Quantum algorithms
for the subset-sum problem

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html
Joint work with:

Stacey Jeffery
University of Waterloo

Tanja Lange
Technische Universiteit Eindhoven

Alexander Meurer
Ruhr-Universitat Bochum

Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”;
“knapsack problem™; etc.

n algorithms
ubset-sum problem

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

;0/gsubsetsum.html
rk with:

effery
ty of Waterloo

Inge
he Universiteit Eindhoven

or Meurer
1versitat Bochum

Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

If one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”
“knapsack problem™; etc.

The latt

Define 2

Define L
{v:viz

Define 1
(70,2, 0,

U IS very
Reasona
v Is the
Subset-s
codimen

nsS

 problem
is at Chicago &

siteit Eindhoven

xtsum.html

rloo

siteit Eindhoven

3ochum

Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”;
“knapsack problem™; etc.

T he lattice connec

Define £7 = 499,

Define L C Z12 as
{v: vz

Define u € Z12 as
(70,2,0,0,0,0,0,
It JC{1,2,..., 1
and ZZEJ L, — 36

v € L where v; =

v IS very close to -
Reasonable to hor

v 1s the closest ve
Subset-sum algori
codimension-1 CV

go &
hoven

nl

hoven

Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

If one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”
“knapsack problem™; etc.

The lattice connection

Define z1

=499, ..., T1o =

Define L C Z12 as

{v:vizy

V12Z12 = |

Define u € Z12 as
(70,2,0,0,0,0,0,0,0,0,0,0

If J C {1,

2,...,12}

and) ., z; = 36634 then
v € L where v; =u; — [1 €

v IS very close to u.

Reasonab
v Is the ¢

e to hope that
osest vector in L t

Subset-sum algorithms &

codimension-1 CVP algorith

Subset-sum example: The lattice connection

Is there a subsequence of Define z; = 499, z1, — 9413,
(499, 852, 1927, 2535, 3596, 3608, | "

4688, 5989, 6385, 7353, 7650, 9413) Defne L € 277 as
having sum 366347 W vz + -+ vz = 05
Define u € Z'? as
(70,2,0,0,0,0,0,0,0,0,0,0).

If JC{1,2,..., 12}
and) ., z; = 36634 then
v € L where v; =u; — [t € J].

Many variations: e.g.,
find such a subsequence
If one exists;

find such a subsequence

knowing that one exists;
allow range of sums; v Is very close to wu.
coefficients outside {0, 1}; etc. Reasonable to hope that

v 1s the closest vector in L to .

“Subset-sum problem”;

“knapsack problem’: etc. Subset-sum algorithms &

codimension-1 CVP algorithms.

um example:
a subsequence of

2,1927,2535, 3596, 3603,
89, 6385, 7353, 7650, 9413)

um 366347

riations: e.g.,

1 a subsequence
XIStS;

1 a subsequence
that one exists:
1ge of sums;

nts outside {0, 1}; etc.

-sum problem”;
ck problem™; etc.

The lattice connection

Define 1 =499, ..., 1o = 9413,

Define L C Z12 as

{v:vizy

v1oz12 = 0},

Define u € Z12 as
(70,2,0,0,0,0,0,0,0,0,0,0).

If J C {1,

2,...,12}

and) ., z; = 36634 then
v € L where v; = u; — [1 € J].

v IS very close to u.

Reasonab
v Is the ¢

e to hope that

osest vector in L to u.

Subset-sum algorithms &

codimension-1 CVP algorithms.

The cod

A weigh
Is there
(499, 85.
4633, 59
having |

le:
ence of
35, 3596, 3608,

7353, 7650, 9413)
?

g,
uence

uence
exIsts;

1S;

e {0, 1}; etc.

lem’’

N etc.

The lattice connection

Define 1 =499, ..., 1o = 9413.

Define L C Z12 as

{v: vz

v1oz10 = 0},

Define u € Z12 as
(70,2,0,0,0,0,0,0,0,0,0,0).

If J C {1,

2,...,12}

and) ., z; = 36634 then
v € L where v; =u; — [t € J].

v IS very close to u.

Reasonab
v 1s the ¢

e to hope that

osest vector in L to u.

Subset-sum algorithms &

codimension-1 CVP algorithms.

The coding conne

A weight-w subset
Is there a subsequ
(499, 852, 1927, 2¢

4633, 5989, 6385, |
having length w a

3608,
19413)

The lattice connection

Define z1

— 499, ..., 1o = 9413.

Define L C Z12 as

{v:vizy

v1oz12 = 0},

Define u € Z12 as
(70,2,0,0,0,0,0,0,0,0,0,0).

If J C {1,

2,...,12}

and) .., z; = 36634 then
v € L where v; =u; — [1 € J].

v IS very close to u.

Reasonab
v Is the ¢

e to hope that
osest vector in L to w.

Subset-sum algorithms &

codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum prot
Is there a subsequence of
(499, 852, 1927, 2535, 3596,

4638, 59389, 6385, 7353, 7650
having length w and sum 3¢

The lattice connection

Define z1

=499, ..., z10 = 9413.

Define L C Z12 as

{v: vz

v1oz10 = 0},

Define u € Z12 as

If J C {1,

2,...,12}

and) ., z; = 36634 then
v € L where v; =u; — [1 € J].

v IS very close to u.

Reasonab
v 1s the ¢

e to hope that
osest vector in L to w.

Subset-sum algorithms &

codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

The lattice connection

Define 1 =499, ..., 1o = 9413.

Define L C Z12 as

{v: vz

v1oz10 = 0},

Define u € Z12 as

If J C {1,

2,...,12}

and) ., z; = 36634 then
v € L where v; = u; — [1 € J].

v IS very close to u.

Reasonab
v 1s the ¢

e to hope that

osest vector in L to .

Subset-sum algorithms &

codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Ice connection

1 =499, ..., 10 = 9413.

CZ'? as

1+ +wvz1p = 0.
€ 7212 5
0,0,0,0,0,0,0,0,0).
1,2,...,12}

-y T = 30034 then
here v; = u; — |1 € J].

' close to w.
ble to hope that
closest vector in L to .

um algorithms =~
sion-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This Is the central algorithmic
problem in coding theory.

Recent :

Eurocryj
Howgraxy
subset-s
(Incorre

Eurocryj
Becker—
subset-s

Adaptat
Asiacryg
Thomae
Becker—

tion

.., T120 = 9413.

12212 = 0}

0,0,0,0,0).

634 then
u; — |1 € J].

e that
ctor in L to u.
hms ~

P algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Recent asymptotic

Eurocrypt 2010

Howgrave-Graharmr
subset-sum expont
(Incorrect claim: +

Eurocrypt 2011
Becker—Coron—Jot
subset-sum expon

Adaptations to de
Asiacrypt 2011 M.
Thomae, Eurocryy
Becker—Joux—May

- 9413.

O U.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:
subset-sum exponent x0.33
(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:
subset-sum exponent ~0.29

Adaptations to decoding:
Asiacrypt 2011 May—Meurer
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:
subset-sum exponent ~~0.337.
(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:
subset-sum exponent ~0.291.

Adaptations to decoding:
Asiacrypt 2011 May—Meurer—
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

Ing_connection

t-w subset-sum problem:

a subsequence of

2,1927, 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413)
ength w and sum 366347

Z with (Z/2)™:

a subsequence of

2,1927, 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413)
ength w and xor 10607

he central algorithmic
in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:
subset-sum exponent ~0.337.
(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:

subset-sum exponent ~0.291.

Adaptations to decoding:
Asiacrypt 2011 May—Meurer—
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

Post-qu:

Claimed
Lyubash
“"Public-
primitive
as secur
There ai
quantun

better tl
on the s

Hmmm.

quantun

ction

-sum problem:
ence of

35, 3596, 3608,
7353, 7650, 9413)
nd sum 366347

/2):

ence of

35, 3596, 3608,
7353, 7650, 9413)

nd xor 10607

algorithmic
theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:

subset-sum exponent ~0.337.

(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:

subset-sum exponent ~0.291.

Adaptations to decoding:
Asiacrypt 2011 May—Meurer—
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

Post-quantum sub

Claimed in TCC 2
Lyubashevsky—Pal
“"Public-key cryptc
primitives provably
as secure as subse

There are “curren
quantum algorithn
better than classic
on the subset sum

Hmmm. What's t
quantum subset-si

lem:

3608,
19413)
6347

3608,
19413)
507?

1C

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:

subset-sum exponent ~0.337.

(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:

subset-sum exponent ~0.291.

Adaptations to decoding:
Asiacrypt 2011 May—Meurer—
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Sege:
“Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no kno
quantum algorithms that pe
better than classical ones

on the subset sum problem”

Hmmm. What's the best
quantum subset-sum expone

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:

subset-sum exponent ~~0.337.

(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:

subset-sum exponent ~0.291.

Adaptations to decoding:
Asiacrypt 2011 May—Meurer—
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Segev
“"Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Isymptotic news

bt 2010
re-Graham—Joux:

um exponent ~0.337.
“t claim: ~0.311.)

ot 2011

Coron—Joux:
um exponent ~0.291.

lons to decoding:
t 2011 May—Meurer—

, Eurocrypt 2012
Joux—May—Meurer.

Post-quantum subset sum

Claimed in TCC 2010

L yubashevsky—Palacio—Segev
“Public-key cryptographic
primitives provably

as secure as subset sum’:

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Interlude

Textboo

Proof o

New

Proof I

Mislead
that bes
best pro

. NEeWsS

—Joux:

ont ~0.337.

v0.311.)

IX.

ont ~0.291.

coding:
ay—Meurer—
t 2012

—Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Segev
“"Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Interlude: Algorith

Textbook algorithi

Proof of correctn:

I\

New algorithm

\ .
Proof of run tim

Mislead students |
that best algorithr
best proven algori

Post-quantum subset sum

Claimed in TCC 2010

L yubashevsky—Palacio—Segev
“Public-key cryptographic
primitives provably

as secure as subset sum’:

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis

Proof of correctness

A

New algorithm

\
Proof of run time

Mislead students into thinki
that best algorithm =
best proven algorithm.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Segev
“"Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

I\

New algorithm

\
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

antum subset sum

in TCC 2010
evsky—Palacio—Segev
key cryptographic

s provably

e as subset sum™:

e currently no known

1 algorithms that perform
1an classical ones

ubset sum problem" .

What's the best
1 subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

\
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality:
cryptanc
are almc

set sum

010
acio—Segev
graphic

/

t sum’;

tly no known

ns that perform

al ones
problem"” .

he best
Im exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

I\

New algorithm

\
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-t
cryptanalytic algol
are almost never r

W

rform

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

\
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

i
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

i
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

i
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

i
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

. Algorithm design

k algorithm analysis:

f correctness
K

algorithm

Y
of run time

students into thinking
t algorithm =
ven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What akt

Want to
quantun
to figure
against

'm_design

M analysis:

=SS

€

nto thinking
N =
thm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quan

Want to analyze,
quantum algorithn
to figure out safe
against future qua

ng

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:
proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis
relies critically on heuristics and

computer experiments.

What about quantum algori

Want to analyze, optimize
quantum algorithms today
to figure out safe crypto
against future quantum atts

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

state-of-the-art
lytic algorithms
St never proven.

response:
arder, find proofs!”

us of the experts:

robably do not exist
- of these algorithms.
inding proofs is silly.

proofs, how do we
correctness+speed?

Real algorithm analysis
tically on heuristics and
er experiments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Quantur

Assume
has n-bi

Generic
finds thi

~2™ eve

1996 Gr

finds thi
%20.571 (

on supel
Cost of .

S COSt C
If cost c

he-art
1thms

roven.

] proofs!”

2 XPeErts:

) not exist
algorithms.
ofs is silly.

ow do we
s+speed?
rithm analysis
heuristics and
ments.

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Quantum search (

Assume that funct
has n-bit input, ul

Generic brute-forc
finds this root usir
~2" evaluations o

1996 Grover meth
finds this root usir
~20-9" quantum e
on superpositions

Cost of quantum ¢
~ cost of evaluati
if cost counts qub

lysis
and

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Quantum search (0.5)

Assume that function f
has n-bit input, unique root

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method
finds this root using
~20-2" quantum evaluations
on superpositions of inputs.

Cost of quantum evaluation
~ cost of evaluation of f
if cost counts qubit “operat

What about quantum algorithms?

Want to analyze, optimize
quantum algorithms today

to figure out safe crypto
against future quantum attack.

1. Simulate tiny q. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f
if cost counts qubit “operations”.

yout quantum algorithms?

“analyze, optimize

1 algorithms today

' out safe crypto

future quantum attack.

late tiny q. computer?
- extrapolation errors.

r algorithm-specific
on? Yes, sometimes.

trapdoor simulation.
or (like prover) knows
an the algorithm does.

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-5" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations’”.

Easily ac
different
and # n
Faster if
out typi
Most int

um algorithms?

optimize

ns today
crypto

ntum attack.

|. computer?
tion errors.

n-specific
ometimes.

simulation.
ver) knows
orithm does.

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to ha
different # of roo
and # not known
Faster it # is larg

out typically # 1s
Most interesting:

thms?

ck.

—

\V |

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-5" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations’”.

Easily adapt to handle
different # of roots,

and # not known in advanc
Faster it # is large,

out typically # 1s not very |
Most interesting: # € {0,1

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.

Apply to the function
J = 2(J)—t where

2(J) = ZieJ Ly

Cost 2™ to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.
We suppress poly factors in cost.

n search (0.5)

that function f
t input, unique root.

brute-force search
S root using
|luations of f.

over method

s root using

Jjuantum evaluations of f
‘positions of inputs.

quantum evaluation of f
f evaluation of f

ounts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.

Apply to the function
J = X(J)—t where

S(J) =Y 0, @i

Cost 29°™ to find root (i.e.,

to find indices of subsequence
of £1,..., Ty with sum t)

or to decide that no root exists.
We suppress poly factors in cost.

Algorith

Represer
integer |

n bits al
to store

n qubits
a superg
2™ comp
ag, ...,
a.o‘2 + -
Measuri

nas char

Start frc
l.e., Q-

0.5)
lon f

nique root.

e search
12
ff

od

18
valuations of f
of inputs.

valuation of f
on of f

it “operations’ .

Easily adapt to handle
different # of roots,

and # not known In advance.
Faster it # is large,

Most interesting: # € {0, 1}.

Apply to the function
J = 2(J)—t where

S(J) =Y i, @i

Cost 2> to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

out typically # Is not very large.

Algorithm detalls

Represent J C {1,
iInteger between 0

n bits are enough
to store one such

n qubits store mu
a superposition ov
2™ complex ampli

ag, ..., aom_1 Wit
a,o\2 + -+ |aon.
Measuring these 7

has chance |a|? t

Start from uniforn
e, ay=1/2M2

, of f

of f

ons .

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.

Apply to the function
J = X(J)—t where

2(J) = ZieJ Ly

Cost 29°™ to find root (i.e.,

to find indices of subsequence
of £1,..., Ty with sum t)

or to decide that no root exists.
We suppress poly factors in cost.

Algorithm details for unique

Represent J C {1,...,n} ac
integer between 0 and 2™ —

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

ag, ..., arm_1 with

a0\2 + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a | to produce

Start from uniform superpos
e, ay=1/2"2 for all J.

Easily adapt to handle
different # of roots,

and # not known In advance.
Faster it # is large,

Most interesting: # € {0, 1}.

Apply to the function
J = 2(J)—t where

2(J) = ZieJ Ly

Cost 2> to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

out typically # Is not very large.

Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

ag, ..., a»m_1 with

ao‘z + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.

lapt to handle
of roots,
ot known in advance.

7£ Is large,
cally #£ 1s not very large.

eresting: # € {0, 1}.

) the function
J) — t where

> ics Ti.

™ to find root (i.e.,
ndices of subsequence

., Ty, With sum t)

cide that no root exists.
ress poly factors in cost.

Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

ag, ..., arm_1 with

a0\2 + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a) = 1/2”/2 for all J.

Step 1:

bJ = —d
by = ay
This Is &
as comp

Step 2:

Set a +
bJ — —d
This Is &

Repeat
about 0.

Measure
With hig
the uniq

ndle
[S,
In advance.

a

~ 1

not very large.

€ {0, 1}.
1on
re

root (i.e.,
subsequence
sum t)

10 root exists.
factors in cost.

Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

ag, ..., a»m_1 with

ao‘z + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.

Step 1: Set a + ¢
bJ — —Q ifZ(J)
b, = a; otherwise
This Is about as e
as computing 2.

Step 2: “Grover d
Set a <+ b where

b) = —aJ+(2/2"
This Is also easy.

Repeat steps 1 an
about 0.58 - 20->7

Measure the n qu
With high probabi
the unique J such

Algorithm details for unique root: Step 1: Set a < b where
Represent J C {1,...,n} as an by =—ayif Z(J) =t
< integer between 0 and 2" — 1. °J B _a’J otherwise.
This Is about as easy
rge. n bits are enough space as computing ¥.
| to store one such integer.
| Step 2: “Grover diffusion”.
n qubits st.o.re much more, Set a < b where
ansuperposmon oyer sets J: by =—a,+(2/2")S ,a;.
2" complex amplitudes This is also easy.
ag, ..., ar»_1 with
GO\Q +o+ lagn_g 2 _ 1 Repeat steps 1 and 2
- 0.5n 4:
-€ Measuring these n qubits about 0.58 - 277" times.
| nas chance aJ\z to produce J. Measure the n qubits.
IStS. . . . D
cost Start from uniform superposition, With high probability this i
’ e, a;=1/2"2 for all J. the unique J such that > (J

Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

apg, .- ., aon_1 with

ao‘z + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

m details for unique root:

it JCA{L,...,n} as an
yetween 0 and 2™ — 1.

‘e enough space
one such integer.

. store much more,
osition over sets J:
lex amplitudes
1on_1 with

e ‘azn_l 2 —1.
g these n qubits

ice |a|? to produce J.

m uniform superposition,
— 1/2™/2 for all J.

Step 1. Set a <+ b where
bJ — —Q if Z(J) = t,
b, = a; otherwise.

This Is about as easy

as computing 2.

Step 2: “Grover diffusion”.
Set a < b where

b) = —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t¢.

Graph o

for 3663
after 0 s

1.0

0.5

0.0

—-0.5

-1.0

for unique root: Step 1: Set a < b where Graph of J — a;
. n}asan b)=—ay if X(J) =1, for 36634 example
and O — 1 b, = a; otherwise. after 0 steps:
This is about as easy 10
Space as computing X.
integer. _
Step 2: “Grover diffusion”. 05|
ch more, Set a < b where '
er sets J; by = —as+(2/2") Y a; oo
udes This is also easy. '-
]
LPP=1 Repeat steps 1 and 2 osl
, qubits about 0.58 - 292" times. -
o produce J. Measure the n qubits. ol
| superposition, With high probability this finds |
or all J. the unique J such that >(J) = t.

root: Step 1: Set a < b where Graph of J — a
o b =—ay if X(J) =1, for 36634 example with n =
1 b, = a; otherwise. after O steps:
This is about as easy 10
as computing 2.
Step 2: “Grover diffusion”. 05|
Set a < b where |
bJ:—a.J—I—(Q/Qn)Z,a,/. :
. . OO_ ...
This Is also easy. -
Repeat steps 1 and 2 :
| -0.5
about 0.58 - 292" times. -
J. Measure the n qubits. 1ol
ition With high probability this finds |
the unique J such that X(J) = t¢.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 35 x (Step 1 4 Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

oo '

This Is also easy. : j
Repeat steps 1 and 2 _
051 .- -0.5-
about 0.58 - 2 times. -
Measure the n qubits. Lol

With high probability this finds
the unique J such that >(J) = t. Good moment to stop, measure.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 45 x (Step 1 + Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

0.0

This Is also easy. -
Repeat steps 1 and 2 :
0.57 4 B

about 0.58 - 2 times. -
Measure the n qubits. ol

With high probability this finds
the unique J such that X(J) = t.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.0

-0.5+

-1.0

Traditional stopping point.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

-0.5+

-1.0

0.0 b o

Very bad stopping point.

Set a < b where
y if X(J) = ¢,
otherwise.

bout as easy
uting 2.

“Grover diffusion” .
b where

. +(2/2%)) s ay.
Iso easy.

steps 1 and 2
58 - 2097 times.

the n qubits.
rh probability this finds

ue J such that X(J) =t¢.

Graph of J — a

for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

—0.5+

-1.0

0.0 b o

Very bad stopping point.

J = a
by a vec
(with fix
(1) Q f
(2) a f

Step 1 -
act linea

Easily cc
and pow
to under
of state
= Prob.
after ~(

) where Graph of J — a J — aj 1s comple

= t, for 36634 example with n = 12 by a vector of two
after 100 x (Step 1 + Step 2): (with fixed multip
Asy 10 (1) ay for roots J

(2) ay for non-roc

iffusion” . 05| 1 | Step 1 + Step 2
| || act linearly on this

') 1ar

00 e || Easily compute eig
| | and powers of this

d 2 - | to understand evo
times. | : . of state of Grover’
ite L _ :; Pmbablztéoli:
lity this finds | after ~(m/4)

that X(J) = t. Very bad stopping point.

Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

—0.5+

-1.0

Very bad stopping point.

J — a is completely descri
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability i1s ~1

after ~s(m/4)29°" iterations

Graph of J — a J — a; is completely described

for 36634 example with n = 12 by a vector of two numbers
after 100 x (Step 1 + Step 2): (with fixed multiplicities):
10 (1) ay for roots J;

(2) a for non-roots J.

05. 1 Step 1 + Step 2
| | act linearly on this vector.

00 o | Easily compute eigenvalues

and powers of this linear map
to understand evolution

_o5.]
- | of state of Grover's algorithm.
_ | = Probability is ~1

-1.0 after ~s(m/4)29°" iterations.

Very bad stopping point.

fJ — a J
4 example with n = 12
) X (Step 1 + Step 2):

1 stopping point.

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-righ

Don't ne
to achie

For simy

1974 Hc
Sort list
for all J
and list
for all J.
Merge t
2 (J1) =
e, 2(J

with n = 12
1 4 Step 2):

“point.

J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.

Don't need quantl
to achieve expone

For simplicity assu

1974 Horowitz—Sa
Sort list of ¥(J1)

for all /1 C{1,...
and list of t — X (.
for all /o C {n/2-
Merge to find colli
X (J1) =t —2()
e, X(J1U)=

12

I\J
v

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(7/4)29°" iterations.

Left-right split (0.5)

Don't need quantum compu
to achieve exponent 0.5.

For simplicity assume n € 2

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}
and list of ¢ — X ()

forall L C{n/2+1,..., 0
Merge to find collisions

2 (1) =t —1(N),

e, 2(J1U) =t.

J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J1 C{1,..., n/2}

and list of ¢t — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U) =t.

Is completely described
tor of two numbers

ed multiplicities):

or roots J;

or non-roots J.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s &1

7 /4)20-°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2 (/1) =t —X1(L),

e, 2(J1U) =t.

Cost 20
We assig

e.g. 366
(499, 85.
4688, 59

Sort the
0,499, 8
499 4 8!
and the
360634 —
360634 —
to see tt
499 4 8!
36634 —

ely described
numbers

licities):

ts J.

, vector.

renvalues

- linear map
lution

s algorithm.
51
iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U) =t.

Cost 29" for sort
We assign cost 1 1

e.g. 36634 as sum
(499, 852, 1927, 2¢
4683, 59389, 6385,

Sort the 64 sums
0, 499, 852, 499
499 4 852 4+ 1927
and the 64 differe
36634 — 0, 36634 -
36634 — 4688 — -
to see that

499 + 852 + 2535
36634 —5989 — 6 3¢

bed

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2(J1) =t —1(L),

e, 2(J1U) =t.

Cost 292" for sorting, merg
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Sort the 64 sums

0,499, 852,499 4 852, . ..,
499 + 852 + 1927 + - - - + 3¢
and the 64 differences
36634 — 0, 36634 — 4638, . .

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 -

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N),

e, 2(J1Uh) =t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

36634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

t split (0.5)

red quantum computers
ve exponent 0.5.

licity assume n € 2Z.

rowitz—Sahni:

of 2(J1)

o find collisions
t— X (D),
1 U JQ) = t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, . ..,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli |

For simy

C
C

N100S€E

N100SE

Define ¢

Find all
such tha
How? S

Find all
such tha

Sort anc
collision

e, X(J

5)

Im computers
nt 0.5.

men € 2Z.
hni:

SIONS

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assu

C
C

hoose M as 20-29

noose t1 € {0, 1,

Define to =t — t3

Find all J; C {1,.
such that X(J1) =
How? Split Jj as

Find all J» C {n/:
such that X (/) =

Sort and merge to
collisions 2(J1) =
e, 2(J1Uh) =

ters

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M —
Define to =t — 7.

Find all J; CH{1,..., n/2}
such that X(J1) =¢1 (mo
How? Split J1 as J11 U Jio.

Find all b C{n/2+1,...,
such that X () =t (mo

Sort and merge to find all
collisions 2(J1) =t — X(J)o)
e, 2(J1U) =t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that X(J;) =¢t1 (mod M).
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}
such that ¥(J) =t (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.

T for sorting, merging.
'n cost 1 to RAM.

34 as sum of
2.1927. 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

64 sums

52,499 4+ 852, ...,

)2 + 1927 4 - - - + 3608
64 differences

0, 36634 — 4688, .. .,

4688 — - -- — 9413
1at
2 + 2535 + 3608 =

59389 — 6385 — 7353 —-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — t7.

Find all J; CH{1,..., n/2}
such that X (/1) = ¢4
How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that (/) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U) =t.

Finds J
There ar
Each ch
Total co

Not visil
this uses

assumin,

Algorith
introduc
2006 Els
2010 Hc

Differens
for simil
1981 Sc

ing, merging.
0 RAM.

of
35, 3596, 3608,
7353, 7650, 9413):

+ 3608 =
35—7353—-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that 2(J1) = £;
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.

Finds J iff 2(J71) :
There are ~20-2°7

Each choice costs

Total cost 2V->7".

Not visible in cost
this uses space on
assuming typical c

Algorithm has bee
introduced at leas
2006 Elsenhans—J:
2010 Howgrave-Gi

Different techniqu
for similar space r

1981 Schroeppel-

ng.

3608,

,9413):

-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — 7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that () =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U) =t.

Finds J iff X(J1) = £1.
There are ~29-29" choices o

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible in cost metric:

this uses space only 2V-2°7

assuming typical distributior

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Jot

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1U b)) =t.

Finds J iff X(J1) = ¢1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.

0.5
licity assume n € 4Z.

M%20'25n.
t1 € {0,1,..., M—1}.
» =1 — 11.

plit J1 as J11 U Jqo.

HC{n/2+1,..., n}

tX(/h)=tr (mod M).

| merge to find all
5 2(J1) =t —X(h),
1U) =t.

Finds J iff £(J1) = t1.

There are ~2%-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:
20.2572,

this uses space only

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

4633, 59
Try eact

In partic
There ar
(499, 85
with sun
There ar
(4688, 5
with sur
Sort anc
499 4 8!
36634 —

men € 4/.

find all
t—2(Jh),
t.

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 20-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.

eg. M=8,1t=3
(499, 852, 1927, 2¢
4688, 5989, 6385, |

Try each t1 € {0,

In particular try %4
There are 12 subs

(499, 852, 1927, 2¢
with sum 6 modul
There are 6 subsec
(4688, 5989, 6385,
with sum 36634 —
Sort and merge to
499 4 852 + 2535
36634 —5989 — 63¢

| M),

| M).

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Try each t; € {0,1,..., 7}.

In particular try t; = 6.
There are 12 subsequences ¢
(499, 852, 1927, 2535, 3596,
with sum 6 modulo 8.
There are 6 subsequences of
(4688, 5989, 6385, 7353, 765
with sum 36634 — 6 modulc
Sort and merge to find

499 + 852 + 2535 + 3608 =
36634 — 5989 — 6385 — 7353 -

Finds J iff £(J1) = ¢1.

There are ~20-2°7

choices of %7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost
this uses space on

assuming typical ¢

metric:
y 20.25??,,

Istribution.

Algorithm has been

Introduced at least twice:
2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —9413.

iff T(J1) = 4.

o %20.25?’&

choices of t7.

oice costs 2V-297

yle 1n cost
, space on

o typical ©

metric:
y 20.2572,,

Istribution.

m has been

ed at least twice:

,enhans—Jahnel:

wgrave-Graham—Joux.

t technique

ar space reduction:

hroeppel-Shamir.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.
Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantur

Cost 2™«
1998 Br.

For simy

Comput
J1 CA{1
Sort L =

Can now
Jo — [t
for Jo C
Recall:

Use Gro

whether

= {7.

choices of %7.
20.25??,_

metric:
y 20.25??,,

Istribution.

n
t twice:
 hnel:
aham—Joux.

e
sduction:
Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-righ

Cost 2'”'/3, Imitatil
1998 Brassard—Hg

For simplicity assu

Compute X (J7) fc
J1 C {1, 2. ..., 'n/
Sort L ={X(J1)}

Can now efficient!
Jo = [t —2()) ¢
for Jo C{n/3+1
Recall: we assign

Use Grover's metfh
whether this funct

f¢q.

1X.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.:

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to |

Use Grover's method to see
whether this function has a

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.333...)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo—= [t —2(N2) ¢ L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

- 8, t = 36634, = =
2,1927, 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

't €40,1,..., 7},

ular try t; = 6.

e 12 subsequences of
2,1927, 2535, 3596, 3608)
n 6 modulo 8.

e 6 subsequences of

089, 6385, 7353, 7650, 9413)
n 36634 — 6 modulo 8.

| merge to find

2 + 2535 4 3608 =

5989 — 6385 — 7353 —9413.

Quantum left-right split (0.333...)

Quantur

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J71) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/34+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-c
Say f h:
exactly «

l.e., p F£

Problem

Cost 2"
the set ¢

Comput:

Generali
success
Choose
Comput

0034, ¢ =
35, 3596, 3608,
7353, 7650, 9413):

equences of

35, 3596, 3608)

o 8.

juences of

7353, 7650, 9413)
6 modulo 8.
find

+ 3608 =

35— 7353 —-9413.

Quantum left-right split (0.333..

)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Quantum walk

Unique-collision-fii
Say f has n-bit in
exactly one collisic

e, p#q, f(p)=
Problem: find this

Cost 2™: Define S
the set of n-bit st
Compute f(S), sc

Generalize to cost
success probability
Choose a set S of

Compute f(S), so

3603,
,9413):

f
3608)

0,9413)

-9413.

Quantum left-right split (0.333...)

Quantum walk

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding prok
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,
success probability ~s(r/2™)
Choose a set S of size 7.
Compute f(S), sort.

Quantum left-right split (0.333..

)

Quantum walk

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute 2(Jp) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

n left-right split (0.333...) Quantum walk Data str
3 imitating Unique-collision-finding problem: the gene‘
assard—Hgyer—Tapp: Say f has n-bit inputs, the set .
exactly one collision {p, q}: the num
licity assume n € 3Z. | Y P45 |
e, p7#q, f(p) = f(q). Very effi
e 2 (J1) for all Problem: find this collision. to D(T)
2,..., n/3;. _
3} Cost 2": Define S as o=
- 12(J1)}- o
the set of n-bit strings. 2003 An
/ efficiently compute Compute f(S), sort. Magniez
—2(Jh) ¢ L] . Create s
Generalize to cost T,
{n/3+1,..., n}] o (D(S), |
. success probability ~(r/2™):
ve assign cost 1 to RAM. | By a qu
Choose a set S of size 7. |
ver's method to see Compute f(S), sort. find 5 ¢
this function has a root.

t split (0.333...)

18
yer—Tapp:

men € 3Z.

14 aII

3},

y compute

cost 1 to RAM.

od to see
1on has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(
the generalized co

the set S: the mul
the number of coll

Very efficient to n
to D(T) if T is ar

#S =#T =1, #

2003 Ambainis, sii
Magniez—Nayak—Fk
Create superpositi
(D(S), D(T)) witl
By a quantum wal
find S containing

333 ...

RAM.

root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size 7.
Compute f(S), sort.

Data structure D(S) captur
the generalized computation
the set S; the multiset f(S)
the number of collisions in

Very efficient to move from
to D(T) if T is an adjacent

HS =H#HT =71, #£(5NT) =

2003 Ambainis, simplified 2(
Magniez—Nayak—Roland—Sar
Create superposition of stat
(D(S), D(T)) with adjacent
By a quantum walk

find S containing a collision

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:
#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

n walk

ollision-finding problem:

s n-bit inputs,
one collision {p, ¢}

q, f(p) = f(9).

- find this collision.

 Define S as
f n-bit strings.
e £(5), sort.

ze to cost 7,
probability ~s(r/2™)?:
3 set S of size r.

e f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the

Start frc
Repeat
Negat

if S
Repes
For

[

For
1

Now hig
that T ¢
Cost r+

ding problem:

puts,

n {p, g}
- £(9)-

- collision.

Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

How the quantum

Start from uniforn
Repeat ~0.6 - 2"/
Negate as 71

if S contains

Repeat ~0.7 - 4,
For each T:

Diffuse as

For each S:
Diffuse as

Now high probabil
that 7 contains cc
Cost 7+2"/4/1T. (

em:

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk worl

Start from uniform superpos
Repeat ~0.6 - 2" /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across a
For each S:

Diffuse ag 7 across a

Now high probability
that 7 contains collision.
Cost r+2"/+/r. Optimize:

Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS =H#HT =71, #5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:

Diffuse ag 7 across all S.
For each §S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

ucture D(S) capturing
ralized computation:

5; the multiset f(S);
ber of collisions in S.

cient to move from D(S)
if T is an adjacent set:

T =71, #SNT)=r—-1.

1bainis, simplified 2007
—Nayak—Roland—Santha:
uperposition of states
)(T)) with adjacent S, T.
antum walk

ontaining a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify
(#(5SN
reduce a
Analyze

e.g. n =
0 negati

Pr|
Pr
Pr
Pr
Pr
Pr
Pr

dSS
dSS

dSS

dSS

dSS
dSS

dSS

ol e i e e i e e e

Right cc

S) capturing
mputation:
tiset f(S);

isions in S.

ove from D(S5)
adjacent set:

(SNT)=r—-1.

mplified 2007
oland—Santha:
on of states

1 adjacent S, T.
Kk

a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) acc
(#(5 N {p.q}). #

reduce a to low-di

Analyze evolution

eg.n=15 r =1

0 negations and 0

Pr|

Pr
Pr
Pr
Pr
Pr
Pr

el e e e i e e e

~
~
5

(

&

Right column is si

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 7
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(S5 N {p.q}). #(T N1p. g

reduce a to low-dim vector.
Analyze evolution of this ve

e.g. n = 1b, r = 1024, after
0 negations and O diffusions

Pr|class (0, 0)] ~ 0.938;

Prlclass (0, 1)] ~ 0.000; +
Prclass (1,0)] ~ 0.000; +
Prlclass (1,1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr[class (2,1)] ~ 0.000; +
Pr[class (2,2)] ~ 0.001; +

Right column is sign of as 7

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
0 negations and 0 diffusions:

Pr|class (0, 0)] ~ 0.938;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; +
Prlclass (1, 1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.001; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
1 negation and 46 diffusions:

Pr|class (0, 0)] ~ 0.935;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.057; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.008; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
2 negations and 92 diffusions:

Pr|class (0, 0)] ~ 0.918;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.059; +
Prlclass (1,2)] ~ 0.001; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.022; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
3 negations and 138 diffusions:

Pr|class (0, 0)] ~ 0.897;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.058; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.042; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
4 negations and 184 diffusions:

Pr|class (0, 0)] ~ 0.873;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.070; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
5 negations and 230 diffusions:

Pr|class (0, 0)] ~ 0.838;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.003; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.104; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
6 negations and 276 diffusions:

Pr|class (0, 0)] ~ 0.800;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.051; +
Prlclass (1, 2)] ~ 0.006; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.141; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
[negations and 322 diffusions:

Pr|class (0, 0)] ~ 0.758;

Pr[class (0, 1)] ~ 0.002; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.047; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.184; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
8 negations and 368 diffusions:

Pr|class (0, 0)] ~ 0.708;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.046; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.234; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
O negations and 414 diffusions:

Pr|class (0, 0)] ~ 0.658;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.042; +
Prlclass (1, 2)] ~ 0.009; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.287; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
10 negations and 460 diffusions:

Pr|class (0, 0)] ~ 0.606;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.002; —
Prlclass (1,1)] ~ 0.037; +
Prlclass (1,2)] ~ 0.013; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.338; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
11 negations and 506 diffusions:

Pr|class (0, 0)] ~ 0.547;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.036; +
Prlclass (1,2)] ~ 0.015; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.394; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
12 negations and 552 diffusions:

Pr|class (0, 0)] ~ 0.491;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.032; +
Prlclass (1,2)] ~ 0.014; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.455; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
13 negations and 598 diffusions:

Pr|class (0, 0)] ~ 0.436;

Pr[class (0, 1)] ~ 0.005; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.026; +
Prlclass (1,2)] ~ 0.017; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.513; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
14 negations and 644 diffusions:

Pr|class (0, 0)] ~ 0.377;

Pr[class (0, 1)] ~ 0.006; +
Prclass (1,0)] ~ 0.004; —
Prlclass (1,1)] ~ 0.025; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.566; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
15 negations and 690 diffusions:

Pr|class (0, 0)] ~ 0.322;

Pr[class (0, 1)] ~ 0.005; +
Prclass (1,0)] ~ 0.004; —
Prclass (1,1)] ~ 0.021; +
Prlclass (1,2)] ~ 0.023; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.623; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
16 negations and 736 diffusions:

Pr|class (0, 0)] ~ 0.270;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.017; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.680; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
17 negations and 782 diffusions:

Pr|class (0, 0)] ~ 0.218;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.005; —
Prlclass (1,1)] ~ 0.015; +
Prlclass (1,2)] ~ 0.024; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.730; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
18 negations and 828 diffusions:

Pr|class (0, 0)] ~ 0.172;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.011; +
Prlclass (1, 2)] ~ 0.029; +
Pr|class (2,1)] ~ 0.001; +
Prclass (2,2)] ~ 0.775; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
19 negations and 874 diffusions:

Pr|class (0, 0)] ~ 0.131;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.008; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.816; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
20 negations and 920 diffusions:

Pr|class (0, 0)] ~ 0.093;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.007; +
Prlclass (1,2)] ~ 0.027; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.857; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
21 negations and 966 diffusions:

Pr|class (0, 0)] ~ 0.062;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.004; +
Prlclass (1,2)] ~ 0.030; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.890; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
22 negations and 1012 diffusions:

Pr|class (0, 0)] ~ 0.037;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.910; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
23 negations and 1058 diffusions:

Pr|class (0, 0)] ~ 0.017;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.930; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
24 negations and 1104 diffusions:

Pr|class (0, 0)] ~ 0.005;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.948; +

Right column is sign of ag .

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
25 negations and 1150 diffusions:

Pr|class (0, 0)] ~ 0.000;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.008; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.031; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.952; +

Right column is sign of ag .

How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 26 negations and 1196 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.002; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.008; +
OE)_e;C | T Pr|class (1,0)] ~ 0.008; —
THUSE @51 atross all 1, Prlclass (1,1)] ~ 0.000; —
Now high probability Prlclass (1,2)] ~ 0.035; +
that 7 contains collision. Prlclass (2,1)] ~ 0.002; +
Cost 742" /+/r. Optimize: 22"/3. Prclass (2,2)] ~ 0.945; +
Right column is sign of ag .

How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 27 negations and 1242 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.011; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.007; +
OE)_e;C | T Pr|class (1,0)] ~ 0.007; —
THUSE @51 atross all 1, Prclass (1,1)] ~ 0.001; —
Now high probability Prlclass (1,2)] ~ 0.034; +
that 7 contains collision. Pr|class (2,1)] ~ 0.003; +
Cost 742" /+/r. Optimize: 22"/3. Prlclass (2,2)] ~ 0.938; +
Right column is sign of ag .

- quantum walk works:

m uniform superposition.
~0.6 - 2 /7 times:

€ asT
~contains collision.

t ~0.7 - /7 times:
each T:
iffuse ag 7 across all S.

each S:
)iffuse ag 7 across all T

h probability
ontains collision.
2"/ /r. Optimize: 227/3

Classify (S, T) according to
(#(5 N {p.q}). #(T N {p. 9}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|

ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034; +
class (
class (

Right column is sign of ag 1.

Subset-s

Considet

f(1, 41)
for J1 C

f(2, h)
for Jo C

Good ch
collision

n/2+1
SO quant

Easily tv
to hand|
ignore X

walk works:

1 superposition.

r times:

collision.
/r times:

~ across all S.

T~ across all T.

Ity
llision.
Jptimize:

22n/3_

Classify (S, T) according to
(#(5 N {p.4}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034;
Prlclass (2,1)] ~ 0.003;
Prlclass (2, 2)] ~ 0.938;

Right column is sign of ag 1.

Subset-sum walk (

Consider f definec
f(1, /1) = X(J1)

for S C{1,..., n
f(2,h) =t —X(.
for Jp C{n/2+1

Good chance of ui
collision 2(J1) =1

n/2 4+ 1 bits of in
so quantum walk

Easily tweak quan
to handle more co

ignore > (J1) = X

<S.

ition.

II'S.

I T.

22n/3_

Classify (S, T) according to
(#(S N {p.q}). #(T N{p.q}));
reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|
Pr|
Pr|
Pr|
Pr|
Pr|

ass (0,0)] ~ 0.011; —
ass (0,1)] ~ 0.007; +
ass (1,0)] ~ 0.007; —
| ~ 0.001; —
ass (1,2)] ~ 0.034; +
ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +

O O O O O O O
Q
U
n

AN AN AN AN AN AN /N
L
 —
—

Right column is sign of ag 1.

Subset-sum walk (0.333...)

—-—

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)r).
n/2 4+ 1 bits of input,

so quantum walk costs on/3

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Classify (S, T) according to
(#(5 N {p.4}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

Subset-sum walk (0.333...)

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2,) =t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).
n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

(S, T) according to
{p.q3), #(T N 1p. q}));

, to low-dim vector.
evolution of this vector.

15, r = 1024, after
rions and 1242 diffusions:

(0,0)] ~ 0.011;
(0,1)] ~ 0.007;
(1,0)] ~ 0.007;
(1,1)] ~ 0.001;
(1,2)] ~ 0.034;
(2,1)] ~ 0.003;
(2,2)] ~ 0.938;

lumn is sign of ag 7.

Subset-sum walk (0.333...)

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Generali

Choose
(Origina
s the sp

Comput:
for each

Similarly
subsets
Comput
for each

ording to

(T N {p. q}));

m vector.
of this vector.

024, after

1242 diffusions:

).011; —
).007; +
).007; —
).001; —
).034; +
).003; +
).938; +

gn of ag 7.

Subset-sum walk (0.333...)

Generalized modul

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2,)=t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3,

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r v
(Original moduli a
Is the special case

Take set 511, #5-
J11 € 511 = J11 ¢
(Original algorithn
of all J11 CA{1,..
Compute X (J11) 1
for each J11 € 511

Similarly take a se
subsets of {n/4 +
Compute t; — (-
for each J1o € 515

“tor.

S10NS:

Subset-sum walk (0.333...)

Generalized moduli

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r with M ~
(Original moduli algorithm
Is the special case r = on/4

Take set S11, #5511 = r, wh
J11 € S11=> J11 CA1,..., ?
(Original algorithm: 577 is t
of all J11 C{1,..., n/4}.)
Compute X (J11) mod M
for each Ji1 € Sq1.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/
Compute t; — X(J12) mod /
for each J1p € 57».

Subset-sum walk (0.333...)

Generalized moduli

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2,)=t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3,

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5511 = r, where

of all J11 CH{1,..., n/4}.)
Compute >(J11) mod M
for each J11 € 511.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».

um walk (0.333...)

Generalized moduli

- £ defined by
=2 ()

ance of unique

2(J1) =t —Xx(Lh)

bits of input,

um walk costs 27/3.

veak quantum walk
e more collisions,

(J1) = X(J7), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 C{1,..., n/4}.)
Compute >(J11) mod M
for each J11 € 511.

Similarly take a set S1p of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1o.

Find all
> (J11)
e, 2(J
where Jj
Comput

Similarly
list of -
= each

Find col

Success
at findin
2(J) =

Assumin
cost 7, ¢

0.333...)

Generalized moduli

ique

E— 2 ().

Dut,

~osts 2"/3.

-um walk

lisions,
a7
Jq1), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5511 = r, where

of all J11 CH{1,..., n/4}.)
Compute X (J11) mod M
for each J11 € 511.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».

Find all collisions

2 (J11) =t1 — 2 (.
e, 2(J1) =t
where J1 = J11 U
Compute each (.

Similarly $S71, S99
list of Jp with X (.
= each t — X ()

Find collisions (.-

Success probabilit

at finding any par
2(J)=1t, X(J1) =

Assuming typical «
cost 7, since M ~

Generalized moduli

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 C{1,..., n/4}.)
Compute >(J11) mod M
for each Ji1 € Sq1.

Similarly take a set S1p of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1o.

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with X(Jh) =1t — 1
= each t — X ().

Find collisions > (/1) =t —

Success probability r#/2"
at finding any particular J w
X(J)=1t, X(J1))=t1 (mo

Assuming typical distributiol
cost 7, since M ~ r.

Generalized moduli

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 CH{1,..., n/4}.)
Compute >(J11) mod M
for each Ji1 € S11.

Similarly take a set S17 of r
subsets of {n/4+4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with
>(J)=t, X(J1)=¢t1 (mod M).

Assuming typical distribution:
cost 7, since M ~ r.

zed modul

M, t1, r with M ~ r.
| moduli algorithm
ecial case r = 27/4))

511, #511 = r, where

J11 € S511.

' take a set Syp of 7

Jip € S51».

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with X(h) =t — 1
= each t — X ().

Find collisions >(J1) =t — (/).

Success probability r# /2"
at finding any particular J with

Y(J)=t T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantur

Capture
generaliz
as data
D(511, ¢
Easy to
from 5;,

Convert

cost r +
20.2n £,

Use “amr
to searcl
Total co

vith M ~ r.
lgorithm
— 2'"'/4.)

1 = T, Where
n: S11 is the set

nod M

t S1p of r

/12) mod M

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with

Y(J)=t¢ T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli |

Capture execution
generalized modul
as data structure
D(S11, 512, 521, S
Easy to move
from S;; to adjace

Convert into quan
cost 7 + /7212
20.272, for r ~ 20.271

Use “amplitude ar
to search for corre
Total cost 2937

[SIfS

1 /4}.

he set

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with () =t — 1
= each t — X ().

Find collisions >(J1) =t — (/).

Success probability r# /2"
at finding any particular J with

Y(J)=t T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithn
as data structure

D(S11. 512, 521, 522).

Easy to move

from 5;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"2 /72,
2021 for ¢ ay 20-270

Use “amplitude amplificatio
to search for correct %7.
Total cost 29-3".

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with

Y(J)=t¢ T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 /72,
20-21 for ¢ g 20-270

Use “amplitude amplification”
to search for correct %7.
Total cost 29-37.

collisions

=11 — X (J12),

'1) — tl (mod M)
= J11 U J12.

e each X(J1).

501, S0 =
 with 2(h) =t — ¢
t—2(Jh).

lisions 2(J1) =t — X(J2).

probability 7% /2"
g any particular J with

t, 2(J1)=t1 (mod M).

g typical distribution:
ince M ~ r.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from 5;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 72,
2021 for ¢ ay 20-270

Use “amplitude amplification”

to search for correct %7.
Total cost 29-3".

Quantur

Central

Combine
with “re
2010 Hc
Subset-s
new rece

Lower-le
Ambaini
“combin
and a sk
history-i
We use
Much ec

J12),

(mod M)

J1».

J1).

=

/2) =t — tl

) =1t —2(J)).
/ 7.4/27?,

ficular J with
=t1 (mod M).
listribution:

T.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 /72,
20-27 for ¢ g 20-270

Use “amplitude amplification”

to search for correct %7.

Total cost 2937

Quantum reps (0..

Central result of t
Combine quantum
with “representati
2010 Howgrave-Gi
Subset-sum expon
new record.

ower-level improy
Ambainis uses ad-
“combination of a
and a skip list” to
history-independer
We use radix trees
Much easier, prest

nth

d M).

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S511, 512, 521, 522).

Easy to move

from $;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 72,
2021 for ¢ ay 20-270

Use “amplitude amplification”

to search for correct %7.

Total cost 2037

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with “representations’ Idea
2010 Howgrave-Graham—Jot
Subset-sum exponent 0.241
new record.

ower-level improvement:
Ambainis uses ad-hoc
“combination of a hash tabl
and a skip list” to ensure
history-independence.

We use radix trees.

Much easier, presumably fas

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"2 /72,
20-21 for ¢ g 20-270

Use “amplitude amplification”

to search for correct %7.
Total cost 2037

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk

with “representations” idea of
2010 Howgrave-Graham—Joux.
Subset-sum exponent 0.241 . . .;
new record.

Lower-level improvement:
Ambainis uses ad-hoc
“combination of a hash table
and a skip list” to ensure
history-independence.

We use radix trees.

Much easier, presumably faster.

