for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

—0.5+

-1.0

0.0 b o

Very bad stopping point.
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) where Graph of J — a J — aj 1s comple

= t, for 36634 example with n = 12 by a vector of two
after 100 x (Step 1 + Step 2): (with fixed multip
Asy 10 (1) ay for roots J

(2) ay for non-roc

iffusion” . 05| 1 | Step 1 + Step 2
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| | and powers of this

d 2 - | to understand evo
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that X(J) = t. Very bad stopping point.




Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

—0.5+

-1.0

Very bad stopping point.

J — a is completely descri
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability i1s ~1

after ~s(m/4)29°" iterations



Graph of J — a J — a; is completely described

for 36634 example with n = 12 by a vector of two numbers
after 100 x (Step 1 + Step 2): (with fixed multiplicities):
10 (1) ay for roots J;

(2) a for non-roots J.

05. 1 Step 1 + Step 2
| | act linearly on this vector.

00 o | Easily compute eigenvalues

and powers of this linear map
to understand evolution

_o5. ]
- | of state of Grover's algorithm.
_ | = Probability is ~1

-1.0 after ~s(m/4)29°" iterations.

Very bad stopping point.




fJ — a J
4 example with n = 12
) X (Step 1 + Step 2):

1 stopping point.

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-righ

Don't ne
to achie

For simy

1974 Hc
Sort list
for all J
and list
for all J.
Merge t
2 (J1) =
e, 2(J



with n = 12
1 4 Step 2):

“point.

J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.

Don't need quantl
to achieve expone

For simplicity assu

1974 Horowitz—Sa
Sort list of ¥(J1)

for all /1 C{1,...
and list of t — X (.
for all /o C {n/2-
Merge to find colli
X (J1) =t —2()
e, X(J1U )=



12

I\J
v

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(7/4)29°" iterations.

Left-right split (0.5)

Don't need quantum compu
to achieve exponent 0.5.

For simplicity assume n € 2

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}
and list of ¢ — X ()

forall L C{n/2+1,..., 0
Merge to find collisions

2 (1) =t —1(N),

e, 2(J1U ) =t.



J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J1 C{1,..., n/2}

and list of ¢t — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U ) =t.



Is completely described
tor of two numbers

ed multiplicities):

or roots J;

or non-roots J.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s &1

7 /4)20-°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2 (/1) =t —X1(L),

e, 2(J1U ) =t.

Cost 20
We assig

e.g. 366
(499, 85.
4688, 59

Sort the
0,499, 8
499 4 8!
and the
360634 —
360634 —
to see tt
499 4 8!
36634 —



ely described
numbers

licities):

ts J.

, vector.

renvalues

- linear map
lution

s algorithm.
51
iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U ) =t.

Cost 29" for sort
We assign cost 1 1

e.g. 36634 as sum
(499, 852, 1927, 2¢
4683, 59389, 6385,

Sort the 64 sums
0, 499, 852, 499
499 4 852 4+ 1927
and the 64 differe
36634 — 0, 36634 -
36634 — 4688 — -
to see that

499 + 852 + 2535
36634 —5989 — 6 3¢




bed

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2(J1) =t —1(L),

e, 2(J1U ) =t.

Cost 292" for sorting, merg
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Sort the 64 sums

0,499, 852,499 4 852, . ..,
499 + 852 + 1927 + - - - + 3¢
and the 64 differences
36634 — 0, 36634 — 4638, . .

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 -



Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N),

e, 2(J1Uh) =t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

36634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.



t split (0.5)

red quantum computers
ve exponent 0.5.

licity assume n € 2Z.

rowitz—Sahni:

of 2(J1)

o find collisions
t— X (D),
1 U JQ) = t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, . ..,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli |

For simy

C
C

N100S€E

N100SE

Define ¢

Find all
such tha
How? S

Find all
such tha

Sort anc
collision

e, X(J



5)

Im computers
nt 0.5.

men € 2Z.
hni:

SIONS

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assu

C
C

hoose M as 20-29

noose t1 € {0, 1,

Define to =t — t3

Find all J; C {1,.
such that X(J1) =
How? Split Jj as

Find all J» C {n/:
such that X (/) =

Sort and merge to
collisions 2(J1) =
e, 2(J1Uh) =



ters

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M —
Define to =t — 7.

Find all J; CH{1,..., n/2}
such that X(J1) =¢1 (mo
How? Split J1 as J11 U Jio.

Find all b C{n/2+1,...,
such that X () =t (mo

Sort and merge to find all
collisions 2(J1) =t — X(J)o)
e, 2(J1U ) =t.



Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that X(J;) =¢t1 (mod M).
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}
such that ¥(J) =t (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.



T for sorting, merging.
'n cost 1 to RAM.

34 as sum of
2.1927. 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

64 sums

52,499 4+ 852, ...,

)2 + 1927 4 - - - + 3608
64 differences

0, 36634 — 4688, .. .,

4688 — - -- — 9413
1at
2 + 2535 + 3608 =

59389 — 6385 — 7353 —-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — t7.

Find all J; CH{1,..., n/2}
such that X (/1) = ¢4
How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that (/) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U ) =t.

Finds J
There ar
Each ch
Total co

Not visil
this uses

assumin,

Algorith
introduc
2006 Els
2010 Hc

Differens
for simil
1981 Sc



ing, merging.
0 RAM.

of
35, 3596, 3608,
7353, 7650, 9413):

+ 3608 =
35—7353—-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that 2(J1) = £;
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.

Finds J iff 2(J71) :
There are ~20-2°7

Each choice costs

Total cost 2V->7".

Not visible in cost
this uses space on
assuming typical c

Algorithm has bee
introduced at leas
2006 Elsenhans—J:
2010 Howgrave-Gi

Different techniqu
for similar space r

1981 Schroeppel-



ng.

3608,

,9413):

-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — 7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that () =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U ) =t.

Finds J iff X(J1) = £1.
There are ~29-29" choices o

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible in cost metric:

this uses space only 2V-2°7

assuming typical distributior

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Jot

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.



Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1U b)) =t.

Finds J iff X(J1) = ¢1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.



0.5
licity assume n € 4Z.

M%20'25n.
t1 € {0,1,..., M—1}.
» =1 — 11.

plit J1 as J11 U Jqo.

HC{n/2+1,..., n}

tX(/h)=tr (mod M).

| merge to find all
5 2(J1) =t —X(h),
1U) =t.

Finds J iff £(J1) = t1.

There are ~2%-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:
20.2572,

this uses space only

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

4633, 59
Try eact

In partic
There ar
(499, 85
with sun
There ar
(4688, 5
with sur
Sort anc
499 4 8!
36634 —



men € 4/.

find all
t—2(Jh),
t.

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 20-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.

eg. M=8,1t=3
(499, 852, 1927, 2¢
4688, 5989, 6385, |

Try each t1 € {0,

In particular try %4
There are 12 subs

(499, 852, 1927, 2¢
with sum 6 modul
There are 6 subsec
(4688, 5989, 6385,
with sum 36634 —
Sort and merge to
499 4 852 + 2535
36634 —5989 — 63¢



| M),

| M).

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Try each t; € {0,1,..., 7}.

In particular try t; = 6.
There are 12 subsequences ¢
(499, 852, 1927, 2535, 3596,
with sum 6 modulo 8.
There are 6 subsequences of
(4688, 5989, 6385, 7353, 765
with sum 36634 — 6 modulc
Sort and merge to find

499 + 852 + 2535 + 3608 =
36634 — 5989 — 6385 — 7353 -



Finds J iff £(J1) = ¢1.

There are ~20-2°7

choices of %7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost
this uses space on

assuming typical ¢

metric:
y 20.25??,,

Istribution.

Algorithm has been

Introduced at least twice:
2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —9413.



iff T(J1) = 4.

o %20.25?’&

choices of t7.

oice costs 2V-297
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Istribution.

m has been

ed at least twice:
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t technique

ar space reduction:

hroeppel-Shamir.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.
Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantur

Cost 2™«
1998 Br.

For simy

Comput
J1 CA{1
Sort L =

Can now
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Recall:

Use Gro
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choices of %7.
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metric:
y 20.25??,,

Istribution.
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Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-righ

Cost 2'”'/3, Imitatil
1998 Brassard—Hg

For simplicity assu

Compute X (J7) fc
J1 C {1, 2. ..., 'n/
Sort L ={X(J1)}

Can now efficient!
Jo = [t —2()) ¢
for Jo C{n/3+1
Recall: we assign

Use Grover's metfh
whether this funct



f¢q.

1X.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.:

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to |

Use Grover's method to see
whether this function has a



e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.333...)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo—= [t —2(N2) ¢ L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.



- 8, t = 36634, = =
2,1927, 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

't €40,1,..., 7},

ular try t; = 6.

e 12 subsequences of
2,1927, 2535, 3596, 3608)
n 6 modulo 8.

e 6 subsequences of

089, 6385, 7353, 7650, 9413)
n 36634 — 6 modulo 8.

| merge to find

2 + 2535 4 3608 =

5989 — 6385 — 7353 —9413.

Quantum left-right split (0.333...)

Quantur

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J71) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/34+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-c
Say f h:
exactly «

l.e., p F£

Problem

Cost 2"
the set ¢

Comput:

Generali
success
Choose
Comput



0034, ¢ =
35, 3596, 3608,
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equences of
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o 8.

juences of

7353, 7650, 9413)
6 modulo 8.
find

+ 3608 =

35— 7353 —-9413.

Quantum left-right split (0.333..

)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Quantum walk

Unique-collision-fii
Say f has n-bit in
exactly one collisic

e, p#q, f(p)=
Problem: find this

Cost 2™: Define S
the set of n-bit st
Compute f(S), sc

Generalize to cost
success probability
Choose a set S of

Compute f(S), so



3603,
,9413):

f
3608)

0,9413)

-9413.

Quantum left-right split (0.333...)

Quantum walk

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding prok
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,
success probability ~s(r/2™)
Choose a set S of size 7.
Compute f(S), sort.



Quantum left-right split (0.333..

)

Quantum walk

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute 2(Jp) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.
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Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(
the generalized co

the set S: the mul
the number of coll

Very efficient to n
to D(T) if T is ar

#S =#T =1, #

2003 Ambainis, sii
Magniez—Nayak—Fk
Create superpositi
(D(S), D(T)) witl
By a quantum wal
find S containing
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RAM.

root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size 7.
Compute f(S), sort.

Data structure D(S) captur
the generalized computation
the set S; the multiset f(S)
the number of collisions in

Very efficient to move from
to D(T) if T is an adjacent

HS =H#HT =71, #£(5NT) =

2003 Ambainis, simplified 2(
Magniez—Nayak—Roland—Sar
Create superposition of stat
(D(S), D(T)) with adjacent
By a quantum walk

find S containing a collision



Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:
#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.



n walk

ollision-finding problem:

s n-bit inputs,
one collision {p, ¢}

q, f(p) = f(9).

- find this collision.

 Define S as
f n-bit strings.
e £(5), sort.

ze to cost 7,
probability ~s(r/2™)?:
3 set S of size r.

e f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the

Start frc
Repeat
Negat

if S
Repes
For

[

For
1

Now hig
that T ¢
Cost r+



ding problem:

puts,

n {p, g}
- £(9)-

- collision.

Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

How the quantum

Start from uniforn
Repeat ~0.6 - 2"/
Negate as 71

if S contains

Repeat ~0.7 - 4,
For each T:

Diffuse as

For each S:
Diffuse as

Now high probabil
that 7 contains cc
Cost 7+2"/4/1T. (



em:

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk worl

Start from uniform superpos
Repeat ~0.6 - 2" /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across a
For each S:

Diffuse ag 7 across a

Now high probability
that 7 contains collision.
Cost r+2"/+/r. Optimize:



Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS =H#HT =71, #5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:

Diffuse ag 7 across all S.
For each §S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.



ucture D(S) capturing
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if T is an adjacent set:

T =71, #SNT)=r—-1.
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How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify
(#(5SN
reduce a
Analyze

e.g. n =
0 negati

Pr|
Pr
Pr
Pr
Pr
Pr
Pr

dSS
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1 adjacent S, T.
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a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) acc
(#(5 N {p.q}). #

reduce a to low-di

Analyze evolution

eg.n=15 r =1

0 negations and 0

Pr|

Pr
Pr
Pr
Pr
Pr
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(
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Right column is si



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 7
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(S5 N {p.q}). #(T N1p. g

reduce a to low-dim vector.
Analyze evolution of this ve

e.g. n = 1b, r = 1024, after
0 negations and O diffusions

Pr|class (0, 0)] ~ 0.938;

Prlclass (0, 1)] ~ 0.000; +
Prclass (1,0)] ~ 0.000; +
Prlclass (1,1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr[class (2,1)] ~ 0.000; +
Pr[class (2,2)] ~ 0.001; +

Right column is sign of as 7



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
0 negations and 0 diffusions:

Pr|class (0, 0)] ~ 0.938;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; +
Prlclass (1, 1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.001; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
1 negation and 46 diffusions:

Pr|class (0, 0)] ~ 0.935;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.057; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.008; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
2 negations and 92 diffusions:

Pr|class (0, 0)] ~ 0.918;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.059; +
Prlclass (1,2)] ~ 0.001; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.022; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
3 negations and 138 diffusions:

Pr|class (0, 0)] ~ 0.897;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.058; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.042; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
4 negations and 184 diffusions:

Pr|class (0, 0)] ~ 0.873;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.070; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
5 negations and 230 diffusions:

Pr|class (0, 0)] ~ 0.838;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.003; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.104; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
6 negations and 276 diffusions:

Pr|class (0, 0)] ~ 0.800;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.051; +
Prlclass (1, 2)] ~ 0.006; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.141; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
[ negations and 322 diffusions:

Pr|class (0, 0)] ~ 0.758;

Pr[class (0, 1)] ~ 0.002; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.047; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.184; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
8 negations and 368 diffusions:

Pr|class (0, 0)] ~ 0.708;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.046; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.234; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
O negations and 414 diffusions:

Pr|class (0, 0)] ~ 0.658;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.042; +
Prlclass (1, 2)] ~ 0.009; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.287; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
10 negations and 460 diffusions:

Pr|class (0, 0)] ~ 0.606;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.002; —
Prlclass (1,1)] ~ 0.037; +
Prlclass (1,2)] ~ 0.013; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.338; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
11 negations and 506 diffusions:

Pr|class (0, 0)] ~ 0.547;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.036; +
Prlclass (1,2)] ~ 0.015; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.394; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
12 negations and 552 diffusions:

Pr|class (0, 0)] ~ 0.491;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.032; +
Prlclass (1,2)] ~ 0.014; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.455; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
13 negations and 598 diffusions:

Pr|class (0, 0)] ~ 0.436;

Pr[class (0, 1)] ~ 0.005; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.026; +
Prlclass (1,2)] ~ 0.017; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.513; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
14 negations and 644 diffusions:

Pr|class (0, 0)] ~ 0.377;

Pr[class (0, 1)] ~ 0.006; +
Prclass (1,0)] ~ 0.004; —
Prlclass (1,1)] ~ 0.025; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.566; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
15 negations and 690 diffusions:

Pr|class (0, 0)] ~ 0.322;

Pr[class (0, 1)] ~ 0.005; +
Prclass (1,0)] ~ 0.004; —
Prclass (1,1)] ~ 0.021; +
Prlclass (1,2)] ~ 0.023; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.623; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
16 negations and 736 diffusions:

Pr|class (0, 0)] ~ 0.270;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.017; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.680; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
17 negations and 782 diffusions:

Pr|class (0, 0)] ~ 0.218;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.005; —
Prlclass (1,1)] ~ 0.015; +
Prlclass (1,2)] ~ 0.024; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.730; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
18 negations and 828 diffusions:

Pr|class (0, 0)] ~ 0.172;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.011; +
Prlclass (1, 2)] ~ 0.029; +
Pr|class (2,1)] ~ 0.001; +
Prclass (2,2)] ~ 0.775; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
19 negations and 874 diffusions:

Pr|class (0, 0)] ~ 0.131;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.008; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.816; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
20 negations and 920 diffusions:

Pr|class (0, 0)] ~ 0.093;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.007; +
Prlclass (1,2)] ~ 0.027; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.857; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
21 negations and 966 diffusions:

Pr|class (0, 0)] ~ 0.062;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.004; +
Prlclass (1,2)] ~ 0.030; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.890; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
22 negations and 1012 diffusions:

Pr|class (0, 0)] ~ 0.037;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.910; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
23 negations and 1058 diffusions:

Pr|class (0, 0)] ~ 0.017;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.930; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
24 negations and 1104 diffusions:

Pr|class (0, 0)] ~ 0.005;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.948; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
25 negations and 1150 diffusions:

Pr|class (0, 0)] ~ 0.000;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.008; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.031; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.952; +

Right column is sign of ag .



How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 26 negations and 1196 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.002; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.008; +
OE)_e;C | T Pr|class (1,0)] ~ 0.008; —
THUSE @51 atross all 1, Prlclass (1,1)] ~ 0.000; —
Now high probability Prlclass (1,2)] ~ 0.035; +
that 7 contains collision. Prlclass (2,1)] ~ 0.002; +
Cost 742" /+/r. Optimize: 22"/3. Prclass (2,2)] ~ 0.945; +
Right column is sign of ag .




How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 27 negations and 1242 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.011; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.007; +
OE)_e;C | T Pr|class (1,0)] ~ 0.007; —
THUSE @51 atross all 1, Prclass (1,1)] ~ 0.001; —
Now high probability Prlclass (1,2)] ~ 0.034; +
that 7 contains collision. Pr|class (2,1)] ~ 0.003; +
Cost 742" /+/r. Optimize: 22"/3. Prlclass (2,2)] ~ 0.938; +
Right column is sign of ag .




- quantum walk works:

m uniform superposition.
~0.6 - 2 /7 times:

€ asT
~contains collision.

t ~0.7 - /7 times:
each T:
iffuse ag 7 across all S.

each S:
)iffuse ag 7 across all T

h probability
ontains collision.
2"/ /r. Optimize: 227/3

Classify (S, T) according to
(#(5 N {p.q}). #(T N {p. 9}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|

ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034; +
class (
class (

Right column is sign of ag 1.
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walk works:

1 superposition.

r times:

collision.
/r times:

~ across all S.

T~ across all T.

Ity
llision.
Jptimize:

22n/3_

Classify (S, T) according to
(#(5 N {p.4}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034;
Prlclass (2,1)] ~ 0.003;
Prlclass (2, 2)] ~ 0.938;

Right column is sign of ag 1.

Subset-sum walk (

Consider f definec
f(1, /1) = X(J1)

for S C{1,..., n
f(2,h) =t —X(.
for Jp C{n/2+1

Good chance of ui
collision 2(J1) =1

n/2 4+ 1 bits of in
so quantum walk

Easily tweak quan
to handle more co

ignore > (J1) = X
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II'S.

I T.

22n/3_

Classify (S, T) according to
(#(S N {p.q}). #(T N{p.q}));
reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|
Pr|
Pr|
Pr|
Pr|
Pr|

ass (0,0)] ~ 0.011; —
ass (0,1)] ~ 0.007; +
ass (1,0)] ~ 0.007; —
| ~ 0.001; —
ass (1,2)] ~ 0.034; +
ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +
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n/2 4+ 1 bits of input,
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to handle more collisions,

ignore X (J1) = X(J7), etc.
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