Quantum algorithms for the subset-sum problem

D. J. BernsteinUniversity of Illinois at Chicago &Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery University of Waterloo

Tanja Lange Technische Universiteit Eindhoven

Alexander Meurer Ruhr-Universität Bochum Subset-sum example: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g., find such a subsequence if one exists; find such a subsequence knowing that one exists; allow range of sums; coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc.

n algorithms subset-sum problem

rnstein

ty of Illinois at Chicago & the Universiteit Eindhoven

co/qsubsetsum.html

ork with:

leffery

ty of Waterloo

ange

che Universiteit Eindhoven

er Meurer

iversität Bochum

Subset-sum example:

Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g., find such a subsequence if one exists; find such a subsequence knowing that one exists; allow range of sums; coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc. The latt

Define a

Define L

 $\{v:v_1x$

Define v

(70, 2, 0,

If $J \subseteq \{$ and $\sum_{i \in I} f(i) \}$

 $v \in L$ w

v is very

Reasona

v is the

Subset-s

codimen

ms problem

is at Chicago & siteit Eindhoven

etsum.html

erloo

siteit Eindhoven

Bochum

Subset-sum example:

Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g.,
find such a subsequence
if one exists;
find such a subsequence
knowing that one exists;
allow range of sums;
coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc. The lattice connection

Define $x_1 = 499$,

Define $L \subseteq \mathbf{Z}^{12}$ as $\{v: v_1x_1 + \cdots + v_n\}$

If $J \subseteq \{1, 2, \dots, 1\}$

and $\sum_{i\in J} x_i = 36$

 $v \in L$ where $v_i =$

v is very close to v. Reasonable to hop v is the closest very

Subset-sum algorit

codimension-1 CV

ago & hoven

nl

hoven

Subset-sum example: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g., find such a subsequence if one exists; find such a subsequence knowing that one exists; allow range of sums; coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc.

The lattice connection

Define $x_1 = 499, ..., x_{12} =$

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}$$

Define $u \in \mathbf{Z}^{12}$ as

If
$$J \subseteq \{1, 2, ..., 12\}$$

and $\sum_{i\in J} x_i = 36634$ then

$$v \in \mathcal{L}$$
 where $v_i = u_i - [i \in \mathcal{L}]$

v is very close to u.

Reasonable to hope that

v is the closest vector in L t

Subset-sum algorithms \approx

codimension-1 CVP algorith

Subset-sum example: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g., find such a subsequence if one exists; find such a subsequence knowing that one exists; allow range of sums; coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc.

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$.

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If
$$J \subseteq \{1, 2, \dots, 12\}$$

and $\sum_{i \in J} x_i = 36634$ then $v \in L$ where $v_i = u_i - [i \in J]$.

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms \approx

codimension-1 CVP algorithms.

um example:

a subsequence of

2, 1927, 2535, 3596, 3608,

89, 6385, 7353, 7650, 9413)

um 36634?

riations: e.g.,

n a subsequence

xists;

n a subsequence

that one exists;

nge of sums;

nts outside $\{0, 1\}$; etc.

-sum problem";

ck problem"; etc.

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$.

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as

(70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If $J \subseteq \{1, 2, ..., 12\}$

and $\sum_{i\in J} x_i = 36634$ then

 $v \in L$ where $v_i = u_i - [i \in J]$.

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms \approx

codimension-1 CVP algorithms.

The cod

A weights there (499, 85, 4688, 59)

having lo

```
ole:
```

ence of 35, 3596, 3608, 7353, 7650, 9413) ?

e.g., uence

uence exists;

ns;

 $e \{0, 1\}$; etc.

lem";

n"; etc.

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$.

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If $J \subseteq \{1, 2, ..., 12\}$ and $\sum_{i \in J} x_i = 36634$ then $v \in L$ where $v_i = u_i - [i \in J]$.

v is very close to u.

Reasonable to hope that v is the closest vector in L to u. Subset-sum algorithms \approx codimension-1 CVP algorithms.

The coding connection

A weight-w subset Is there a subseque (499, 852, 1927, 254688, 5989, 6385, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 74688, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 746888, 7468888, 746888, 746888, 7468888, 7468888, 7468888, 7468888, 74688888, 7468888, 7468888, 7468888, 7468888, 7468888, 7468888, 7468888

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413.$

Define $L \subset \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If $J \subset \{1, 2, ..., 12\}$

and $\sum_{i\in J} x_i = 36634$ then

$$v \in L$$
 where $v_i = u_i - [i \in J]$.

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms \approx

codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum prob Is there a subsequence of (499, 852, 1927, 2535, 3596, 4688, 5989, 6385, 7353, 7650 having length w and sum 36

3608,

, 9413)

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$.

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If
$$J\subseteq\{1,2,\ldots,12\}$$
 and $\sum_{i\in J}x_i=36634$ then $v\in L$ where $v_i=u_i-[i\in J]$.

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms \approx codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$.

Define $L \subseteq \mathbf{Z}^{12}$ as

$$\{v: v_1x_1+\cdots+v_{12}x_{12}=0\}.$$

Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If
$$J\subseteq\{1,2,\ldots,12\}$$
 and $\sum_{i\in J}x_i=36634$ then $v\in L$ where $v_i=u_i-[i\in J]$.

v is very close to u.

Reasonable to hope that v is the closest vector in L to u. Subset-sum algorithms \approx codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and xor 1060?

This is the central algorithmic problem in coding theory.

ice connection

$$x_1 = 499, \ldots, x_{12} = 9413.$$

$$\boldsymbol{\mathsf{L}} \subseteq \mathbf{Z}^{12}$$
 as

$$_1+\cdots+v_{12}x_{12}=0$$
.

$$a \in \mathbf{Z}^{12}$$
 as

$$0, 0, 0, 0, 0, 0, 0, 0, 0$$
.

$$1, 2, \ldots, 12$$

$$x_i = 36634 \text{ then}$$

here
$$v_i=u_i-[i\in J]$$
 .

close to u.

ble to hope that

closest vector in L to u.

sum algorithms pprox

sion-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and xor 1060?

This is the central algorithmic problem in coding theory.

Recent a

Eurocry_I
Howgrav
subset-s
(Incorrec

Eurocry₁
Becker

subset-s

Adaptat Asiacryp Thomae

Becker-

ction

..., $x_{12} = 9413$.

 $v_{12}x_{12}=0$.

0, 0, 0, 0, 0).

2}

634 then

 $u_i - [i \in J].$

u.

e that

ctor in L to u.

thms pprox

P algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length <math>w and xor 1060?

This is the central algorithmic problem in coding theory.

Recent asymptotic

Eurocrypt 2010
Howgrave-Graham
subset-sum expone
(Incorrect claim: 2

Eurocrypt 2011
Becker-Coron-Jousubset-sum expone

Adaptations to dead Asiacrypt 2011 Ma Thomae, Eurocrypt Becker–Joux–May

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length <math>w and xor 1060?

This is the central algorithmic problem in coding theory.

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent \approx 0.33 (Incorrect claim: \approx 0.311.)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.29

Adaptations to decoding:
Asiacrypt 2011 May–Meurer
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

9413.

0}.

).

J].

o u.

ms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length w and xor 1060?

This is the central algorithmic problem in coding theory.

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent ≈ 0.337 . (Incorrect claim: ≈ 0.311 .)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291 .

Adaptations to decoding:
Asiacrypt 2011 May–Meurer–
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

ing connection

t-w subset-sum problem: a subsequence of 2, 1927, 2535, 3596, 3608, 89, 6385, 7353, 7650, 9413) ength w and sum 36634?

Z with $(\mathbf{Z}/2)^m$: a subsequence of 2, 1927, 2535, 3596, 3608, 89, 6385, 7353, 7650, 9413) ength \boldsymbol{w} and xor 1060? he central algorithmic in coding theory.

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent \approx 0.337. (Incorrect claim: \approx 0.311.)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291 .

Adaptations to decoding:
Asiacrypt 2011 May–Meurer–
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

Post-qua

Claimed
Lyubash
"Publicprimitive
as secure

There are quantum better the on the s

Hmmm.

ction

t-sum problem: ence of 35, 3596, 3608, 7353, 7650, 9413) nd sum 36634?

 $(1/2)^m$: ence of

ince of 35, 3596, 3608, 7353, 7650, 9413) and xor 1060?

algorithmic theory.

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent \approx 0.337. (Incorrect claim: \approx 0.311.)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291 .

Adaptations to decoding:
Asiacrypt 2011 May–Meurer–
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

Post-quantum sub

Claimed in TCC 2
Lyubashevsky—Pala
"Public-key crypto
primitives provably
as secure as subset

There are "current quantum algorithm better than classic on the subset sum

Hmmm. What's t quantum subset-si

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent ≈ 0.337 . (Incorrect claim: ≈ 0.311 .)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291 .

Adaptations to decoding:
Asiacrypt 2011 May–Meurer–
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Seger
"Public-key cryptographic
primitives provably
as secure as subset sum":

There are "currently no know quantum algorithms that perbetter than classical ones on the subset sum problem"

Hmmm. What's the best quantum subset-sum expone

olem:

3608, , 9413)

6634?

3608, , 9413) 50?

ic

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham-Joux: subset-sum exponent ≈ 0.337 . (Incorrect claim: ≈ 0.311 .)

Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291 .

Adaptations to decoding:
Asiacrypt 2011 May–Meurer–
Thomae, Eurocrypt 2012
Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010 Lyubashevsky—Palacio—Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

asymptotic news

ot 2010

ve-Graham-Joux:

um exponent \approx 0.337.

ct claim: \approx 0.311.)

ot 2011

Coron-Joux:

um exponent \approx 0.291.

ions to decoding:

t 2011 May–Meurer–

, Eurocrypt 2012

Joux-May-Meurer.

Post-quantum subset sum

Claimed in TCC 2010 Lyubashevsky—Palacio—Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Interlude

Textboo

Proof o

New

Proof

Mislead that bes best *pro*

news

-Joux: ent \approx 0.337.

 \approx 0.311.)

IX:

ent \approx 0.291.

coding:

ay–Meurer–

ot 2012

–Meurer.

Post-quantum subset sum

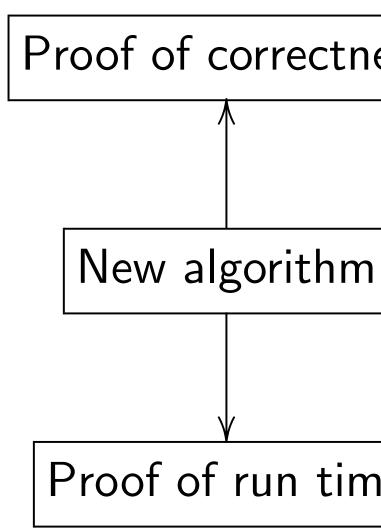
Claimed in TCC 2010 Lyubashevsky—Palacio—Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Interlude: Algorith

Textbook algorithi



Mislead students is that best algorithm best proven algorithm

Post-quantum subset sum

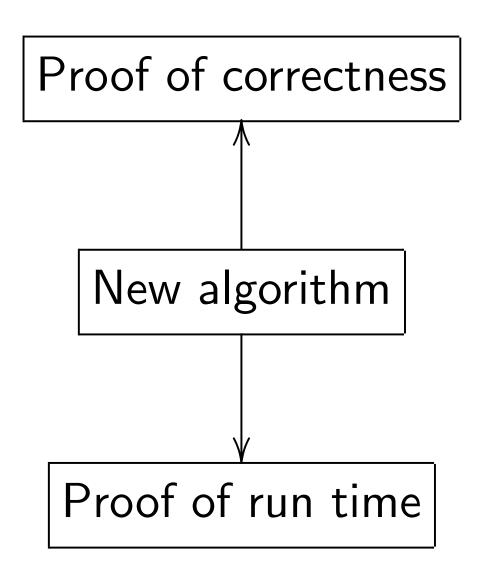
Claimed in TCC 2010 Lyubashevsky—Palacio—Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis



Mislead students into thinki that best algorithm = best proven algorithm.

7.

1.

Post-quantum subset sum

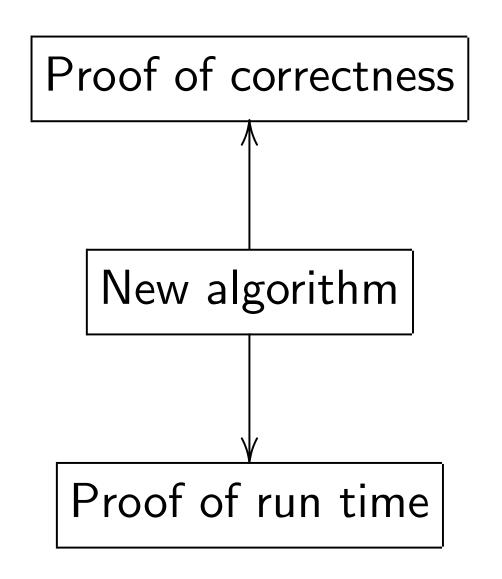
Claimed in TCC 2010 Lyubashevsky—Palacio—Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

antum subset sum

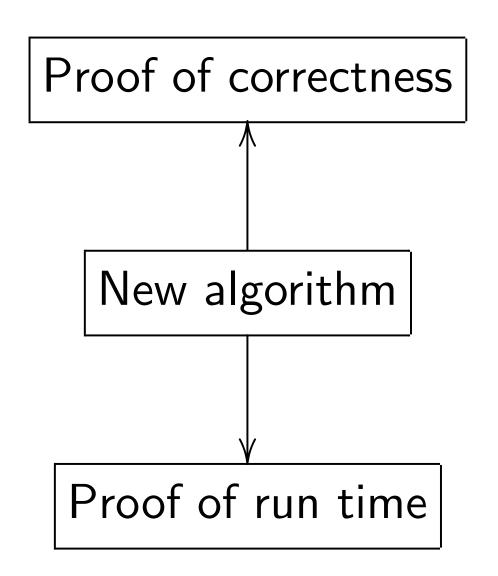
in TCC 2010
evsky-Palacio-Segev
key cryptographic
es provably
e as subset sum":

re "currently no known algorithms that perform an classical ones ubset sum problem".

What's the best subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

Reality: cryptana are almo

set sum

010 acio–Segev ographic

t sum":

tly no known

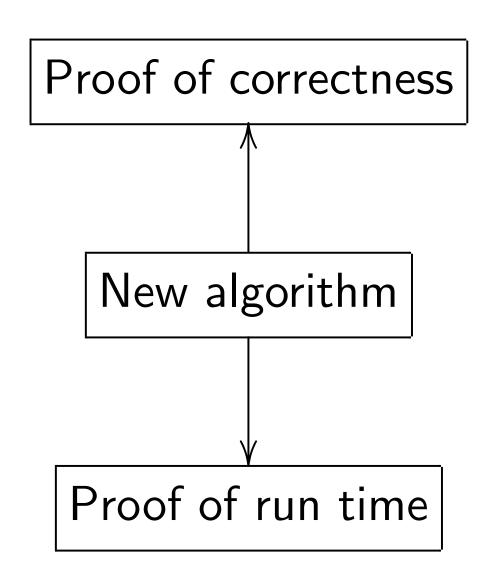
ns that perform

al ones

problem".

he best um exponent? Interlude: Algorithm design

Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the cryptanalytic algorate almost never pare

Textbook algorithm analysis:

New algorithm

Proof of run time

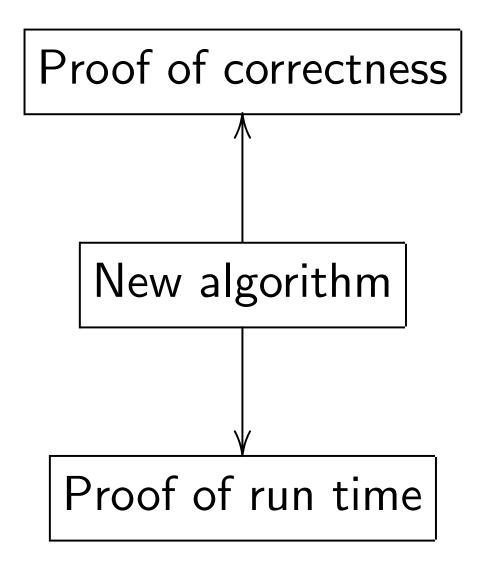
Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

wn rform

ent?

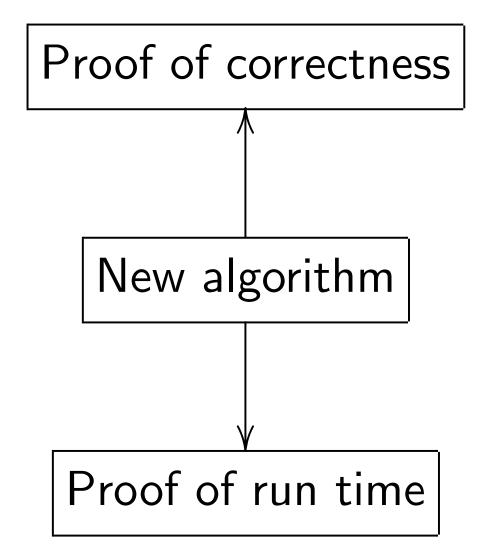
Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Textbook algorithm analysis:

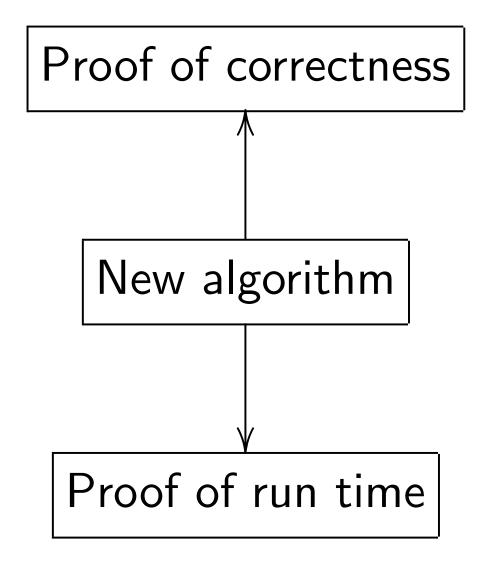


Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!"

Textbook algorithm analysis:



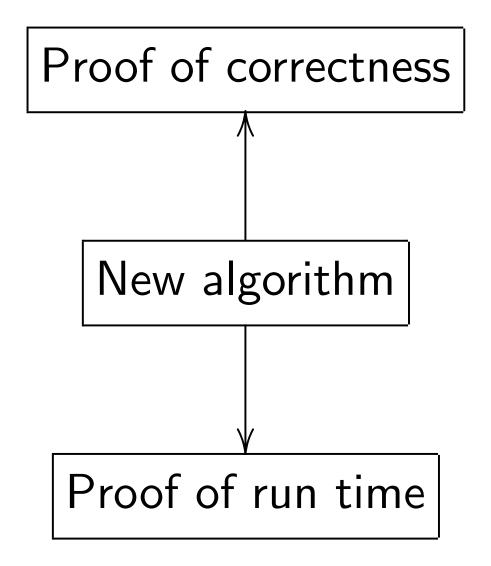
Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Textbook algorithm analysis:



Mislead students into thinking that best algorithm = best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

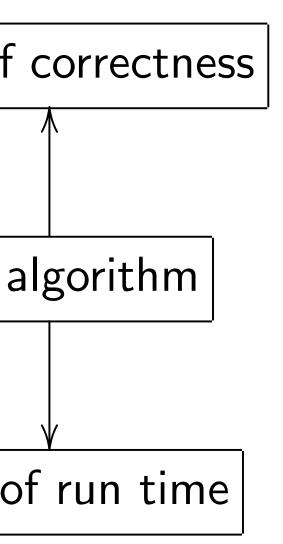
Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

e: Algorithm design

k algorithm analysis:



students into thinking t algorithm = ven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:

"Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about to quantum to figure against

ım design

m analysis:

ess

e

nto thinking
n =
thm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quant

Want to analyze,

quantum algorithm to figure out safe against *future* qua

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algoric Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum atta

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation**. Simulator (like prover) knows more than the algorithm does.

state-of-the-art lytic algorithms est never proven.

response:

arder, find proofs!"

us of the experts:

robably do not *exist*

of these algorithms.

anding proofs is silly.

proofs, how do we correctness+speed?

Real algorithm analysis tically on heuristics and **er experiments**.

What about quantum algorithms?

Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation**. Simulator (like prover) knows more than the algorithm does.

Quantur

Assume has n-bi

Generic finds thi

 $\approx 2^n$ eva

1996 Great finds this $\approx 2^{0.5n}$

on super

Cost of \approx cost of

if cost c

he-art rithms roven.

d proofs!"

experts:

- not *exist*
- algorithms.
- ofs is silly.

ow do we

s+speed?

rithm analysis

heuristics and

ments.

What about quantum algorithms?

Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation**. Simulator (like prover) knows more than the algorithm does.

Quantum search (

Assume that funct has n-bit input, u

Generic brute-force finds this root usin $\approx 2^n$ evaluations of

1996 Grover meth finds this root usin $\approx 2^{0.5n}$ quantum ϵ

on superpositions

Cost of quantum ϵ \approx cost of evaluation ϵ if cost counts qub

What about quantum algorithms?

Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

- 1. Simulate *tiny* q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation**. Simulator (like prover) knows more than the algorithm does.

Quantum search (0.5)

Assume that function f has n-bit input, unique root

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations on superpositions of inputs.

Cost of quantum evaluation \approx cost of evaluation of f if cost counts qubit "operation"

lysis and What about quantum algorithms?

Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

- 1. Simulate tiny q. computer?
- \Rightarrow Huge extrapolation errors.
- 2. Faster algorithm-specific simulation? Yes, sometimes.
- 3. Fast **trapdoor simulation**. Simulator (like prover) knows more than the algorithm does.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

out quantum algorithms?

analyze, optimize algorithms *today* out safe crypto future quantum attack.

late *tiny* q. computer? extrapolation errors.

r algorithm-specific on? Yes, sometimes.

trapdoor simulation.

or (like prover) knows an the algorithm does.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

Easily addifferent and # no Faster if Most integrals

tum algorithms?

optimize ns *today* crypto ntum attack.

q. computer? tion errors.

m-specific sometimes.

simulation.

over) knows orithm does.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

Easily adapt to had different # of roomand # not known
Faster if # is large but typically # is
Most interesting:

thms?

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

Easily adapt to handle different # of roots, and # not known in advance Faster if # is large, but typically # is not very lambda Most interesting: $\# \in \{0, 1\}$

ick.

er?

).

n.

/S es.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.

1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f if cost counts qubit "operations".

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost.

n search (0.5)

that function f tinput, unique root.

brute-force search s root using fluations of f.

over method solvest root using quantum evaluations of f

positions of inputs.

quantum evaluation of f of evaluation of f ounts qubit "operations".

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost.

Algorith

Represer linteger l

n bits and to store

n qubitsa superp

 2^n comp

 $|a_0, \ldots, a_n|^2 + c$

Measurii has char

Start from i.e., $a_J =$

0.5)

tion fnique root.

e search ng

f f.

od ng

evaluations of f of inputs.

evaluation of f on of f it "operations".

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost.

Algorithm details

Represent $J \subseteq \{1,$ integer between 0

n bits are enoughto store one such

n qubits store much a superposition ov 2^n complex amplit

 $|a_0, \dots, a_{2^n-1}|$ with $|a_0|^2 + \dots + |a_{2^n}|$

Measuring these n has chance $|a_J|^2$ t

Start from uniform i.e., $a_J = 1/2^{n/2}$

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost.

Represent $J \subseteq \{1, \ldots, n\}$ as integer between 0 and 2^n – n bits are enough space to store one such integer. n qubits store much more, a superposition over sets J: 2^n complex amplitudes $a_0, \ldots, a_{2^{n}-1}$ with $|a_0|^2 + \cdots + |a_{2n-1}|^2 = 1.$ Measuring these n qubits has chance $|a_J|^2$ to produce Start from uniform superpos i.e., $a_J = 1/2^{n/2}$ for all J.

Algorithm details for unique

s of f

of f

ions".

Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost.

Algorithm details for unique root:

Represent $J \subseteq \{1, ..., n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough space to store one such integer.

n qubits store much more, a superposition over sets J: 2^n complex amplitudes

$$|a_0, \dots, a_{2^n-1}|$$
 with $|a_0|^2 + \dots + |a_{2^n-1}|^2 = 1.$

Measuring these n qubits has chance $|a_J|^2$ to produce J.

Start from uniform superposition, i.e., $a_J = 1/2^{n/2}$ for all J.

dapt to handle
of roots,
ot known in advance.

is large, cally # is not very large. eresting: $\# \in \{0, 1\}$.

the function f(t) the function f(t) where f(t) f(t) f(t)

ndices of subsequence x_n , x_n with sum x_n cide that no root exists. The press poly factors in cost.

Algorithm details for unique root:

Represent $J \subseteq \{1, \ldots, n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough spaceto store one such integer.

n qubits store much more, a superposition over sets J: 2^n complex amplitudes a_0, \ldots, a_{2^n-1} with $|a_0|^2 + \cdots + |a_{2^n-1}|^2 = 1$. Measuring these n qubits

Start from uniform superposition, i.e., $a_J=1/2^{n/2}$ for all J.

has chance $|a_J|^2$ to produce J.

Step 1:

$$b_J = -a$$

$$b_J = a_J$$

Set
$$a \leftarrow$$

$$b_J = -a$$

Repeat sabout 0.

Measure

With high the uniq

ndle

ts, in advance.

Э,

not very large.

$$\# \in \{0, 1\}.$$

cion

ere

root (i.e., subsequence sum t)

no root exists.

factors in cost.

Algorithm details for unique root:

Represent $J \subseteq \{1, ..., n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough spaceto store one such integer.

n qubits store much more, a superposition over sets J: 2^n complex amplitudes

 a_0, \dots, a_{2^n-1} with

$$|a_0|^2 + \cdots + |a_{2n-1}|^2 = 1.$$

Measuring these n qubits has chance $|a_J|^2$ to produce J.

Start from uniform superposition, i.e., $a_J = 1/2^{n/2}$ for all J.

Step 1: Set $a \leftarrow b$ $b_J = -a_J$ if $\Sigma(J)$ $b_J = a_J$ otherwise This is about as eas as computing Σ .

Step 2: "Grover d Set $a \leftarrow b$ where $b_J = -a_J + (2/2)^n$ This is also easy.

Repeat steps 1 and about $0.58 \cdot 2^{0.5n}$

Measure the n qu With high probabi the unique J such e.

arge. I

ce

ists. cost. Algorithm details for unique root:

Represent $J \subseteq \{1, ..., n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough spaceto store one such integer.

n qubits store much more, a superposition over sets J: 2^n complex amplitudes

$$|a_0, \ldots, a_{2^n-1}|$$
 with $|a_0|^2 + \cdots + |a_{2^n-1}|^2 = 1.$

Measuring these n qubits has chance $|a_J|^2$ to produce J.

Start from uniform superposition, i.e., $a_J = 1/2^{n/2}$ for all J.

Step 1: Set $a \leftarrow b$ where $b_J = -a_J$ if $\Sigma(J) = t$, $b_J = a_J$ otherwise. This is about as easy as computing Σ .

Step 2: "Grover diffusion". Set $a \leftarrow b$ where $b_J = -a_J + (2/2^n) \sum_I a_I$. This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this fine the unique J such that $\Sigma(J)$ Algorithm details for unique root:

Represent $J \subseteq \{1, ..., n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough spaceto store one such integer.

n qubits store much more, a superposition over sets J: 2^n complex amplitudes

 $|a_0, \dots, a_{2^n-1}|$ with $|a_0|^2 + \dots + |a_{2^n-1}|^2 = 1.$

Measuring these n qubits has chance $|a_J|^2$ to produce J.

Start from uniform superposition, i.e., $a_J = 1/2^{n/2}$ for all J.

Step 1: Set $a \leftarrow b$ where $b_J = -a_J$ if $\Sigma(J) = t$, $b_J = a_J$ otherwise. This is about as easy

as computing Σ .

Step 2: "Grover diffusion". Set $a \leftarrow b$ where $b_J = -a_J + (2/2^n) \sum_I a_I$. This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds the unique J such that $\Sigma(J)=t$.

m details for unique root:

Int
$$J \subseteq \{1, \dots, n\}$$
 as an Detween 0 and $2^n - 1$.

re enough space one such integer.

olex amplitudes

$$a_{2^{n}-1}$$
 with

$$\cdots + |a_{2}n_{-1}|^2 = 1.$$

ng these n qubits nce $|a_J|^2$ to produce J.

m uniform superposition,
=
$$1/2^{n/2}$$
 for all J .

Step 1: Set $a \leftarrow b$ where

$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

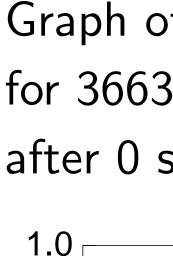
$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

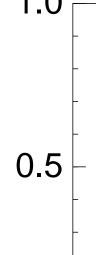
This is also easy.

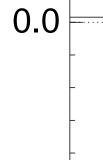
Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

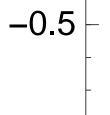
Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.









for unique root:

 \ldots , n as an and $2^n - 1$.

space integer.

ch more, er sets *J*: tudes

 $_{-1}|^2 = 1.$

to produce J.

n superposition, for all J.

Step 1: Set $a \leftarrow b$ where

$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

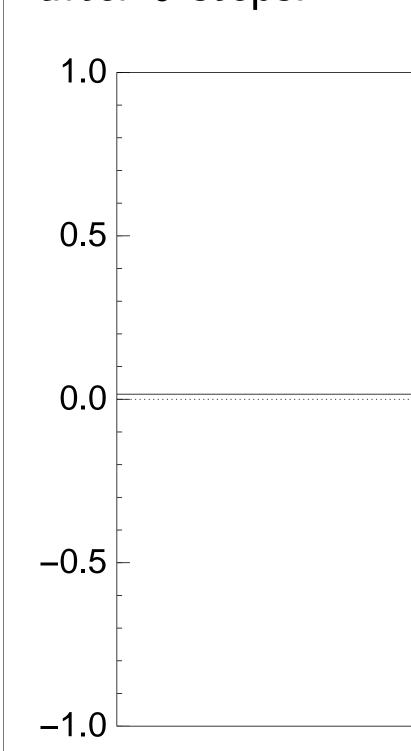
Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds the unique J such that $\Sigma(J)=t$. Graph of $J \mapsto a_J$ for 36634 example after 0 steps:



root:

an

sition,

Step 1: Set $a \leftarrow b$ where

$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

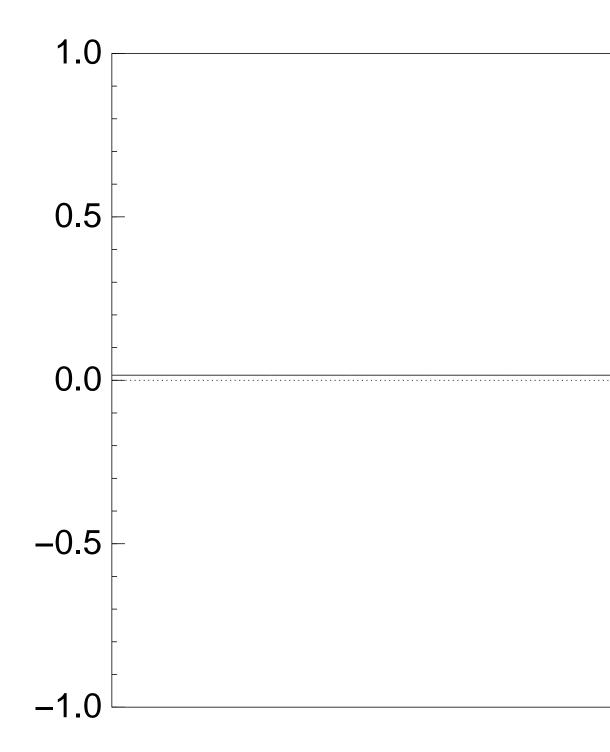
$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$. Graph of $J \mapsto a_I$ for 36634 example with n =after 0 steps:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

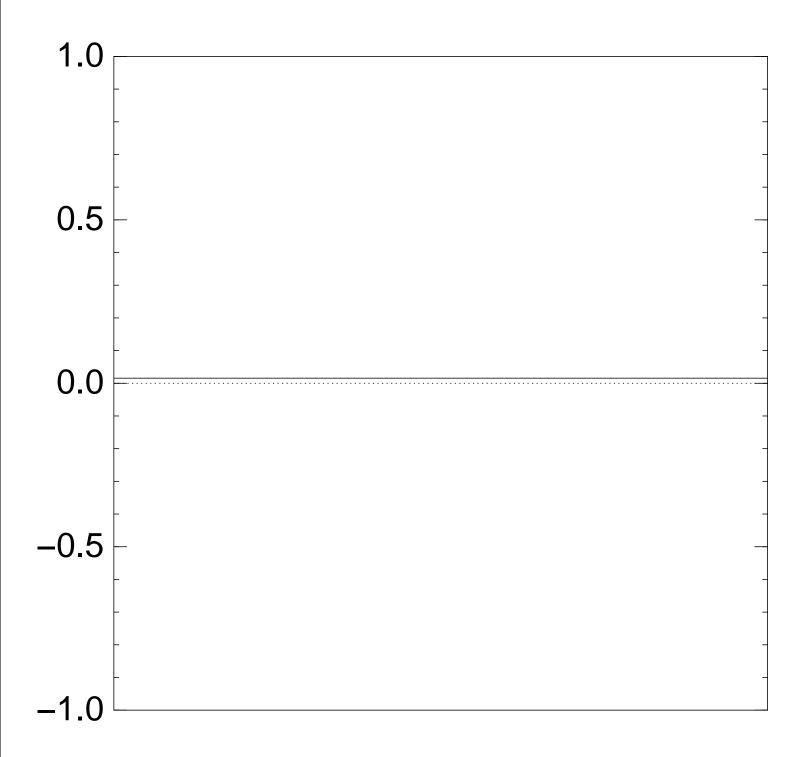
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after 0 steps:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

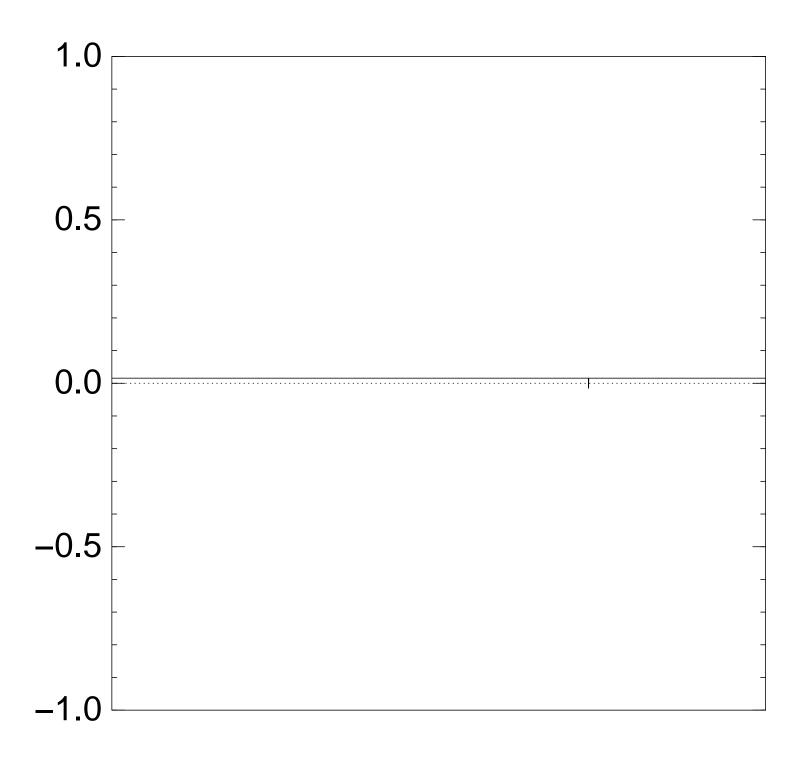
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after Step 1:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

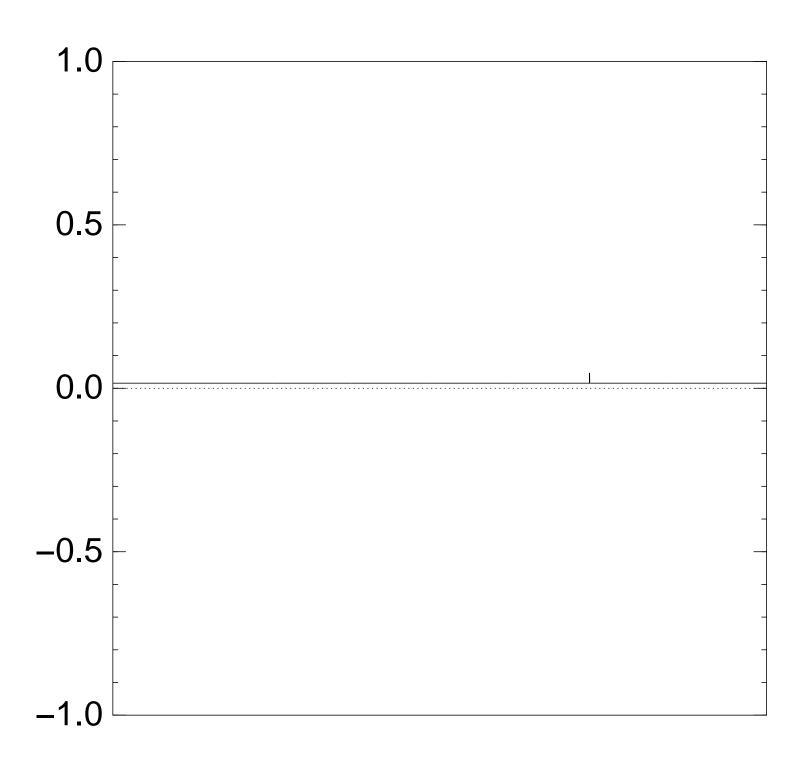
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after Step 1+ Step 2:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

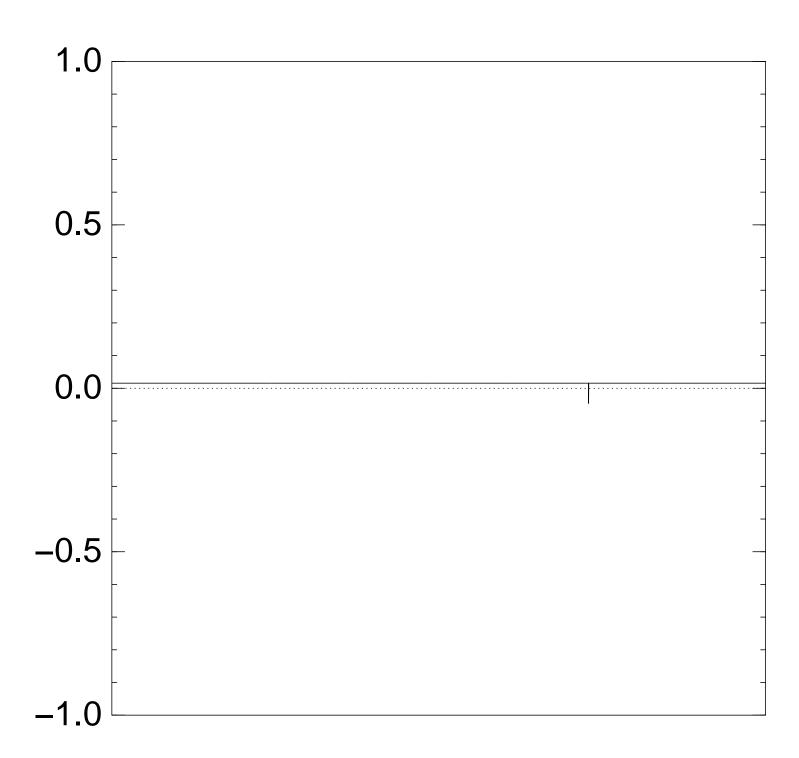
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after Step 1+ Step 2+ Step 1:



 $b_J = -a_J$ if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

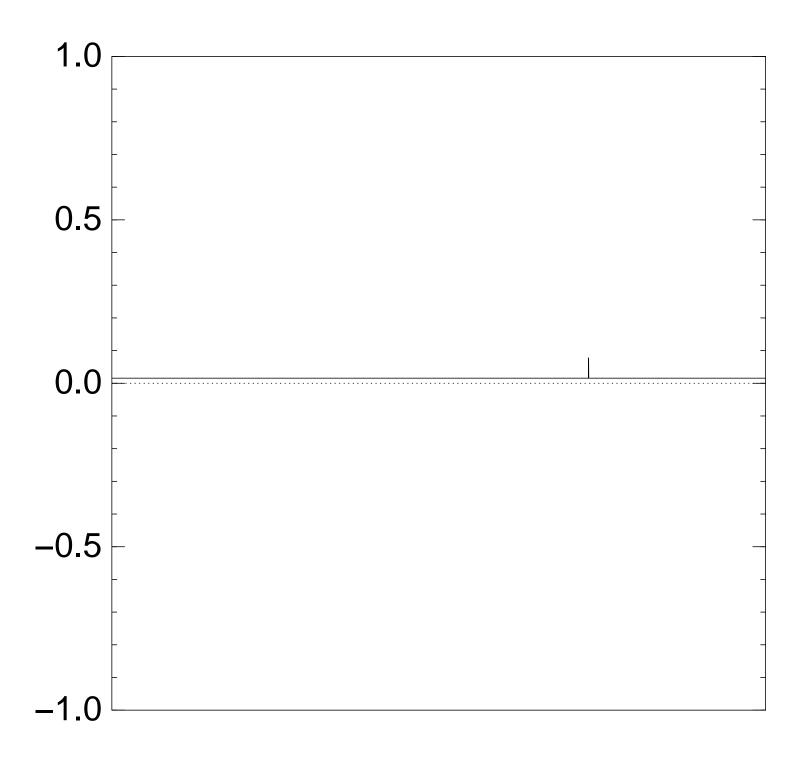
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $2 \times (\text{Step } 1 + \text{Step } 2)$:



 $b_J = -a_J$ if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

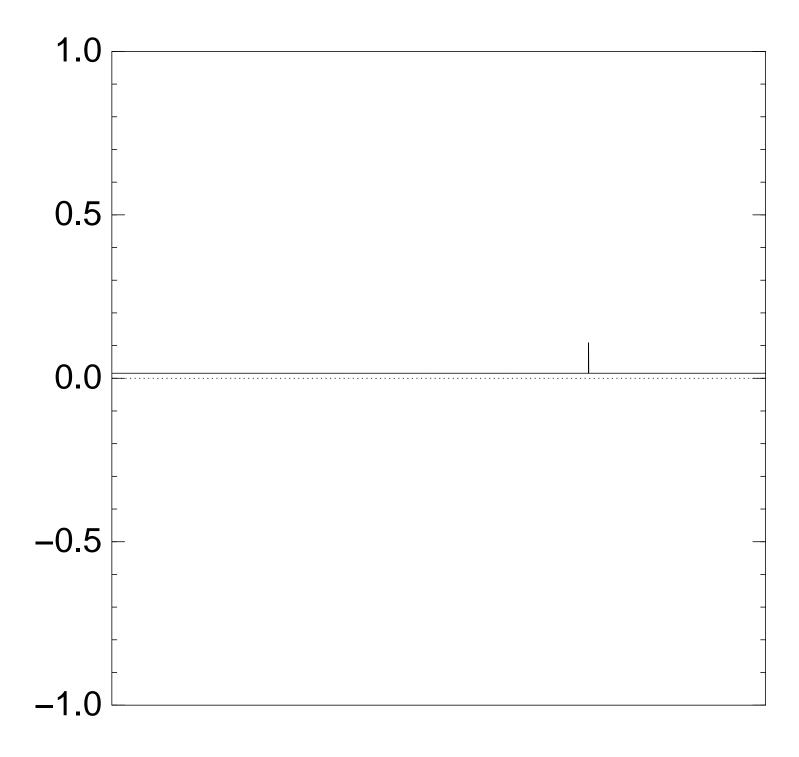
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $3 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

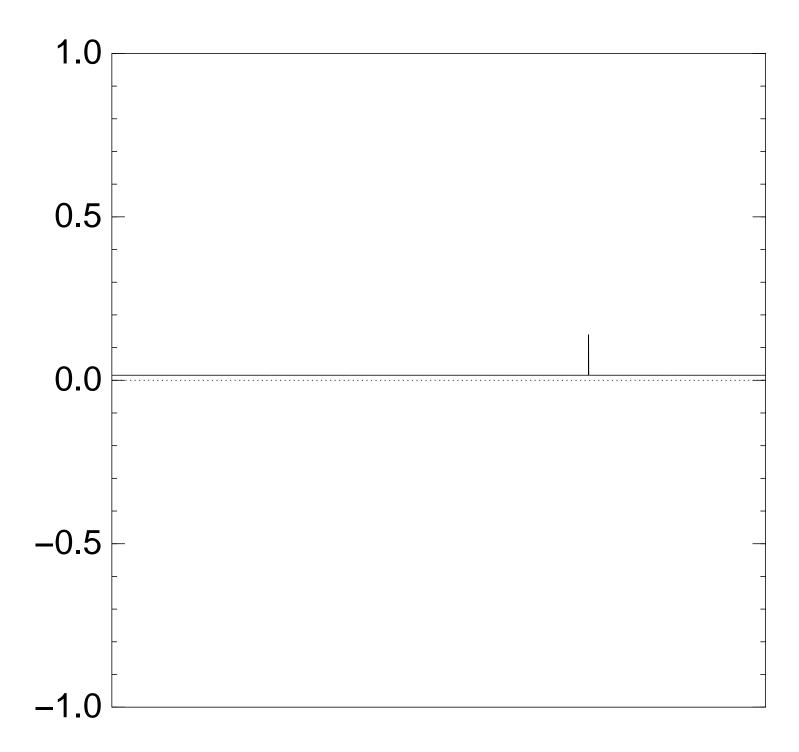
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $4 \times (Step 1 + Step 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

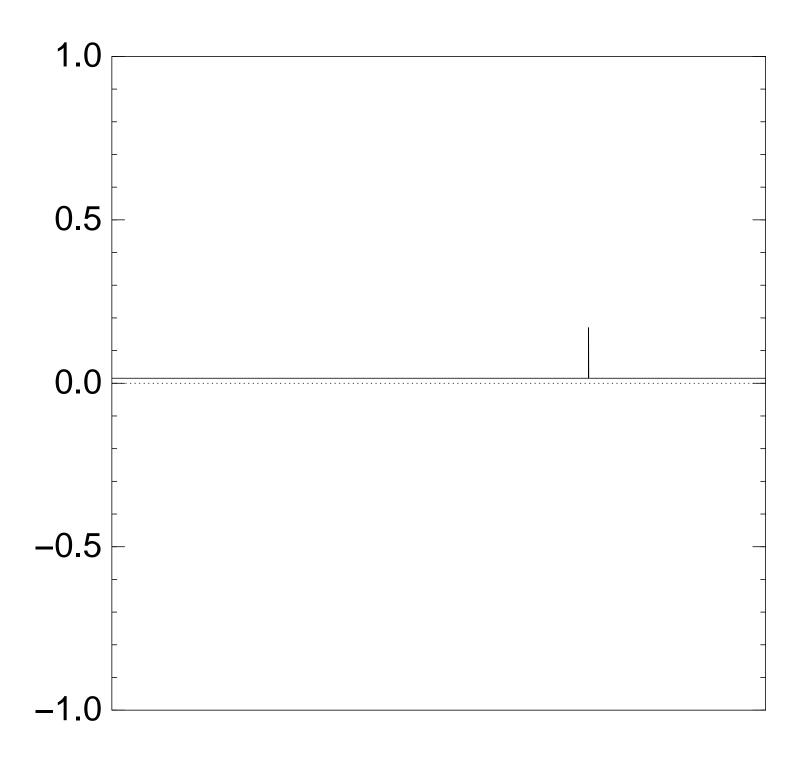
This is also easy.

Repeat steps 1 and 2 about 0.58 · 2^{0.5n} times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $5 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

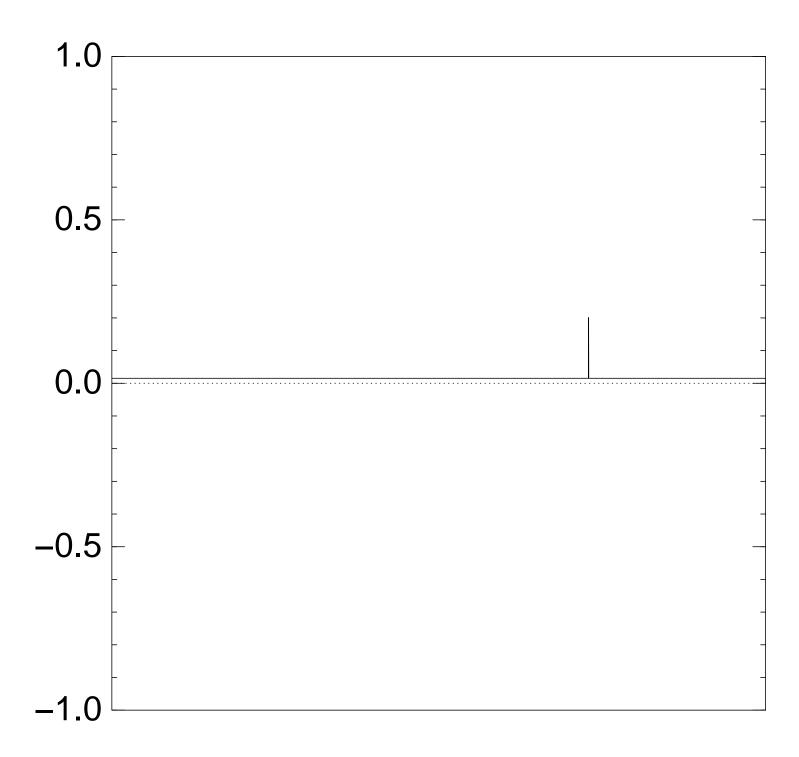
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $6 \times (Step 1 + Step 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

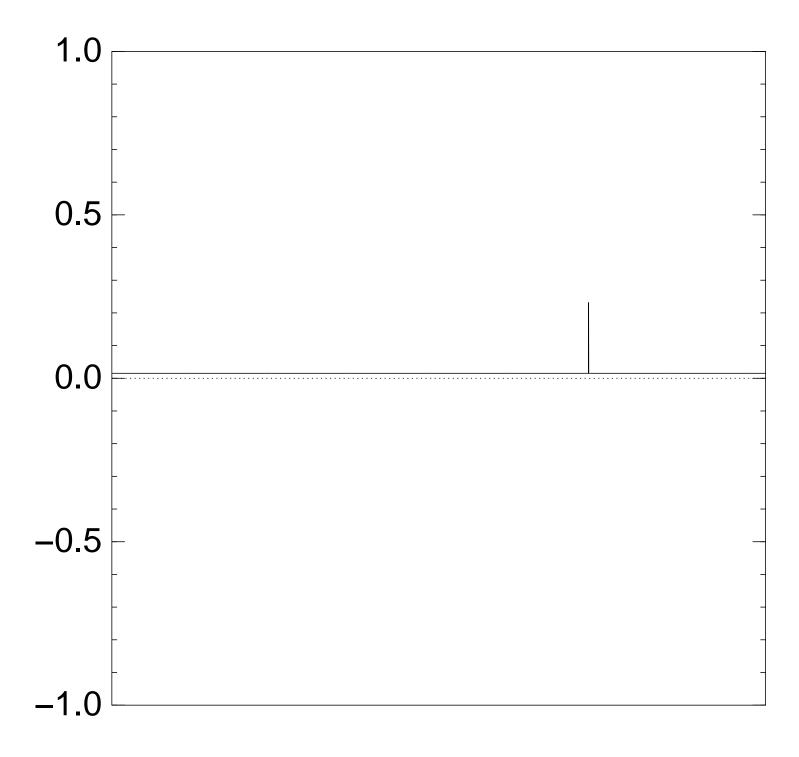
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $7 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

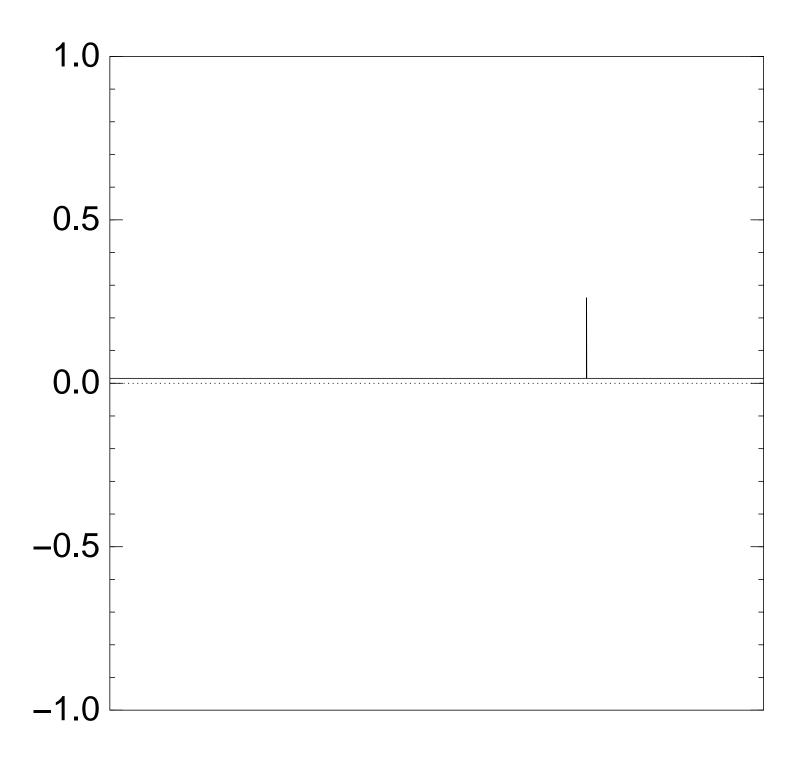
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $8 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

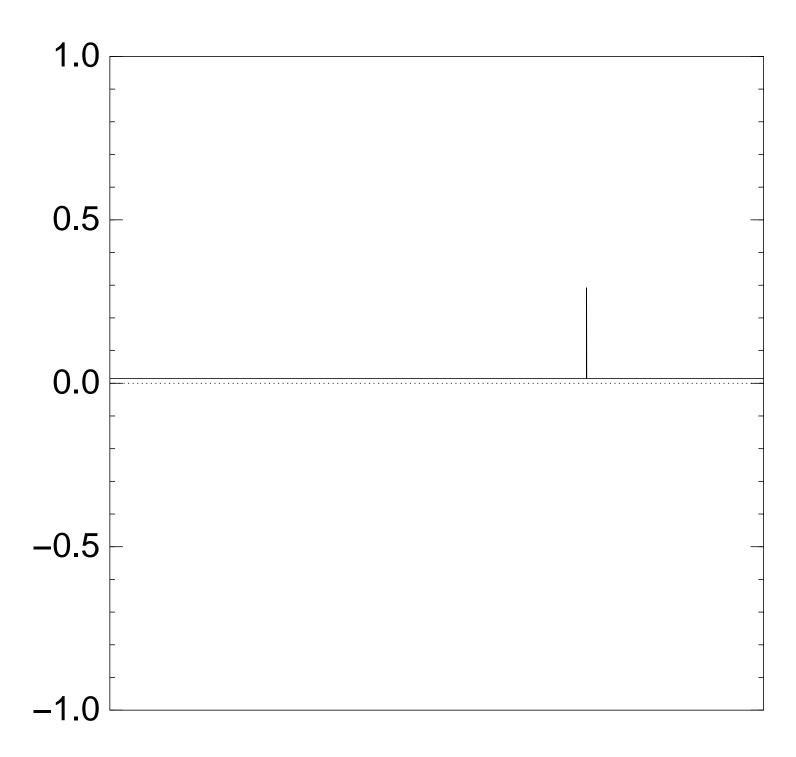
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n = 12 after $9 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

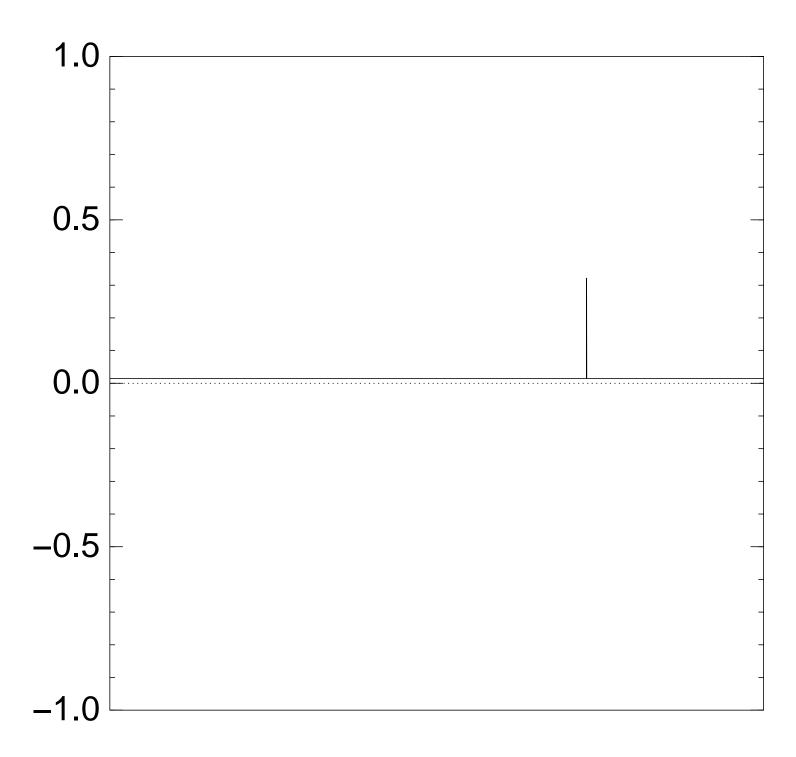
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $10 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

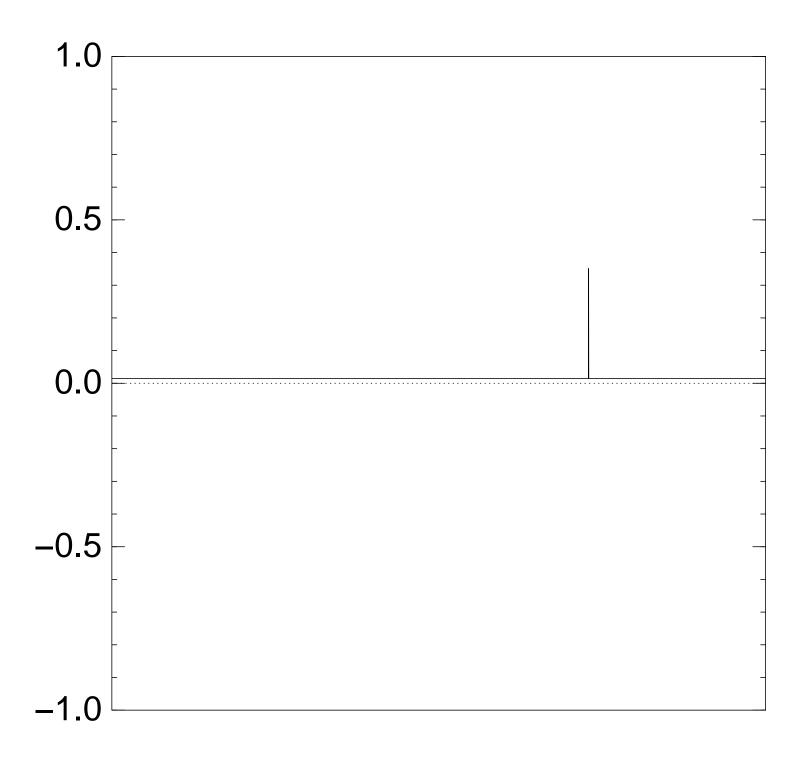
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $11 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

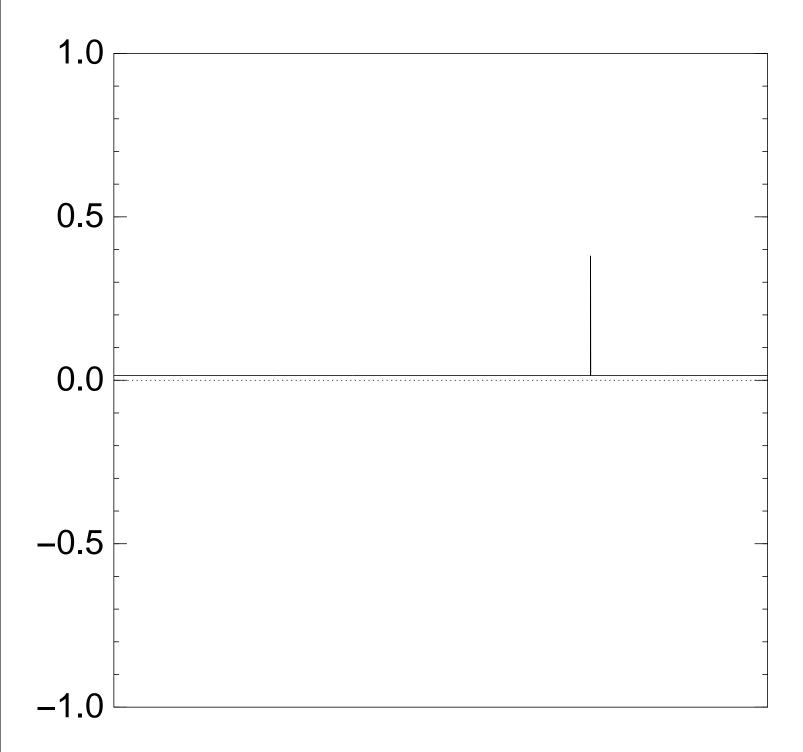
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $12 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

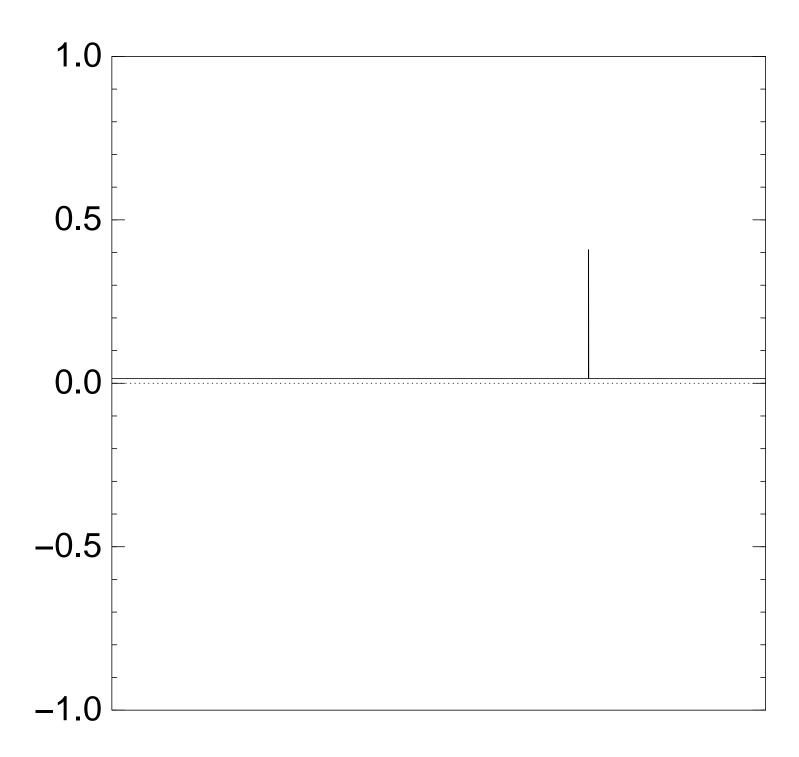
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $13 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

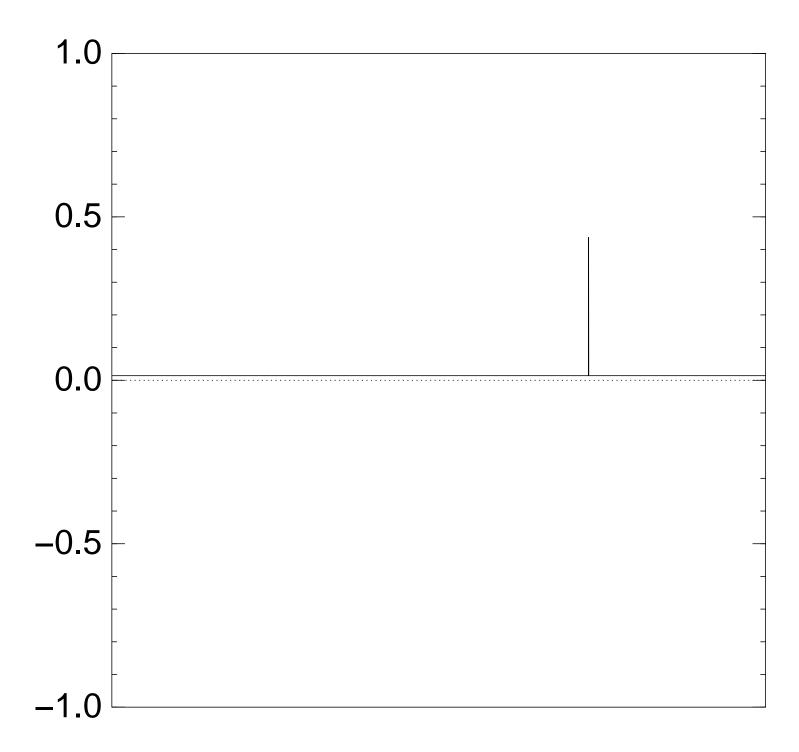
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $14 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

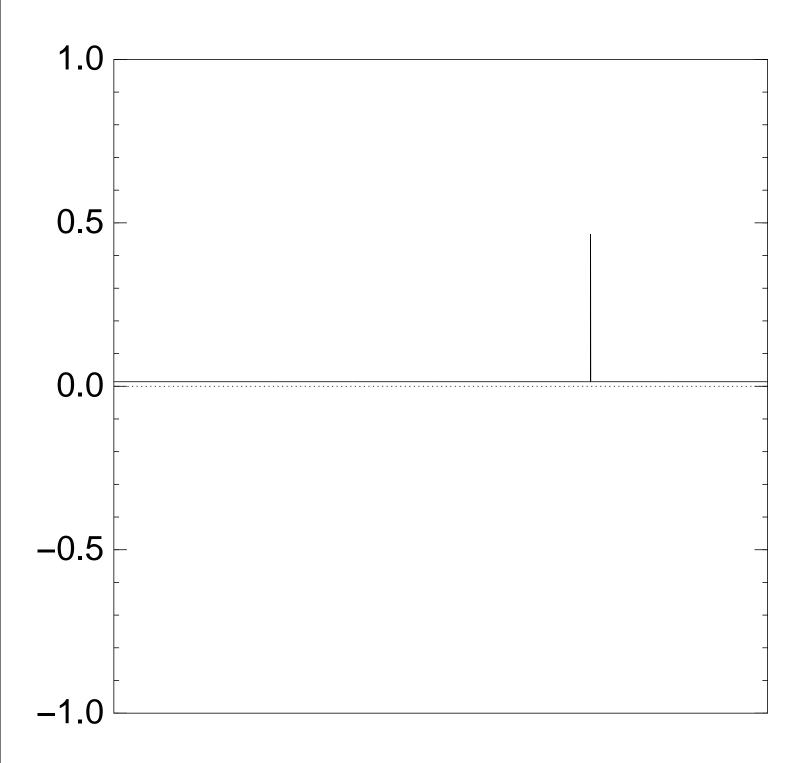
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $15 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

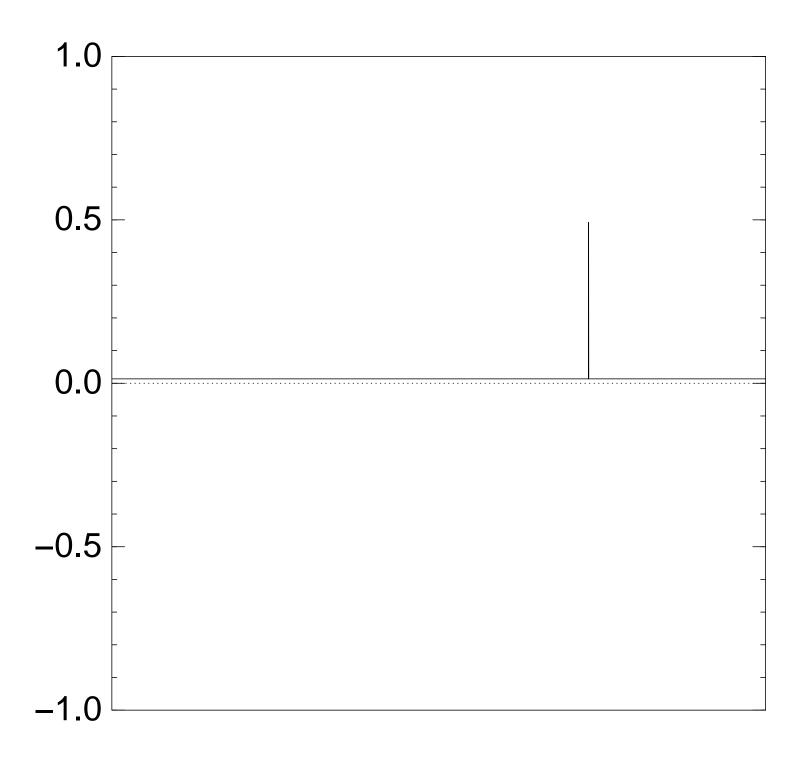
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $16 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

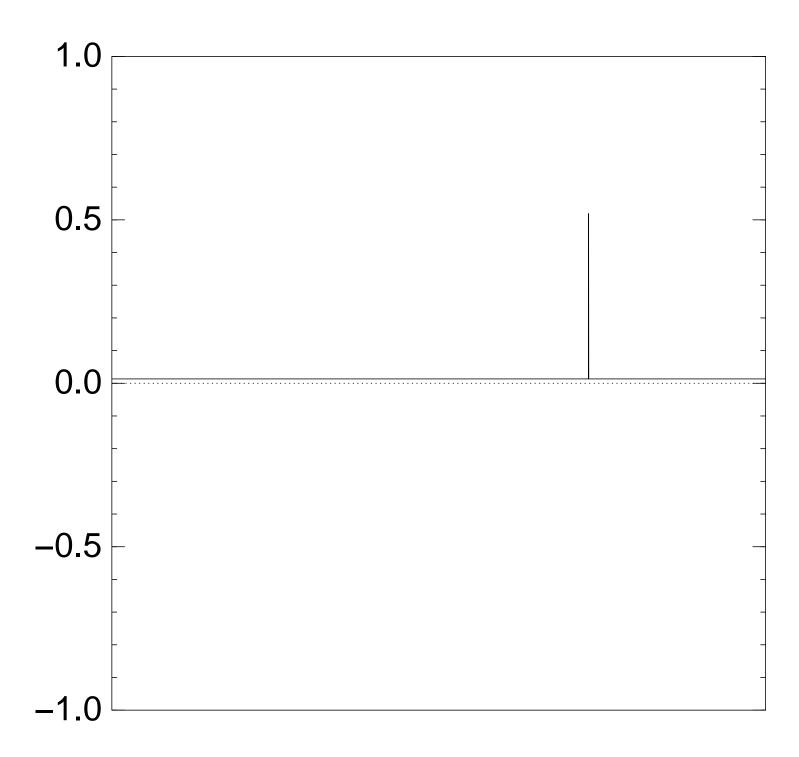
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $17 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

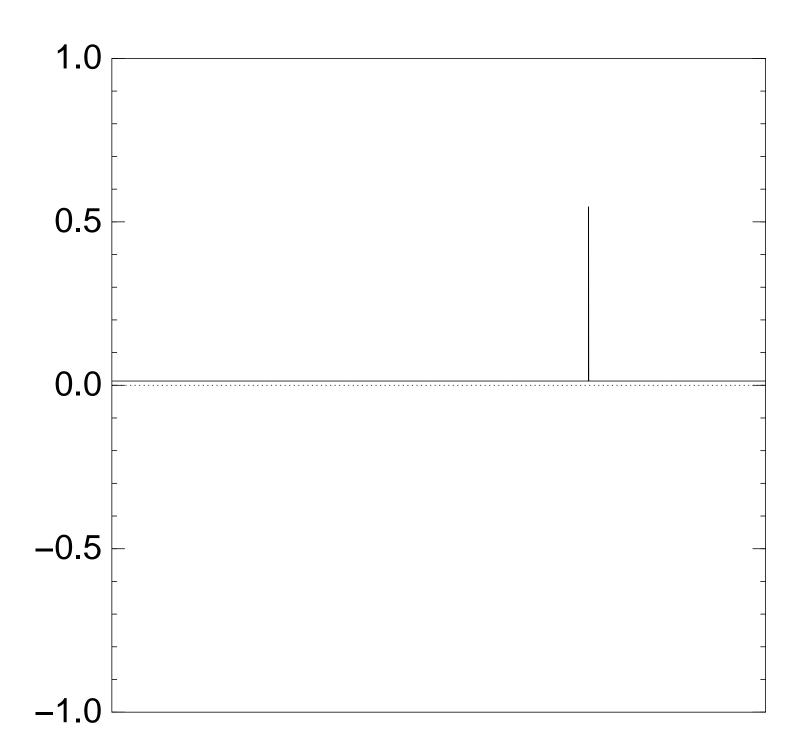
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $18 \times (\text{Step } 1 + \text{Step } 2)$:



 $b_J = -a_J$ if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

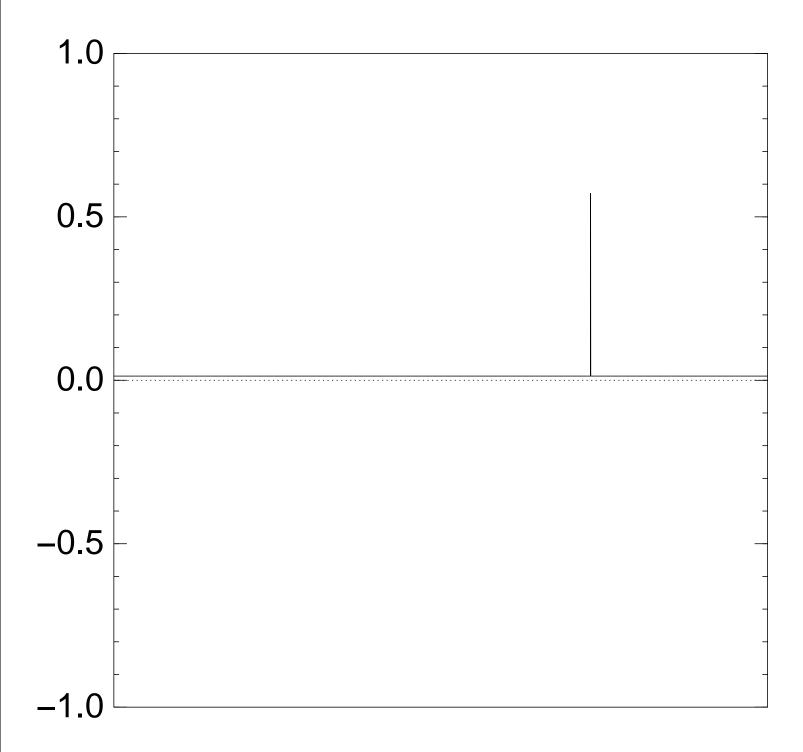
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $19 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

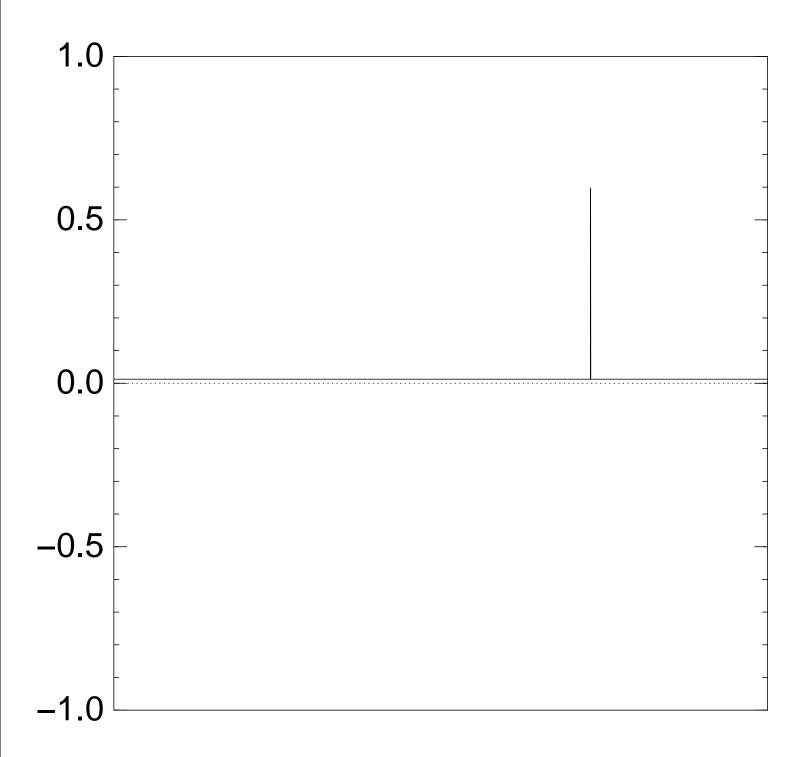
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $20 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

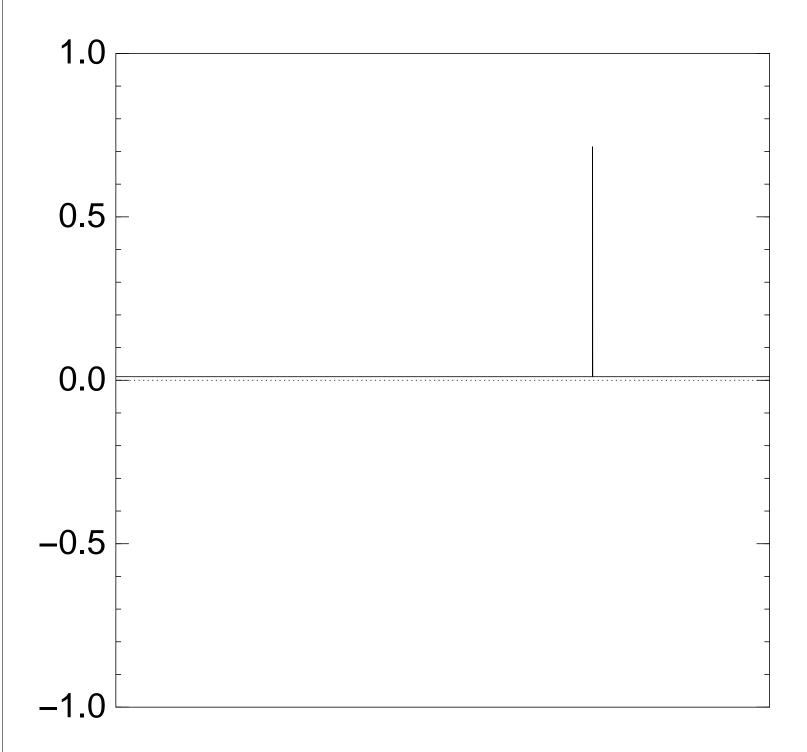
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $25 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

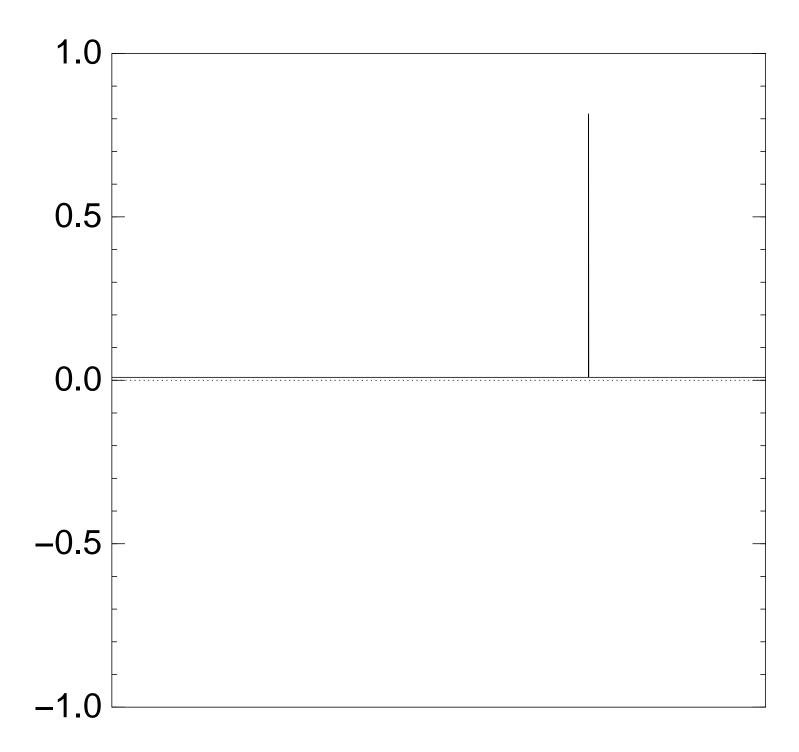
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after 30 × (Step 1 + Step 2):



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

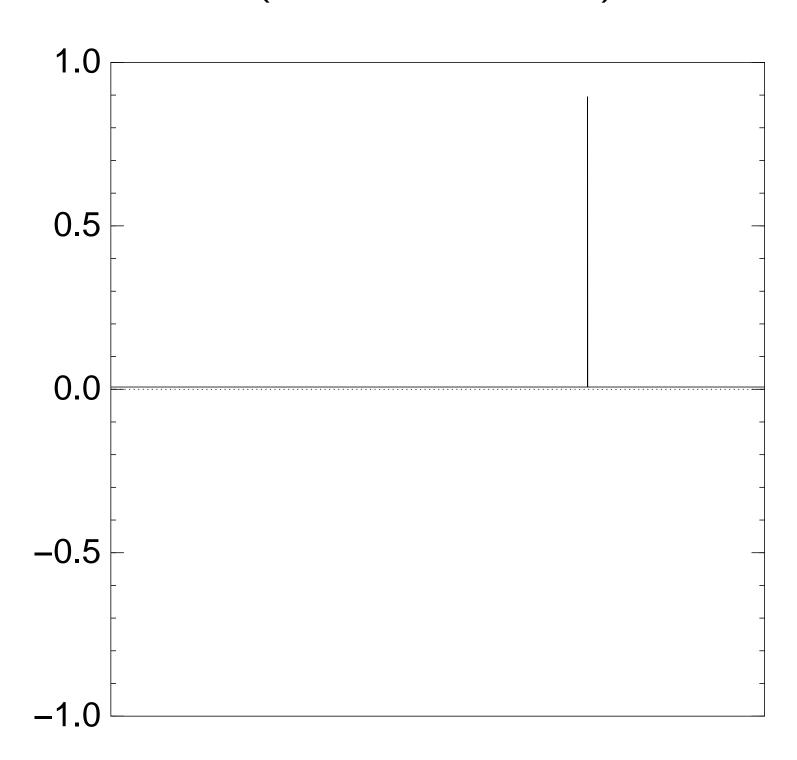
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $35 \times (\text{Step } 1 + \text{Step } 2)$:



Good moment to stop, measure.

$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

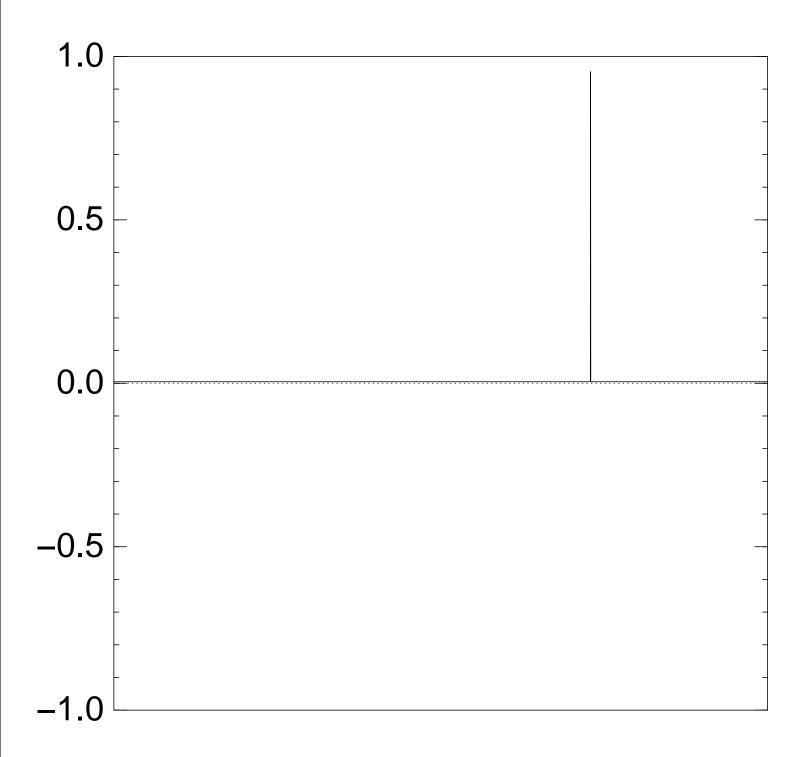
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $40 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

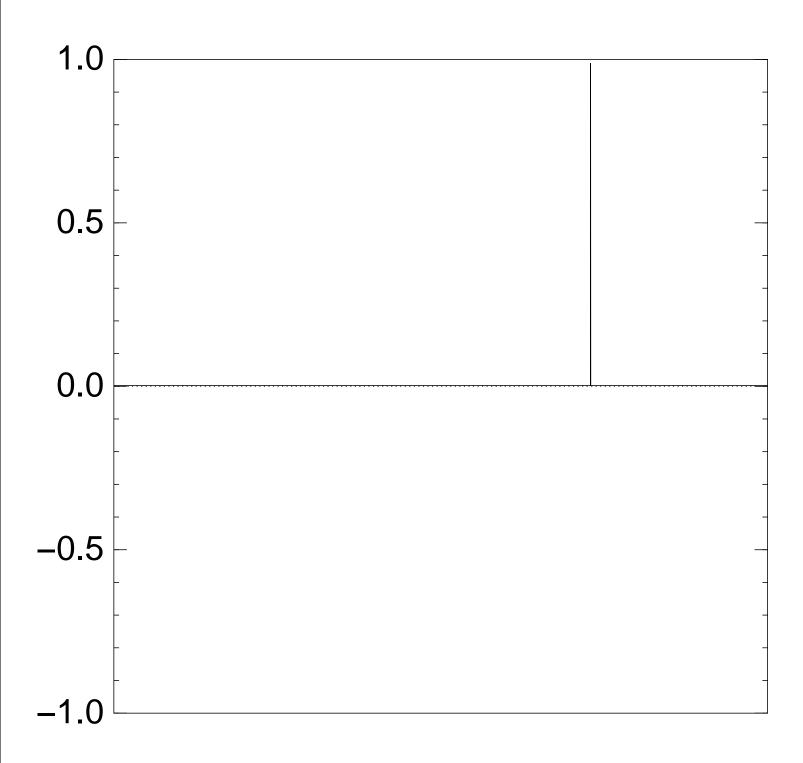
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $45 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

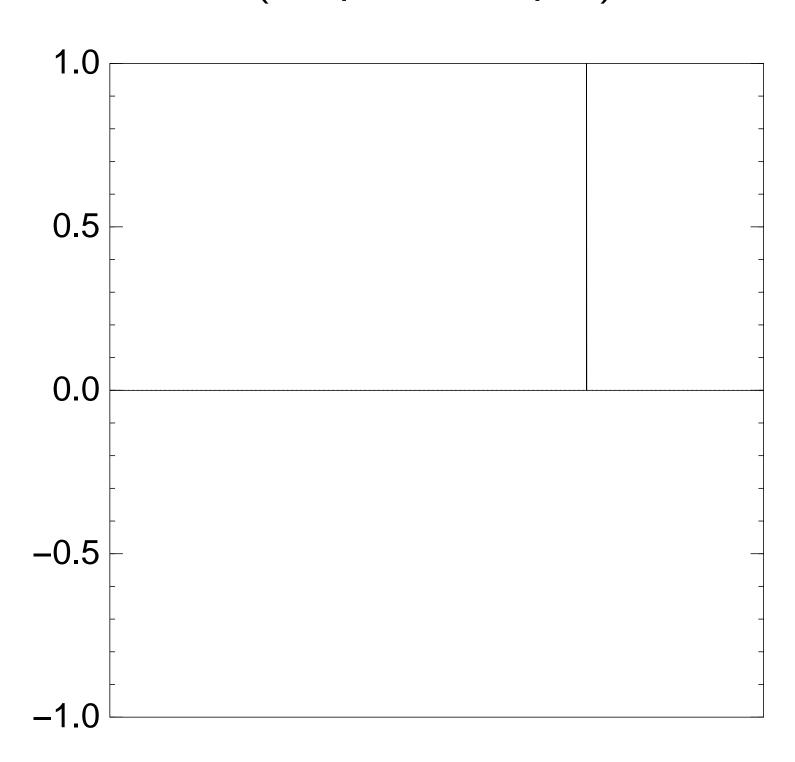
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $50 \times (\text{Step } 1 + \text{Step } 2)$:



Traditional stopping point.

$$b_J = -a_J$$
 if $\Sigma(J) = t$,

$$b_J = a_J$$
 otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

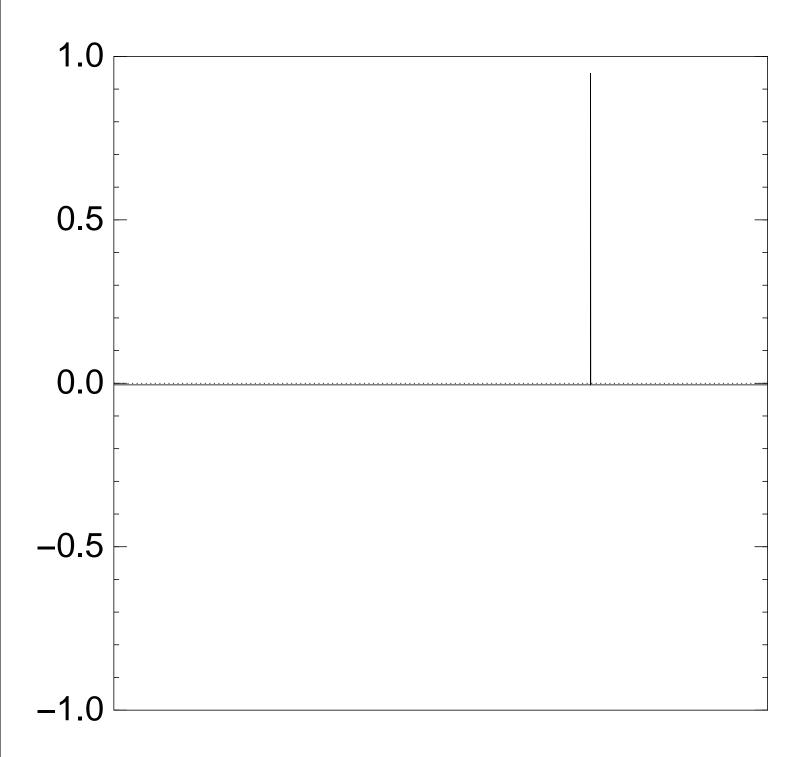
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $60 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $70 \times (\text{Step } 1 + \text{Step } 2)$:



 $b_J = -a_J$ if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

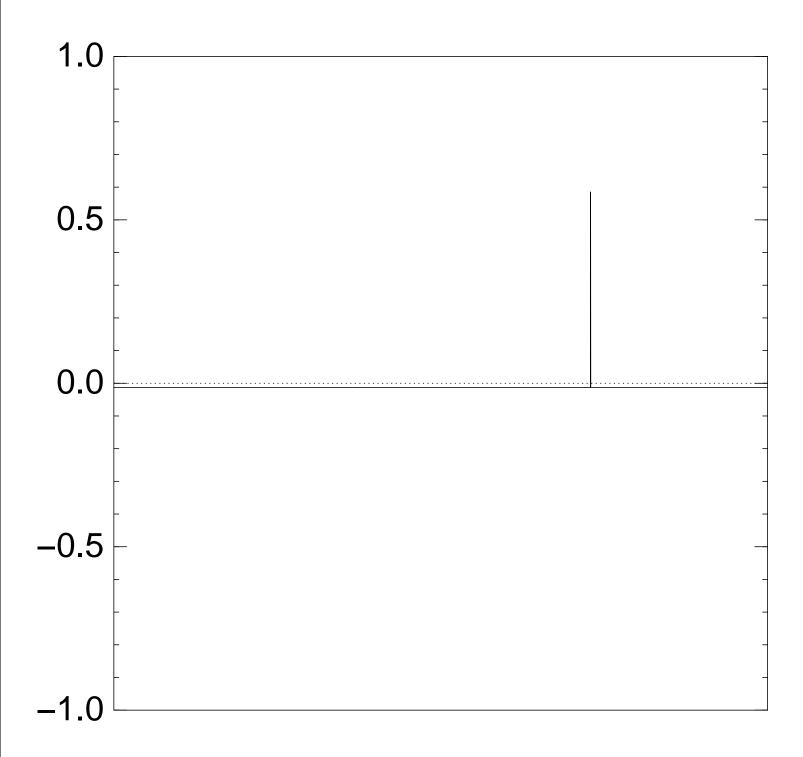
This is also easy.

Repeat steps 1 and 2 about 0.58 · 2^{0.5n} times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $80 \times (\text{Step } 1 + \text{Step } 2)$:



$$b_J = -a_J$$
 if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

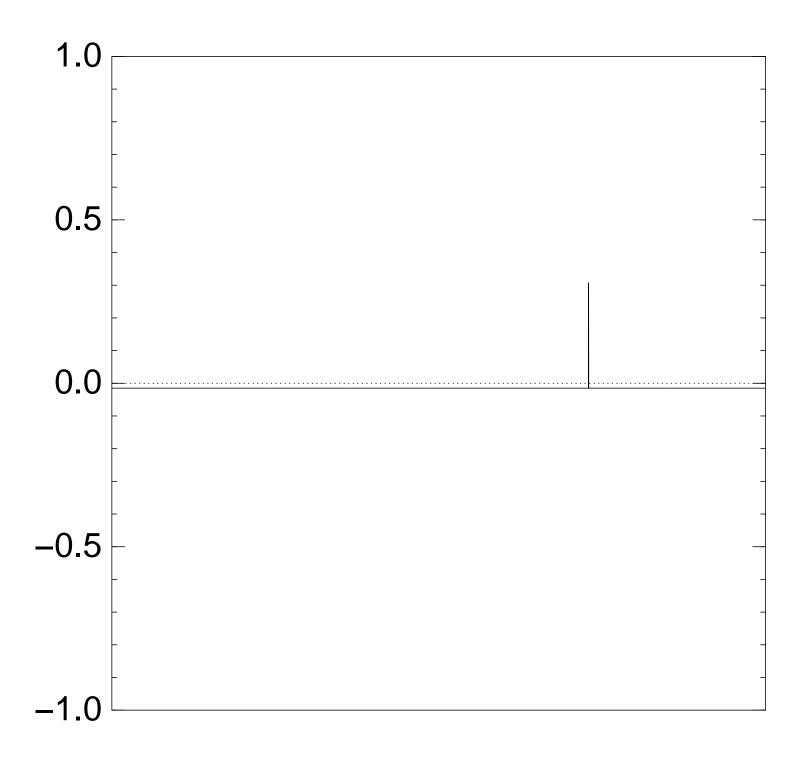
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $90 \times (\text{Step } 1 + \text{Step } 2)$:



 $b_J = -a_J$ if $\Sigma(J) = t$,

 $b_J = a_J$ otherwise.

This is about as easy as computing Σ .

Step 2: "Grover diffusion".

Set $a \leftarrow b$ where

$$b_J = -a_J + (2/2^n) \sum_I a_I$$
.

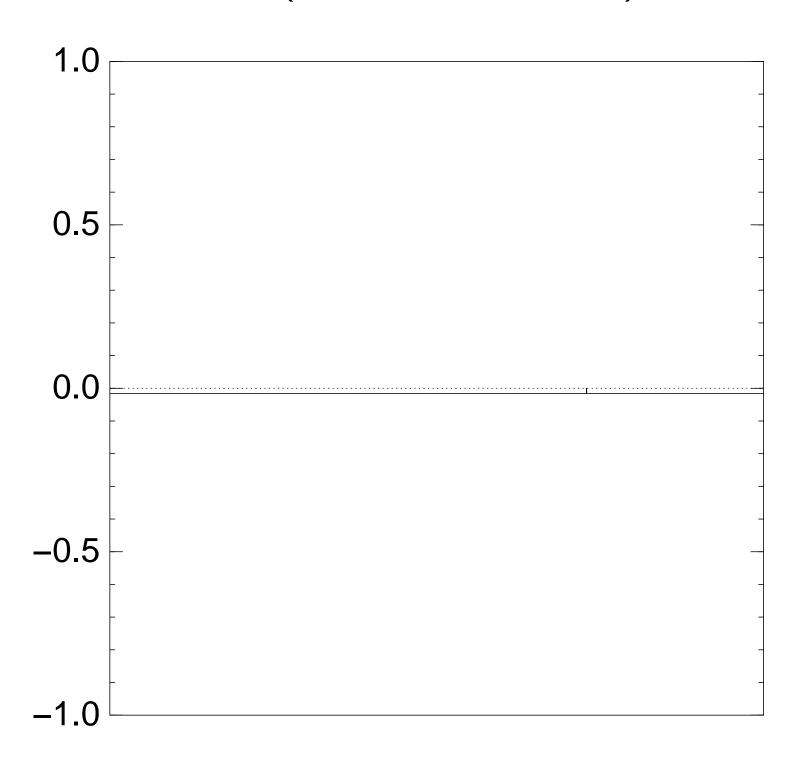
This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits.

With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $100 \times (\text{Step 1} + \text{Step 2})$:



Very bad stopping point.

Set $a \leftarrow b$ where t_J if $\Sigma(J) = t$, otherwise.

bout as easy uting Σ .

"Grover diffusion".

b where

$$a_{J}+(2/2^{n})\sum_{I}a_{I}.$$

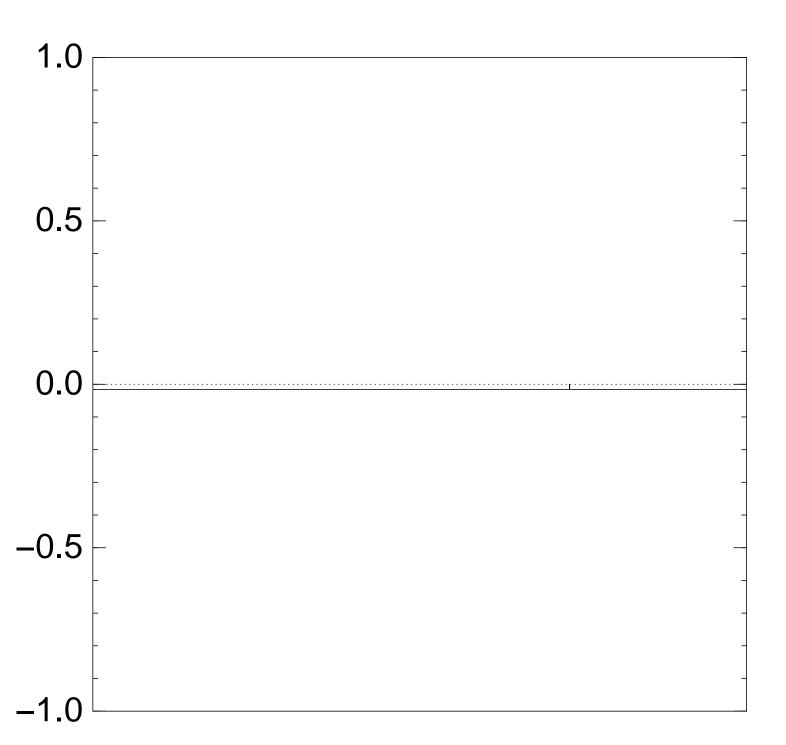
ilso easy.

steps 1 and 2 $58 \cdot 2^{0.5n}$ times.

the n qubits.

gh probability this finds ue J such that $\Sigma(J)=t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $100 \times (\text{Step 1} + \text{Step 2})$:



Very bad stopping point.

 $J\mapsto a_J$ by a vec

(with fix

- $(1) a_J$ for
- $(2) a_J f$

Step 1 - act linea

Easily co and pow to under of state

 \Rightarrow Probable after \approx (

where

=t,

-

asy

iffusion".

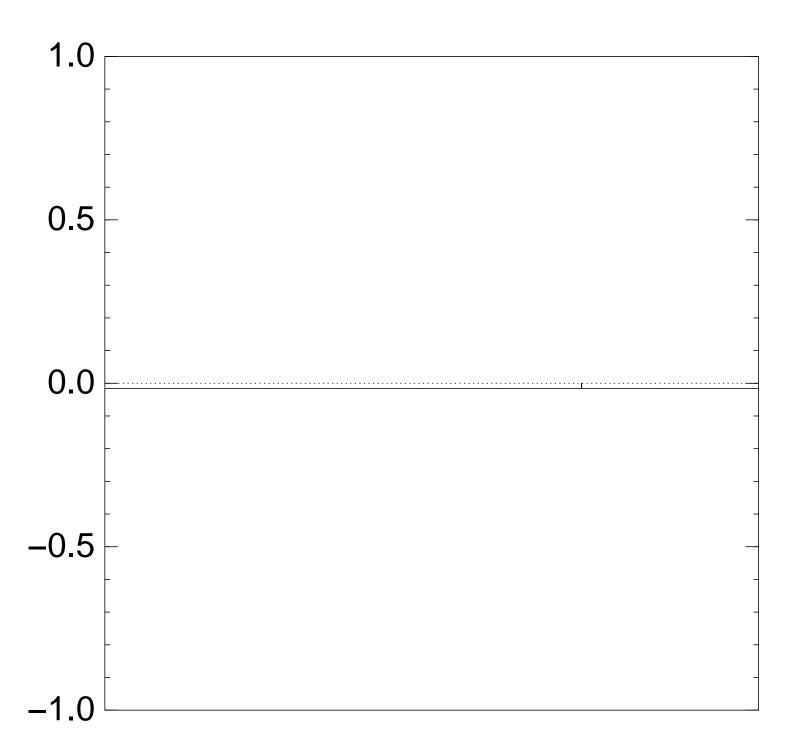
$$(a) \sum_{I} a_{I}$$
.

d 2 times.

bits.

lity this finds that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $100 \times (\text{Step 1} + \text{Step 2})$:



Very bad stopping point.

 $J \mapsto a_J$ is completely by a vector of two (with fixed multip

(1) a_J for roots J

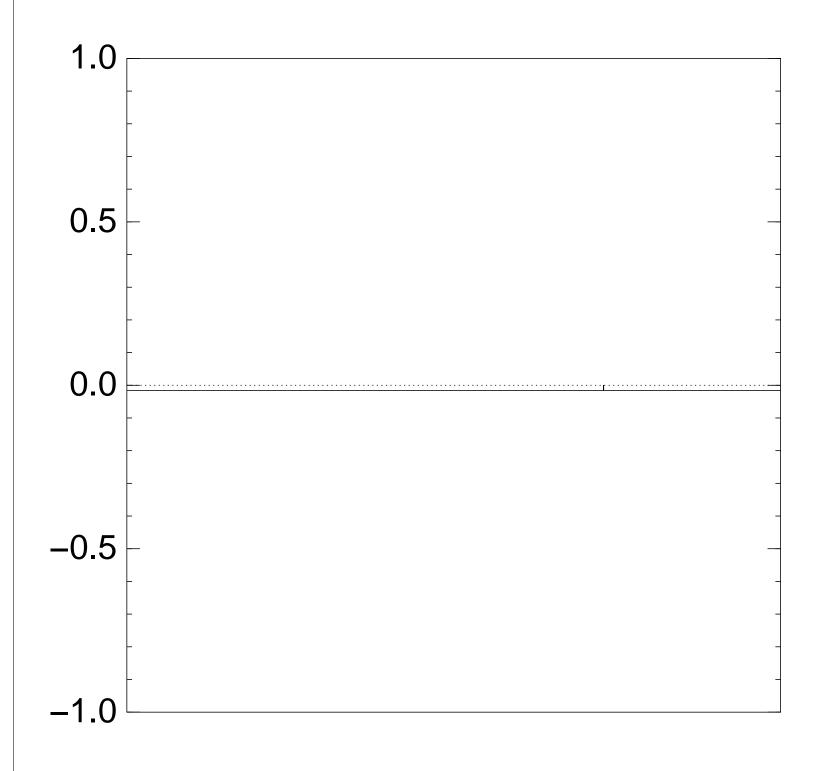
(2) a_J for non-roo

Step 1 + Step 2 act linearly on this

Easily compute eigen and powers of this to understand evo of state of Grover's

 \Rightarrow Probability is \approx after $\approx (\pi/4)2^{0.5n}$

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $100 \times (\text{Step } 1 + \text{Step } 2)$:



Very bad stopping point.

 $J \mapsto a_J$ is completely describy a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

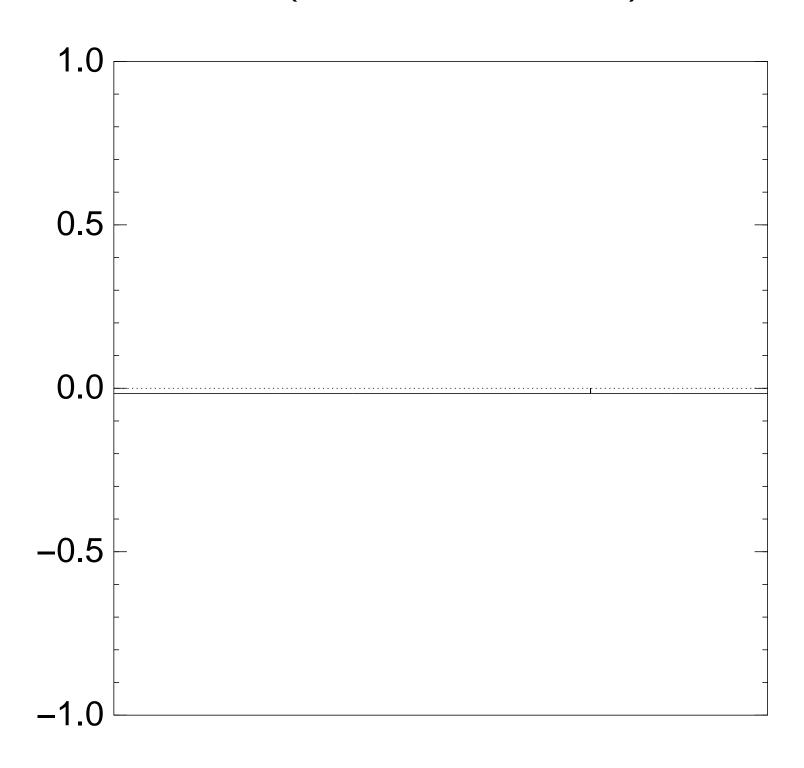
Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear material to understand evolution of state of Grover's algorithmater $\approx (\pi/4)2^{0.5n}$ iterations

nds

= t.

Graph of $J \mapsto a_J$ for 36634 example with n=12 after $100 \times (\text{Step 1} + \text{Step 2})$:



Very bad stopping point.

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

f
$$J \mapsto a_J$$

4 example with $n = 12$
 $0 \times (\text{Step } 1 + \text{Step } 2)$:

d stopping point.

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Left-righ

Don't ne

For simp

1974 Ho Sort list for all J₂ and list

for all J_2

Merge to $\Sigma(J_1) =$

i.e., $\Sigma(J)$

with n=12 $1+{\sf Step 2}$):

point.

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.

 \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Left-right split (0.

Don't need quantito achieve expone

For simplicity assu

1974 Horowitz–Sa Sort list of $\Sigma(J_1)$ for all $J_1 \subseteq \{1, \ldots$ and list of $t - \Sigma(J_1)$

for all $J_2 \subseteq \{n/2\}$

Merge to find coll

$$\Sigma(J_1) = t - \Sigma(J_2)$$

i.e., $\Sigma(J_1 \cup J_2) =$

12 2):

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

Step 1 + Step 2act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Left-right split (0.5)

Don't need quantum compu to achieve exponent 0.5.

For simplicity assume $n \in 2$

1974 Horowitz–Sahni:

Sort list of $\Sigma(J_1)$

for all $J_1 \subseteq \{1, \ldots, n/2\}$

and list of $t - \Sigma(J_2)$

for all $J_2 \subseteq \{n/2+1,\ldots,n\}$

Merge to find collisions

$$\Sigma(J_1)=t-\Sigma(J_2),$$

i.e.,
$$\Sigma(J_1 \cup J_2) = t$$
.

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities):

- (1) a_J for roots J;
- (2) a_J for non-roots J.

Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbf{Z}$.

1974 Horowitz-Sahni:

Sort list of $\Sigma(J_1)$

for all $J_1 \subseteq \{1, \ldots, n/2\}$

and list of $t - \Sigma(J_2)$

for all $J_2 \subseteq \{n/2+1,\ldots,n\}$.

Merge to find collisions

$$\Sigma(J_1)=t-\Sigma(J_2),$$

i.e., $\Sigma(J_1 \cup J_2) = t$.

is completely described tor of two numbers ded multiplicities): or roots J; or non-roots J.

- Step 2 rly on this vector.

ers of this linear map estand evolution of Grover's algorithm. ability is ≈ 1 $\pi/4)2^{0.5n}$ iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbf{Z}$.

1974 Horowitz-Sahni:

Sort list of $\Sigma(J_1)$ for all $J_1 \subseteq \{1, \ldots, n/2\}$

and list of $t - \Sigma(J_2)$

for all $J_2 \subseteq \{n/2 + 1, ..., n\}$.

Merge to find collisions

$$\Sigma(J_1)=t-\Sigma(J_2),$$

i.e., $\Sigma(J_1 \cup J_2) = t$.

Cost 2⁰. We assigned the second sec

4688, 59 Sort the

(499, 85)

0, 499, 8

499 + 85

and the

36634 —

36634 —

to see th

499 + 85

36634 —

tely described numbers licities):

ots J.

vector.

genvalues Iinear map

lution

s algorithm.

ಚ1

iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbf{Z}$.

1974 Horowitz-Sahni:

Sort list of $\Sigma(J_1)$

for all $J_1 \subseteq \{1, \ldots, n/2\}$

and list of $t - \Sigma(J_2)$

for all $J_2 \subseteq \{n/2 + 1, ..., n\}$.

Merge to find collisions

$$\Sigma(J_1)=t-\Sigma(J_2),$$

i.e., $\Sigma(J_1 \cup J_2) = t$.

Cost $2^{0.5n}$ for sort We assign cost 1 t e.g. 36634 as sum (499, 852, 1927, 25 4688, 5989, 6385, 7 Sort the 64 sums 0,499,852,499 +499 + 852 + 1927and the 64 differen 36634 - 0,36634 $36634 - 4688 - \cdots$ to see that 499 + 852 + 2535

36634 - 5989 - 638

bed

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbf{Z}$.

1974 Horowitz-Sahni:

Sort list of $\Sigma(J_1)$

for all $J_1 \subseteq \{1, \ldots, n/2\}$

and list of $t - \Sigma(J_2)$

for all $J_2 \subseteq \{n/2+1,\ldots,n\}$.

Merge to find collisions

$$\Sigma(J_1)=t-\Sigma(J_2),$$

i.e.,
$$\Sigma(J_1 \cup J_2) = t$$
.

Cost $2^{0.5n}$ for sorting, merginal We assign cost 1 to RAM. e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 4688, 5989, 6385, 7353, 7650 Sort the 64 sums $0,499,852,499+852,\ldots,$ $499 + 852 + 1927 + \cdots + 30$ and the 64 differences

$$36634 - 0,36634 - 4688,...$$

$$36634 - 4688 - \cdots - 9413$$

to see that

$$499 + 852 + 2535 + 3608 =$$

$$36634 - 5989 - 6385 - 7353 -$$

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbf{Z}$.

1974 Horowitz-Sahni:

Sort list of
$$\Sigma(J_1)$$

for all $J_1\subseteq\{1,\ldots,n/2\}$
and list of $t-\Sigma(J_2)$
for all $J_2\subseteq\{n/2+1,\ldots,n\}$.
Merge to find collisions $\Sigma(J_1)=t-\Sigma(J_2),$
i.e., $\Sigma(J_1\cup J_2)=t.$

Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

5071 the 64 sums
$$0,499,852,499+852,\ldots,499+852+1927+\cdots+3608$$
 and the 64 differences $36634-0,36634-4688-\cdots-9413$

to see that

$$499 + 852 + 2535 + 3608 =$$
 $36634 - 5989 - 6385 - 7353 - 9413.$

t split (0.5)

eed quantum computers ve exponent 0.5.

olicity assume $n \in 2\mathbf{Z}$.

rowitz-Sahni:

of
$$\Sigma(J_1)$$

$$\subseteq \{1,\ldots,n/2\}$$

of
$$t - \Sigma(J_2)$$

$$2 \subseteq \{n/2+1,\ldots,n\}.$$

o find collisions

$$t - \Sigma(J_2)$$
,

$$J_1 \cup J_2 = t$$
.

Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums $0, 499, 852, 499 + 852, \dots, 499 + 852 + 1927 + \dots + 3608$ and the 64 differences $36634 - 0, 36634 - 4688, \dots, 36634 - 4688 - \dots - 9413$ to see that

499 + 852 + 2535 + 3608 =

36634 - 5989 - 6385 - 7353 - 9413.

<u>Moduli</u>

For simp

Choose

Choose

Define t

Find all such that How? S

Find all such that

Sort and collisions

i.e., $\Sigma(J)$

```
<u>5)</u>
```

um computers nt 0.5.

me $n \in 2\mathbf{Z}$.

hni:

$$n/2$$
, $n/2$, $n/2$, $n/2$, $n/2$, $n/2$, $n/2$. Isinons, $n/2$, t .

Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

$$0,499,852,499+852,\ldots,$$

$$499 + 852 + 1927 + \cdots + 3608$$

and the 64 differences

$$36634 - 0,36634 - 4688,\ldots$$

$$36634 - 4688 - \cdots - 9413$$

to see that

$$499 + 852 + 2535 + 3608 =$$

$$36634 - 5989 - 6385 - 7353 - 9413$$
.

Moduli (0.5)

For simplicity assu

Choose
$$M \approx 2^{0.25}$$

Choose
$$t_1 \in \{0, 1,$$

Define
$$t_2 = t - t_1$$

Find all
$$J_1 \subseteq \{1, ...\}$$

such that
$$\Sigma(J_1) \equiv$$

How? Split
$$J_1$$
 as

Find all
$$J_2 \subseteq \{n/2\}$$

such that
$$\Sigma(J_2) \equiv$$

Sort and merge to collisions
$$\Sigma(J_1) =$$

i.e.,
$$\Sigma(J_1 \cup J_2) =$$

ters

Ζ.

}.

Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums $0, 499, 852, 499 + 852, \dots, 499 + 852 + 1927 + \dots + 3608$ and the 64 differences $36634 - 0, 36634 - 4688, \dots, 36634 - 4688 - \dots - 9413$ to see that 499 + 852 + 2535 + 3608 =

36634 - 5989 - 6385 - 7353 - 9413.

Moduli (0.5)

For simplicity assume $n \in 4$

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M - ...\}$

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$ How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2\subseteq \{n/2+1,\ldots,$ such that $\Sigma(J_2)\equiv t_2\pmod{m}$

Sort and merge to find all collisions $\Sigma(J_1) = t - \Sigma(J_2)$ i.e., $\Sigma(J_1 \cup J_2) = t$.

Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

$$0,499,852,499+852,...,$$

 $499+852+1927+\cdots+3608$
and the 64 differences

$$36634 - 0,36634 - 4688, \ldots,$$

$$36634 - 4688 - \cdots - 9413$$

to see that

$$499 + 852 + 2535 + 3608 =$$

$$36634 - 5989 - 6385 - 7353 - 9413$$
.

Moduli (0.5)

For simplicity assume $n \in 4\mathbf{Z}$.

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M - 1\}$.

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subseteq \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1) = t - \Sigma(J_2)$, i.e., $\Sigma(J_1 \cup J_2) = t$.

 5n for sorting, merging.

gn cost 1 to RAM.

34 as sum of

2, 1927, 2535, 3596, 3608,

89, 6385, 7353, 7650, 9413):

64 sums

$$52,499 + 852, \ldots,$$

$$52 + 1927 + \cdots + 3608$$

64 differences

$$0,36634-4688,\ldots,$$

$$4688 - \cdots - 9413$$

nat

$$52 + 2535 + 3608 =$$

$$5989 - 6385 - 7353 - 9413$$
.

Moduli (0.5)

For simplicity assume $n \in 4\mathbf{Z}$.

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M - 1\}$.

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subseteq \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1) = t - \Sigma(J_2)$, i.e., $\Sigma(J_1 \cup J_2) = t$.

Finds J
There are
Each che
Total co

Not visil this uses assuming

Algorith introduction 2006 Els

2010 Ho

Different for similar 1981 Sc ing, merging.

o RAM.

of 35, 3596, 3608, 7353, 7650, 9413):

$$852, \ldots,$$
 $+ \cdots + 3608$
nces

4688, . . . ,9413

$$+3608 = 35 - 7353 - 9413.$$

Moduli (0.5)

For simplicity assume $n \in 4\mathbf{Z}$.

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M-1\}$.

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subseteq \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1)=t-\Sigma(J_2)$, i.e., $\Sigma(J_1\cup J_2)=t$.

Finds J iff $\Sigma(J_1)$ There are $\approx 2^{0.25n}$ Each choice costs Total cost $2^{0.5n}$.

Not visible in cost this uses space on assuming typical of

Algorithm has been introduced at least 2006 Elsenhans—Jacob 2010 Howgrave-Ground at least 2010 H

Different technique for similar space results 1981 Schroeppel—S

ing.

3608, , 9413):

608

-9413.

Moduli (0.5)

For simplicity assume $n \in 4\mathbf{Z}$.

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M - 1\}$.

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subset \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1) = t - \Sigma(J_2)$, i.e., $\Sigma(J_1 \cup J_2) = t$.

Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices o Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution

Algorithm has been introduced at least twice: 2006 Elsenhans-Jahnel; 2010 Howgrave-Graham-Joi

Different technique for similar space reduction: 1981 Schroeppel-Shamir.

Moduli (0.5)

For simplicity assume $n \in 4\mathbf{Z}$.

Choose $M \approx 2^{0.25n}$.

Choose $t_1 \in \{0, 1, ..., M - 1\}$.

Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subseteq \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1)=t-\Sigma(J_2)$, i.e., $\Sigma(J_1\cup J_2)=t$.

Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices of t_1 . Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux.

Different technique for similar space reduction: 1981 Schroeppel–Shamir.

olicity assume $n \in 4\mathbf{Z}$.

$$M \approx 2^{0.25n}$$
.

$$t_1 \in \{0, 1, \dots, M-1\}.$$

$$t_2 = t - t_1$$
.

$$J_1 \subseteq \{1,\ldots,n/2\}$$

t
$$\Sigma(J_1) \equiv t_1 \pmod{M}$$
.

plit J_1 as $J_{11} \cup J_{12}$.

$$J_2 \subset \{n/2+1,\ldots,n\}$$

t
$$\Sigma(J_2) \equiv t_2 \pmod{M}$$
.

I merge to find all

s
$$\Sigma(J_1) = t - \Sigma(J_2)$$
,

$$J_1 \cup J_2 = t$$
.

Finds J iff $\Sigma(J_1) \equiv t_1$.

There are $\approx 2^{0.25n}$ choices of t_1 .

Each choice costs $2^{0.25n}$.

Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux.

Different technique for similar space reduction: 1981 Schroeppel–Shamir.

e.g. *M* = (499, 85) 4688, 59

Try each

In partice
There are

(499, 85

with sun There ar

(4688, 59

with sur

Sort and

499 + 85

36634 —

me $n \in 4\mathbf{Z}$.

n

...,
$$M-1$$
}.

•

..,
$$n/2$$
}

 $t_1 \pmod{M}$.

 $J_{11} \cup J_{12}$.

$$2+1,\ldots,n$$

 $t_2 \pmod{M}$.

find all

$$t-\Sigma(J_2)$$
,

t.

Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices of t_1 . Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux.

Different technique for similar space reduction: 1981 Schroeppel–Shamir.

e.g. M = 8, t = 30(499, 852, 1927, 25 4688, 5989, 6385, 7 Try each $t_1 \in \{0, 1\}$ In particular try t_1 There are 12 subse (499, 852, 1927, 25 with sum 6 modul There are 6 subsections (4688, 5989, 6385,

with sum 36634 — Sort and merge to 499 + 852 + 2535 36634 - 5989 - 638

Z.

1}.

d M).

n} d *M*).

,

Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices of t_1 . Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux.

Different technique for similar space reduction: 1981 Schroeppel–Shamir.

e.g. $M=8,\,t=36634,\,x=$ (499, 852, 1927, 2535, 3596, 34688, 5989, 6385, 7353, 7650 Try each $t_1\in\{0,1,\ldots,7\}$.

In particular try $t_1 = 6$. There are 12 subsequences (499, 852, 1927, 2535, 3596,

with sum 6 modulo 8.

Sort and merge to find

There are 6 subsequences of (4688, 5989, 6385, 7353, 765 with sum 36634 — 6 modulo

499 + 852 + 2535 + 3608 = 36634 - 5989 - 6385 - 7353 -

Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices of t_1 . Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only $2^{0.25n}$, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux.

Different technique for similar space reduction: 1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =(499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413): Try each $t_1 \in \{0, 1, ..., 7\}$. In particular try $t_1=6$. There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608) with sum 6 modulo 8. There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413) with sum 36634 - 6 modulo 8. Sort and merge to find 499 + 852 + 2535 + 3608 =

36634 - 5989 - 6385 - 7353 - 9413.

iff $\Sigma(J_1)\equiv t_1.$ ${
m re}pprox 2^{0.25n}$ choices of $t_1.$ sice costs $2^{0.25n}.$ st $2^{0.5n}.$

ple in cost metric: space only $2^{0.25n}$, g typical distribution.

m has been
ed at least twice:
senhans—Jahnel;
wgrave-Graham—Joux.

t technique ar space reduction: hroeppel—Shamir. e.g. $M=8,\ t=36634,\ x=$ (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413): Try each $t_1\in\{0,1,\ldots,7\}.$

In particular try $t_1 = 6$.

There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608) with sum 6 modulo 8.

There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413) with sum 36634 - 6 modulo 8. Sort and merge to find 499 + 852 + 2535 + 3608 =

36634 - 5989 - 6385 - 7353 - 9413.

Cost 2^{n} 1998 Br For simp Comput $J_1 \subseteq \{1,$ Sort L =Can now $J_2 \mapsto [t]$ for $J_2 \subseteq$ Recall: \ Use Gro

whether

Quantur

 $\equiv t_1.$ choices of $t_1.$ $2^{0.25n}.$

metric: ly $2^{0.25n}$, listribution.

t twice: ahnel; raham–Joux.

e eduction: Shamir. e.g. M = 8, t = 36634, x = (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Try each $t_1 \in \{0, 1, ..., 7\}$.

In particular try $t_1 = 6$.

There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608) with sum 6 modulo 8.

There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413) with sum 36634 — 6 modulo 8.

Sort and merge to find 499 + 852 + 2535 + 3608 = 36634 - 5989 - 6385 - 7353 - 9413.

Quantum left-righ

Cost $2^{n/3}$, imitation 1998 Brassard–Hø

For simplicity assu

Compute $\Sigma(J_1)$ for $J_1 \subseteq \{1, 2, \ldots, n/n\}$ Sort $L = \{\Sigma(J_1)\}$

Can now efficiently $J_2 \mapsto [t - \Sigma(J_2)] \notin$

for $J_2 \subseteq \{n/3+1\}$

Recall: we assign

Use Grover's meth whether this funct

f t_1 .

e.g. M = 8, t = 36634, x = (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Try each $t_1 \in \{0, 1, ..., 7\}$.

In particular try $t_1 = 6$.

There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608) with sum 6 modulo 8.

There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413) with sum 36634 — 6 modulo 8.

Sort and merge to find 499 + 852 + 2535 + 3608 = 36634 - 5989 - 6385 - 7353 - 9413.

Quantum left-right split (0.3

Cost $2^{n/3}$, imitating 1998 Brassard-Høyer-Tapp:

For simplicity assume $n \in 3$

Compute $\Sigma(J_1)$ for all $J_1 \subseteq \{1, 2, ..., n/3\}$. Sort $L = \{\Sigma(J_1)\}$.

Can now efficiently compute $J_2\mapsto [t-\Sigma(J_2)\notin L]$ for $J_2\subseteq\{n/3+1,\ldots,n\}$.

Recall: we assign cost 1 to

Use Grover's method to see whether this function has a

I .

JX.

e.g. M = 8, t = 36634, x = (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Try each $t_1 \in \{0, 1, ..., 7\}$.

In particular try $t_1 = 6$.

There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608) with sum 6 modulo 8.

There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413) with sum 36634 — 6 modulo 8.

Sort and merge to find 499 + 852 + 2535 + 3608 = 36634 - 5989 - 6385 - 7353 - 9413.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard-Høyer-Tapp:

For simplicity assume $n \in 3\mathbf{Z}$.

Compute $\Sigma(J_1)$ for all $J_1 \subseteq \{1, 2, ..., n/3\}$. Sort $L = \{\Sigma(J_1)\}$.

Can now efficiently compute

$$J_2\mapsto [t-\Sigma(J_2)\notin L]$$
 for $J_2\subseteq \{n/3+1,\ldots,n\}.$

Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

$$= 8, t = 36634, x =$$

2, 1927, 2535, 3596, 3608,

89, 6385, 7353, 7650, 9413):

$$t_1 \in \{0, 1, \dots, 7\}.$$

ular try $t_1=6$.

re 12 subsequences of

2, 1927, 2535, 3596, 3608)

n 6 modulo 8.

re 6 subsequences of

989, 6385, 7353, 7650, 9413)

n 36634 — 6 modulo 8.

l merge to find

$$52 + 2535 + 3608 =$$

5989 - 6385 - 7353 - 9413.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard-Høyer-Tapp:

For simplicity assume $n \in 3\mathbf{Z}$.

Compute $\Sigma(J_1)$ for all

$$J_1 \subseteq \{1, 2, \ldots, n/3\}.$$

Sort
$$L = \{\Sigma(J_1)\}.$$

Can now efficiently compute

$$J_2 \mapsto [t - \Sigma(J_2) \notin L]$$

for
$$J_2 \subseteq \{n/3 + 1, ..., n\}$$
.

Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

Quantur

Unique-of Say f has exactly of

Problem

i.e., $p \neq$

Cost 2^n : the set of

Compute

Generali: success

Choose Compute

6634, x =

35, 3596, 3608,

7353, 7650, 9413):

 $1,\ldots,7$.

= 6.

equences of

35, 3596, 3608)

o 8.

quences of

7353, 7650, 9413)

6 modulo 8.

find

+3608 =

35 - 7353 - 9413.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard-Høyer-Tapp:

For simplicity assume $n \in 3\mathbf{Z}$.

Compute $\Sigma(J_1)$ for all

$$J_1 \subseteq \{1, 2, \ldots, n/3\}.$$

Sort $L = \{\Sigma(J_1)\}.$

Can now efficiently compute

$$J_2 \mapsto [t - \Sigma(J_2) \notin L]$$

for $J_2 \subseteq \{n/3 + 1, ..., n\}$.

Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

Quantum walk

Unique-collision-fine Say f has n-bit in exactly one collision

i.e.,
$$p \neq q$$
, $f(p) =$

Problem: find this

Cost 2^n : Define S the set of n-bit st Compute f(S), so

Generalize to cost success probability

Choose a set S of Compute f(S), so

3608, , 9413):

of 3608)

0, 9413)

8.

-9413.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard-Høyer-Tapp:

For simplicity assume $n \in 3\mathbf{Z}$.

Compute $\Sigma(J_1)$ for all $J_1 \subseteq \{1, 2, ..., n/3\}$.

Sort $L = \{\Sigma(J_1)\}.$

Can now efficiently compute

 $J_2 \mapsto [t - \Sigma(J_2) \notin L]$

for $J_2 \subseteq \{n/3 + 1, ..., n\}$.

Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

Quantum walk

Unique-collision-finding prob Say f has n-bit inputs, exactly one collision $\{p, q\}$: i.e., $p \neq q$, f(p) = f(q). Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)$ Choose a set S of size r. Compute f(S), sort.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard–Høyer–Tapp:

For simplicity assume $n \in 3\mathbf{Z}$.

Compute $\Sigma(J_1)$ for all $J_1 \subseteq \{1, 2, ..., n/3\}$.

Sort $L = \{\Sigma(J_1)\}.$

Can now efficiently compute

$$J_2\mapsto [t-\Sigma(J_2)\notin L]$$
 for $J_2\subseteq \{n/3+1,\ldots,n\}.$

Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

Quantum walk

Unique-collision-finding problem: Say f has n-bit inputs, exactly one collision $\{p, q\}$: i.e., $p \neq q$, f(p) = f(q). Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)^2$: Choose a set S of size r. Compute f(S), sort. n left-right split (0.333...)

^{/3}, imitating assard–Høyer–Tapp:

olicity assume $n \in 3\mathbf{Z}$.

e $\Sigma(J_1)$ for all

$$\{2, \ldots, n/3\}.$$

$$= \{\Sigma(J_1)\}.$$

refficiently compute

$$-\Sigma(J_2) \notin L$$

$${n/3+1,\ldots,n}.$$

we assign cost 1 to RAM.

ver's method to see this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs, exactly one collision $\{p, q\}$:

i.e.,
$$p \neq q$$
, $f(p) = f(q)$.

Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)^2$: Choose a set S of size r. Compute f(S), sort.

Data structure the general the set of the number 1

to D(T) #S = #S

Very effi

2003 An Magniez Create s

(D(S), LBy a quantity find S c

t split (0.333...)

ng yer–Tapp:

me $n \in 3\mathbf{Z}$.

r all

3}.

y compute

[L]

 $,\ldots,n$.

cost 1 to RAM.

od to see ion has a root.

Quantum walk

Unique-collision-finding problem: Say f has n-bit inputs, exactly one collision $\{p, q\}$: i.e., $p \neq q$, f(p) = f(q). Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)^2$: Choose a set S of size r. Compute f(S), sort.

Data structure D(the generalized cothe set S; the multiple the number of collisions.

Very efficient to model to D(T) if T is an #S = #T = r, #S = r

2003 Ambainis, sin Magniez-Nayak-R Create superpositi (D(S), D(T)) with By a quantum walfind S containing

333 . . .)

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision $\{p, q\}$:

i.e., $p \neq q$, f(p) = f(q).

Problem: find this collision.

Cost 2^n : Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability $\approx (r/2^n)^2$:

Choose a set S of size r.

Compute f(S), sort.

root.

RAM.

Data structure D(S) capture the generalized computation the set S; the multiset f(S) the number of collisions in S

to D(T) if T is an **adjacent** #S = #T = r, $\#(S \cap T) =$

Very efficient to move from

2003 Ambainis, simplified 20 Magniez-Nayak-Roland-Sar Create superposition of state (D(S), D(T)) with adjacent

find S containing a collision

By a quantum walk

Quantum walk

Unique-collision-finding problem: Say f has n-bit inputs, exactly one collision $\{p, q\}$: i.e., $p \neq q$, f(p) = f(q). Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)^2$: Choose a set S of size r. Compute f(S), sort.

Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S) to D(T) if T is an **adjacent** set: #S = #T = r, $\#(S \cap T) = r - 1$.

2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision.

n walk

collision-finding problem:

as n-bit inputs,

one collision $\{p, q\}$:

$$q$$
, $f(p) = f(q)$.

: find this collision.

Define S as

of n-bit strings.

e f(S), sort.

ze to cost r,

probability $\approx (r/2^n)^2$:

a set S of size r.

e f(S), sort.

Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S) to D(T) if T is an **adjacent** set: #S = #T = r, $\#(S \cap T) = r - 1$.

2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision.

How the

Start fro

Repeat :

Negatif S

Repea

For

For

Now hig

Cost r +

that T o

nding problem: puts, on $\{p, q\}$:

f(q).

collision.

as rings.

rt.

r,r $pprox (r/2^n)^2$: size r.

Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S) to D(T) if T is an **adjacent** set: #S = #T = r, $\#(S \cap T) = r - 1$.

2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision.

How the quantum Start from uniform Repeat $\approx 0.6 \cdot 2^n / 10^n$ Negate $a_{S,T}$ if S contains Repeat $\approx 0.7 \cdot \sqrt{10^n}$

For each T:

Diffuse $a_{S,}$ For each S:

Diffuse $a_{S,}$

Now high probabile that T contains contains $\cot r + 2^n / \sqrt{r}$.

lem:

Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S) to D(T) if T is an **adjacent** set: #S = #T = r, $\#(S \cap T) = r - 1$.

2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision.

How the quantum walk worl Start from uniform superpos Repeat $\approx 0.6 \cdot 2^n/r$ times: Negate $a_{S,T}$ if S contains collision. Repeat $\approx 0.7 \cdot \sqrt{r}$ times: For each T: Diffuse $a_{S,T}$ across a For each *S*: Diffuse $a_{S,T}$ across a

Now high probability that T contains collision. Cost $r+2^n/\sqrt{r}$. Optimize:

Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S) to D(T) if T is an **adjacent** set: #S = #T = r, $\#(S \cap T) = r - 1$.

2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each *T*:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

fucture D(S) capturing eralized computation:

S; the multiset f(S);

ber of collisions in S.

cient to move from D(S)

if T is an adjacent set:

$$\#\mathcal{T}=r$$
 , $\#(\mathcal{S}\cap\mathcal{T})=r-1$.

nbainis, simplified 2007

-Nayak-Roland-Santha:

uperposition of states

O(T)) with adjacent S, T.

antum walk

ontaining a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each *T*:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify $(\#(S \cap a))$ reduce a Analyze e.g. n =

0 negati

Pr[class

Pr[class

Pr[class

Pr[class

Pr[class

Pr[class

Pr[class

Right co

S) capturing mputation: Itiset f(S); lisions in S.

nove from D(S) adjacent set:

$$s(S \cap T) = r - 1.$$

mplified 2007

Coland-Santha:

on of states

n adjacent S, T.

k

a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each *T*:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) acc $(\#(S \cap \{p, q\}), \#$ reduce a to low-di Analyze evolution

e.g. n = 15, r = 1

0 negations and 0

 $\Pr[\text{class } (0,0)] \approx 0$ $\Pr[\text{class } (0,1)] \approx 0$

 $Pr[class (1,0)] \approx 0$

 $\Pr[\mathsf{class}\ (1,1)] \approx 0$

 $Pr[class (1, 2)] \approx 0$

 $\Pr[\text{class } (2,1)] \approx 0$

 $Pr[class (2, 2)] \approx 0$

Right column is si

```
ing
D(S)
set:
r-1.
007
ntha:
es
S, T.
```

```
How the quantum walk works:
Start from uniform superposition.
Repeat \approx 0.6 \cdot 2^n/r times:
  Negate a_{S,T}
     if S contains collision.
  Repeat \approx 0.7 \cdot \sqrt{r} times:
     For each T:
        Diffuse a_{S,T} across all S.
     For each S:
        Diffuse a_{S,T} across all T.
Now high probability
that T contains collision.
```

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

```
Classify (S, T) according to
(\#(S \cap \{p,q\}), \#(T \cap \{p,q\}))
reduce a to low-dim vector.
Analyze evolution of this vec
e.g. n=15, r=1024, after
0 negations and 0 diffusions
Pr[class (0, 0)] \approx 0.938; +
Pr[class (0, 1)] \approx 0.000; +
Pr[class (1, 0)] \approx 0.000; +
Pr[class (1, 1)] \approx 0.060; +
Pr[class (1, 2)] \approx 0.000; +
Pr[class (2, 1)] \approx 0.000; +
Pr[class (2, 2)] \approx 0.001; +
```

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 0 negations and 0 diffusions:

 $Pr[class (0, 0)] \approx 0.938; +$

 $Pr[class (0, 1)] \approx 0.000; +$

 $Pr[class (1, 0)] \approx 0.000; +$

 $Pr[class (1, 1)] \approx 0.060; +$

 $Pr[class (1, 2)] \approx 0.000; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.001; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 1 negation and 46 diffusions:

 $Pr[class (0, 0)] \approx 0.935; +$

 $Pr[class (0, 1)] \approx 0.000; +$

 $Pr[class (1, 0)] \approx 0.000; -$

 $Pr[class (1, 1)] \approx 0.057; +$

 $Pr[class (1, 2)] \approx 0.000; +$

 $Pr[class (2, 1)] \approx 0.000; -$

 $Pr[class (2, 2)] \approx 0.008; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 2 negations and 92 diffusions:

 $Pr[class (0, 0)] \approx 0.918; +$

 $Pr[class (0, 1)] \approx 0.001; +$

 $Pr[class (1, 0)] \approx 0.000; -$

 $Pr[class (1, 1)] \approx 0.059; +$

 $Pr[class (1, 2)] \approx 0.001; +$

 $Pr[class (2, 1)] \approx 0.000; -$

 $Pr[class (2, 2)] \approx 0.022; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 3 negations and 138 diffusions:

 $Pr[class (0, 0)] \approx 0.897; +$

 $Pr[class (0, 1)] \approx 0.001; +$

 $Pr[class (1, 0)] \approx 0.000; -$

 $Pr[class (1, 1)] \approx 0.058; +$

 $Pr[class (1, 2)] \approx 0.002; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.042; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 4 negations and 184 diffusions:

 $Pr[class (0, 0)] \approx 0.873; +$

 $Pr[class (0, 1)] \approx 0.001; +$

 $Pr[class (1, 0)] \approx 0.000; -$

 $Pr[class (1, 1)] \approx 0.054; +$

 $Pr[class (1, 2)] \approx 0.002; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.070; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 5 negations and 230 diffusions:

 $Pr[class (0, 0)] \approx 0.838; +$

 $Pr[class (0, 1)] \approx 0.001; +$

 $Pr[class (1, 0)] \approx 0.001; -$

 $Pr[class (1, 1)] \approx 0.054; +$

 $Pr[class (1, 2)] \approx 0.003; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.104; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 6 negations and 276 diffusions:

 $Pr[class (0, 0)] \approx 0.800; +$

 $Pr[class (0, 1)] \approx 0.001; +$

 $Pr[class (1, 0)] \approx 0.001; -$

 $Pr[class (1, 1)] \approx 0.051; +$

 $Pr[class (1, 2)] \approx 0.006; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.141; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 7 negations and 322 diffusions:

 $Pr[class (0, 0)] \approx 0.758; +$

 $Pr[class (0, 1)] \approx 0.002; +$

 $Pr[class (1, 0)] \approx 0.001; -$

 $Pr[class (1, 1)] \approx 0.047; +$

 $Pr[class (1, 2)] \approx 0.007; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.184; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 8 negations and 368 diffusions:

 $Pr[class (0, 0)] \approx 0.708; +$

 $Pr[class (0, 1)] \approx 0.003; +$

 $Pr[class (1, 0)] \approx 0.001; -$

 $Pr[class (1, 1)] \approx 0.046; +$

 $Pr[class (1, 2)] \approx 0.007; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.234; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 9 negations and 414 diffusions:

 $Pr[class (0, 0)] \approx 0.658; +$

 $Pr[class (0, 1)] \approx 0.003; +$

 $Pr[class (1, 0)] \approx 0.001; -$

 $Pr[class (1, 1)] \approx 0.042; +$

 $Pr[class (1, 2)] \approx 0.009; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.287; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each *T*:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 10 negations and 460 diffusions:

 $Pr[class (0, 0)] \approx 0.606; +$

 $Pr[class (0, 1)] \approx 0.003; +$

 $Pr[class (1, 0)] \approx 0.002; -$

 $Pr[class (1, 1)] \approx 0.037; +$

 $Pr[class (1, 2)] \approx 0.013; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.338; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 11 negations and 506 diffusions:

 $Pr[class (0, 0)] \approx 0.547; +$

 $Pr[class (0, 1)] \approx 0.004; +$

 $Pr[class (1, 0)] \approx 0.003; -$

 $Pr[class (1, 1)] \approx 0.036; +$

 $Pr[class (1, 2)] \approx 0.015; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.394; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 12 negations and 552 diffusions:

 $Pr[class (0, 0)] \approx 0.491; +$

 $Pr[class (0, 1)] \approx 0.004; +$

 $Pr[class (1, 0)] \approx 0.003; -$

 $Pr[class (1, 1)] \approx 0.032; +$

 $Pr[class (1, 2)] \approx 0.014; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.455; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 13 negations and 598 diffusions:

 $Pr[class (0, 0)] \approx 0.436; +$

 $Pr[class (0, 1)] \approx 0.005; +$

 $Pr[class (1, 0)] \approx 0.003; -$

 $Pr[class (1, 1)] \approx 0.026; +$

 $Pr[class (1, 2)] \approx 0.017; +$

 $Pr[class (2, 1)] \approx 0.000; +$

 $Pr[class (2, 2)] \approx 0.513; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 14 negations and 644 diffusions:

 $Pr[class (0, 0)] \approx 0.377; +$

 $Pr[class (0, 1)] \approx 0.006; +$

 $Pr[class (1, 0)] \approx 0.004; -$

 $Pr[class (1, 1)] \approx 0.025; +$

 $Pr[class (1, 2)] \approx 0.022; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.566; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 15 negations and 690 diffusions:

 $Pr[class (0, 0)] \approx 0.322; +$

 $Pr[class (0, 1)] \approx 0.005; +$

 $Pr[class (1, 0)] \approx 0.004; -$

 $Pr[class (1, 1)] \approx 0.021; +$

 $Pr[class (1, 2)] \approx 0.023; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.623; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 16 negations and 736 diffusions:

 $Pr[class (0, 0)] \approx 0.270; +$

 $Pr[class (0, 1)] \approx 0.006; +$

 $Pr[class (1, 0)] \approx 0.005; -$

 $Pr[class (1, 1)] \approx 0.017; +$

 $Pr[class (1, 2)] \approx 0.022; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.680; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each *T*:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 17 negations and 782 diffusions:

 $Pr[class (0, 0)] \approx 0.218; +$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.005; -$

 $Pr[class (1, 1)] \approx 0.015; +$

 $Pr[class (1, 2)] \approx 0.024; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.730; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 18 negations and 828 diffusions:

 $Pr[class (0, 0)] \approx 0.172; +$

 $Pr[class (0, 1)] \approx 0.006; +$

 $Pr[class (1, 0)] \approx 0.005; -$

 $\Pr[\text{class } (1,1)] \approx 0.011; +$

 $Pr[class (1, 2)] \approx 0.029; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.775; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 19 negations and 874 diffusions:

 $Pr[class (0, 0)] \approx 0.131; +$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.006; -$

 $Pr[class (1, 1)] \approx 0.008; +$

 $Pr[class (1, 2)] \approx 0.030; +$

 $Pr[class (2, 1)] \approx 0.002; +$

 $Pr[class (2, 2)] \approx 0.816; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 20 negations and 920 diffusions:

 $Pr[class (0, 0)] \approx 0.093; +$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.007; +$

 $Pr[class (1, 2)] \approx 0.027; +$

 $Pr[class (2, 1)] \approx 0.002; +$

 $Pr[class (2, 2)] \approx 0.857; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 21 negations and 966 diffusions:

 $Pr[class (0, 0)] \approx 0.062; +$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.006; -$

 $Pr[class (1, 1)] \approx 0.004; +$

 $Pr[class (1, 2)] \approx 0.030; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.890; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 22 negations and 1012 diffusions:

 $Pr[class (0, 0)] \approx 0.037; +$

 $Pr[class (0, 1)] \approx 0.008; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.002; +$

 $Pr[class (1, 2)] \approx 0.034; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.910; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 23 negations and 1058 diffusions:

 $Pr[class (0, 0)] \approx 0.017; +$

 $Pr[class (0, 1)] \approx 0.008; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.002; +$

 $Pr[class (1, 2)] \approx 0.034; +$

 $Pr[class (2, 1)] \approx 0.002; +$

 $Pr[class (2, 2)] \approx 0.930; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 24 negations and 1104 diffusions:

 $Pr[class (0, 0)] \approx 0.005; +$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.000; +$

 $Pr[class (1, 2)] \approx 0.030; +$

 $Pr[class (2, 1)] \approx 0.002; +$

 $Pr[class (2, 2)] \approx 0.948; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 25 negations and 1150 diffusions:

 $Pr[class (0, 0)] \approx 0.000; +$

 $Pr[class (0, 1)] \approx 0.008; +$

 $Pr[class (1, 0)] \approx 0.008; -$

 $Pr[class (1, 1)] \approx 0.000; +$

 $Pr[class (1, 2)] \approx 0.031; +$

 $Pr[class (2, 1)] \approx 0.001; +$

 $Pr[class (2, 2)] \approx 0.952; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 26 negations and 1196 diffusions:

 $Pr[class (0, 0)] \approx 0.002; -$

 $Pr[class (0, 1)] \approx 0.008; +$

 $Pr[class (1, 0)] \approx 0.008; -$

 $Pr[class (1, 1)] \approx 0.000; -$

 $Pr[class (1, 2)] \approx 0.035; +$

 $Pr[class (2, 1)] \approx 0.002; +$

 $Pr[class (2, 2)] \approx 0.945; +$

Start from uniform superposition.

Repeat $\approx 0.6 \cdot 2^n/r$ times:

Negate $a_{S,T}$

if S contains collision.

Repeat $\approx 0.7 \cdot \sqrt{r}$ times:

For each T:

Diffuse $a_{S,T}$ across all S.

For each *S*:

Diffuse $a_{S,T}$ across all T.

Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 27 negations and 1242 diffusions:

 $Pr[class (0, 0)] \approx 0.011; -$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.001; -$

 $Pr[class (1, 2)] \approx 0.034; +$

 $Pr[class (2, 1)] \approx 0.003; +$

 $Pr[class (2, 2)] \approx 0.938; +$

quantum walk works:

m uniform superposition.

$$\approx 0.6 \cdot 2^n/r$$
 times:

$$a_{S,T}$$

contains collision.

it
$$\approx 0.7 \cdot \sqrt{r}$$
 times:

each T:

Diffuse $a_{S,T}$ across all S.

each S:

Diffuse $a_{S,T}$ across all T.

h probability

contains collision.

$$-2^n/\sqrt{r}$$
. Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 27 negations and 1242 diffusions:

$$Pr[class (0, 0)] \approx 0.011; -$$

$$Pr[class (0, 1)] \approx 0.007; +$$

$$Pr[class (1, 0)] \approx 0.007; -$$

$$Pr[class (1, 1)] \approx 0.001; -$$

$$Pr[class (1, 2)] \approx 0.034; +$$

$$Pr[class (2, 1)] \approx 0.003; +$$

$$Pr[class (2, 2)] \approx 0.938; +$$

Right column is sign of $a_{S,T}$.

Subset-s

Consider $f(1, J_1)$ for $J_1 \subseteq f(2, J_2)$

for $J_2 \subseteq$

Good ch collision

n/2 + 1

so quant

Easily to to handl

ignore Σ

walk works:

n superposition.

r times:

collision.

 \overline{r} times:

 $_{T}$ across all S.

 $_T$ across all T.

ity

ollision.

Optimize: $2^{2n/3}$.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 27 negations and 1242 diffusions:

 $Pr[class (0, 0)] \approx 0.011; -$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.001; -$

 $Pr[class (1, 2)] \approx 0.034; +$

 $Pr[class (2, 1)] \approx 0.003; +$

 $Pr[class (2, 2)] \approx 0.938; +$

Right column is sign of $a_{S,T}$.

Subset-sum walk (

Consider f defined $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n\}$ $f(2,J_2)=t-\Sigma(J_1)$ for $J_2\subseteq\{n/2+1\}$

Good chance of uncollision $\Sigma(J_1) = \tau$

n/2+1 bits of in so quantum walk

Easily tweak quanto to handle more coignore $\Sigma(J_1) = \Sigma($

<S:

sition.

II *S*.

II *T* .

 $2^{2n/3}$

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n = 15, r = 1024, after 27 negations and 1242 diffusions:

 $Pr[class (0, 0)] \approx 0.011; -$

 $Pr[class (0, 1)] \approx 0.007; +$

 $Pr[class (1, 0)] \approx 0.007; -$

 $Pr[class (1, 1)] \approx 0.001; -$

 $Pr[class (1, 2)] \approx 0.034; +$

 $Pr[class (2, 1)] \approx 0.003; +$

 $Pr[class (2, 2)] \approx 0.938; +$

Right column is sign of $a_{S,T}$.

Subset-sum walk (0.333...)

Consider f defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subseteq\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

Classify (S, T) according to $(\#(S \cap \{p, q\}), \#(T \cap \{p, q\}));$ reduce a to low-dim vector. Analyze evolution of this vector.

e.g. n=15, r=1024, after 27 negations and 1242 diffusions:

 $Pr[class (0,0)] \approx 0.011; Pr[class (0,1)] \approx 0.007; +$ $Pr[class (1,0)] \approx 0.007; Pr[class (1,1)] \approx 0.001; Pr[class (1,2)] \approx 0.034; +$ $Pr[class (2,1)] \approx 0.003; +$ $Pr[class (2,2)] \approx 0.938; +$

Right column is sign of $a_{S,T}$.

Subset-sum walk (0.333...)

Consider f defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subset\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

$$(S,T)$$
 according to $\{p,q\}$, $\#(T\cap\{p,q\})$; to low-dim vector. evolution of this vector.

$$t=15, r=1024, after$$
tions and 1242 diffusions:

$$(0,0)] \approx 0.011; (0,1)] \approx 0.007; +$$
 $(1,0)] \approx 0.007; (1,1)] \approx 0.001; (1,2)] \approx 0.034; +$
 $(2,1)] \approx 0.003; +$
 $(2,2)] \approx 0.938; +$

lumn is sign of $a_{S,T}$.

Subset-sum walk (0.333...)

Consider
$$f$$
 defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subseteq\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

Generali

Choose
(Originalis the spontage)
Take set

 $J_{11} \in S_1$ (Origina of all J_1

Comput

for each

Similarly subsets

Compute for each

cording to

$$(T \cap \{p,q\});$$

m vector.

of this vector.

.024, after

1242 diffusions:

$$0.007; +$$

$$0.007; -$$

$$0.001; -$$

$$0.034; +$$

$$0.003; +$$

$$0.938; +$$

gn of $a_{\mathcal{S},\mathcal{T}}$.

Subset-sum walk (0.333...)

Consider f defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subseteq\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

Generalized modul

Choose M, t_1 , r value (Original moduli a is the special case

Take set S_{11} , $\#S_{11}$ $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{0\}$ (Original algorithm of all $J_{11} \subseteq \{1, ...\}$

Compute $\Sigma(J_{11})$ r for each $J_{11} \in S_{11}$

Similarly take a sessible subsets of $\{n/4 + Compute \ t_1 - \Sigma(S_{12}) \}$ for each $J_{12} \in S_{12}$ **}))**;

ctor.

sions:

Subset-sum walk (0.333...)

Consider f defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subseteq\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

Generalized moduli

Choose M, t_1 , r with $M \approx r$ (Original moduli algorithm is the special case $r=2^{n/4}$.

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, r\}$ (Original algorithm: S_{11} is the of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$ Compute $t_1-\Sigma(J_{12})$ mod $J_{12}\in S_{12}$.

Subset-sum walk (0.333...)

Consider f defined by $f(1,J_1)=\Sigma(J_1)$ for $J_1\subseteq\{1,\ldots,n/2\};$ $f(2,J_2)=t-\Sigma(J_2)$ for $J_2\subseteq\{n/2+1,\ldots,n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2+1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J_1')$, etc.

Generalized moduli

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r = 2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$. Compute $t_1-\Sigma(J_{12})$ mod M for each $J_{12}\in S_{12}$.

um walk (0.333...)

$$f$$
 defined by $=\Sigma(J_1)$ $\{1,\ldots,n/2\};$ $=t-\Sigma(J_2)$ $\{n/2+1,\ldots,n\}.$

ance of unique

$$\Sigma(J_1) = t - \Sigma(J_2).$$

bits of input, tum walk costs $2^{n/3}$.

veak quantum walk e more collisions, $\Sigma(J_1) = \Sigma(J_1')$, etc.

Generalized moduli

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r=2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$. Compute $t_1-\Sigma(J_{12})$ mod M for each $J_{12}\in S_{12}$.

Find all $\Sigma(J_{11}) = \Sigma(J_{11})$ i.e., $\Sigma(J_{11}) = \Sigma(J_{11})$ where J_{11} Compute Similarly

list of J_2 \Rightarrow each

Find col
Success

at findin $\Sigma(J) =$

Assumin cost r, s

(0.333...)

d by

/2};

 $,\ldots,n$.

nique

 $t-\Sigma(J_2)$.

put,

costs $2^{n/3}$.

tum walk

llisions,

 (J_1') , etc.

Generalized moduli

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r = 2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$. Compute $t_1-\Sigma(J_{12}) \bmod M$ for each $J_{12} \in S_{12}$.

Find all collisions $\Sigma(J_{11}) \equiv t_1 - \Sigma(J_{11})$ i.e., $\Sigma(J_1) \equiv t_1$

Compute each Σ (.

where $J_1 = J_{11} \cup$

Similarly S_{21} , S_{22} list of J_2 with $\Sigma(J_2)$ \Rightarrow each $t - \Sigma(J_2)$

Find collisions $\Sigma(...)$

Success probability at finding any part $\Sigma(J) = t$, $\Sigma(J_1) \equiv$

Assuming typical cost r, since $M \approx$

Generalized moduli

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r = 2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$. Compute $t_1-\Sigma(J_{12})$ mod M for each $J_{12}\in S_{12}$.

Find all collisions $\Sigma(J_{11}) \equiv t_1 - \Sigma(J_{12}),$ i.e., $\Sigma(J_1) \equiv t_1 \pmod{M}$ where $J_1 = J_{11} \cup J_{12}.$ Compute each $\Sigma(J_1).$

Similarly $S_{21}, S_{22} \Rightarrow$ list of J_2 with $\Sigma(J_2) \equiv t - t$

 \Rightarrow each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma$

Success probability $r^4/2^n$ at finding any particular J w $\Sigma(J)=t,\ \Sigma(J_1)\equiv t_1$ (mo

Assuming typical distribution cost r, since $M \approx r$.

Generalized moduli

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r = 2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of r subsets of $\{n/4+1,\ldots,n/2\}$. Compute $t_1-\Sigma(J_{12})$ mod M for each $J_{12}\in S_{12}$.

Find all collisions

 $\Sigma(J_{11})\equiv t_1-\Sigma(J_{12}),$ i.e., $\Sigma(J_1)\equiv t_1\pmod M$ where $J_1=J_{11}\cup J_{12}.$ Compute each $\Sigma(J_1).$

Similarly S_{21} , $S_{22} \Rightarrow$ list of J_2 with $\Sigma(J_2) \equiv t - t_1$ \Rightarrow each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma(J_2)$.

Success probability $r^4/2^n$ at finding any particular J with $\Sigma(J)=t,\ \Sigma(J_1)\equiv t_1\pmod M$.

Assuming typical distribution: cost r, since $M \approx r$.

<u>zed moduli</u>

 M, t_1, r with M pprox r.

I moduli algorithm

ecial case $r=2^{n/4}$.)

 $S_{11}, \# S_{11} = r$, where

 $J_{11} \Rightarrow J_{11} \subseteq \{1,\ldots,n/4\}.$

I algorithm: S_{11} is the set

 $_1\subseteq\{1,\ldots,n/4\}.)$

e $\Sigma(J_{11})$ mod M

 $J_{11} \in S_{11}$.

take a set S_{12} of r

of $\{n/4+1, ..., n/2\}$.

e $t_1 - \Sigma(J_{12}) \mod M$

 $J_{12} \in S_{12}$.

Find all collisions

 $\Sigma(J_{11})\equiv t_1-\Sigma(J_{12}),$

i.e., $\Sigma(J_1) \equiv t_1 \pmod{M}$

where $J_1 = J_{11} \cup J_{12}$.

Compute each $\Sigma(J_1)$.

Similarly S_{21} , $S_{22} \Rightarrow$

list of J_2 with $\Sigma(J_2) \equiv t - t_1$

 \Rightarrow each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma(J_2)$.

Success probability $r^4/2^n$

at finding any particular J with

 $\Sigma(J) = t$, $\Sigma(J_1) \equiv t_1 \pmod{M}$.

Assuming typical distribution: cost r, since $M \approx r$.

Quantur

Capture generaliz

as data $D(S_{11}, S_{11})$

Easy to

from S_{ij}

Convert

cost r + $2^{0.2n}$ for

Use "am to search

Total co

<u>i</u>

vith Mpprox r.

lgorithm

$$r = 2^{n/4}.$$

 $t_{11}=\pmb{r}$, where

$$= \{1, \ldots, n/4\}.$$

n: S_{11} is the set

mod M

t S_{12} of $m{r}$

$$1, \ldots, n/2$$
.

 J_{12}) mod M

.

Find all collisions

$$\Sigma(J_{11})\equiv t_1-\Sigma(J_{12}),$$

i.e.,
$$\Sigma(J_1) \equiv t_1 \pmod{M}$$

where $J_1 = J_{11} \cup J_{12}$.

Compute each $\Sigma(J_1)$.

Similarly
$$S_{21}$$
, $S_{22} \Rightarrow$

list of J_2 with $\Sigma(J_2) \equiv t - t_1$

$$\Rightarrow$$
 each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma(J_2)$.

Success probability $r^4/2^n$

at finding any particular J with

$$\Sigma(J) = t$$
, $\Sigma(J_1) \equiv t_1 \pmod{M}$.

Assuming typical distribution: cost r, since $M \approx r$.

Quantum moduli

Capture execution generalized modul as data structure $D(S_{11}, S_{12}, S_{21}, S_{21}, S_{21})$ Easy to move from S_{ij} to adjace

Convert into quan $\cos r + \sqrt{r}2^{n/2}/r^2$ $2^{0.2n}$ for $r \approx 2^{0.2r}$

Use "amplitude are to search for correct Total cost $2^{0.3n}$.

r.

)

here n/4.

he set

2}.

V

Find all collisions

$$\Sigma(J_{11}) \equiv t_1 - \Sigma(J_{12}),$$

i.e.,
$$\Sigma(J_1) \equiv t_1 \pmod{M}$$

where
$$J_1 = J_{11} \cup J_{12}$$
.

Compute each
$$\Sigma(J_1)$$
.

Similarly
$$S_{21}$$
, $S_{22} \Rightarrow$

list of
$$J_2$$
 with $\Sigma(J_2) \equiv t - t_1$

$$\Rightarrow$$
 each $t - \Sigma(J_2)$.

Find collisions
$$\Sigma(J_1) = t - \Sigma(J_2)$$
.

Success probability
$$r^4/2^n$$

at finding any particular J with

$$\Sigma(J) = t$$
, $\Sigma(J_1) \equiv t_1 \pmod{M}$.

Assuming typical distribution: cost r, since $M \approx r$.

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$.

Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos t \, r + \sqrt{r} 2^{n/2} / r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplificatio to search for correct t_1 . Total cost $2^{0.3n}$.

Find all collisions

$$\Sigma(J_{11})\equiv t_1-\Sigma(J_{12}),$$
 i.e., $\Sigma(J_1)\equiv t_1\pmod M$ where $J_1=J_{11}\cup J_{12}.$ Compute each $\Sigma(J_1).$

Similarly S_{21} , $S_{22} \Rightarrow$ list of J_2 with $\Sigma(J_2) \equiv t - t_1$ \Rightarrow each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma(J_2)$.

Success probability $r^4/2^n$ at finding any particular J with $\Sigma(J) = t$, $\Sigma(J_1) \equiv t_1 \pmod{M}$.

Assuming typical distribution: cost r, since $M \approx r$.

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos r + \sqrt{r} 2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

collisions

$$\equiv t_1 - \Sigma(J_{12}),$$

$$t_1) \equiv t_1 \pmod{M}$$

$$J_{11} \cup J_{12}$$
.

e each $\Sigma(J_1)$.

$$S_{21}, S_{22} \Rightarrow$$

with
$$\Sigma(J_2) \equiv t - t_1$$

$$t-\Sigma(J_2)$$
.

lisions
$$\Sigma(J_1) = t - \Sigma(J_2)$$
.

probability
$$r^4/2^n$$

g any particular J with

$$t$$
, $\Sigma(J_1) \equiv t_1 \pmod{M}$.

g typical distribution:

since $M \approx r$.

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move

from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos t \, r + \sqrt{r} 2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

Quantur

Central
Combine
with 're
2010 Ho
Subset-s

new reco

Lower-le Ambaini "combin and a sk history-i

We use

Much ea

J₁₂), (mod *M*)

 J_{12} . J_{1}).

 $(t_2) \equiv t - t_1$

 $J_1)=t-\Sigma(J_2).$

 $r^{4}/2^{n}$

ticular J with

 $\equiv t_1 \pmod{M}$.

distribution:

r.

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos t \, r + \sqrt{r} 2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

Quantum reps (0.2

Central result of the Combine quantum with "representation 2010 Howgrave-Grand Subset-sum exponsion new record.

Lower-level improved Ambainis uses ad"combination of a and a skip list" to history-independent when we radix trees. Much easier, presuments of the presuments of the second streets of the second st

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos t \, r + \sqrt{r} 2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with "representations" idea
2010 Howgrave-Graham—Jou
Subset-sum exponent 0.241
new record.

Lower-level improvement:
Ambainis uses ad-hoc
"combination of a hash tabl
and a skip list" to ensure
history-independence.
We use radix trees.
Much easier, presumably fas

vith d *M*).

 $\Sigma(J_2)$.

n .

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cos t \, r + \sqrt{r} 2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with "representations" idea of
2010 Howgrave-Graham–Joux.
Subset-sum exponent 0.241...;
new record.

Lower-level improvement:
Ambainis uses ad-hoc
"combination of a hash table
and a skip list" to ensure
history-independence.
We use radix trees.
Much easier, presumably faster.