
Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Quantum algorithms

for the subset-sum problem

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

cr.yp.to/qsubsetsum.html

Joint work with:

Stacey Jeffery

University of Waterloo

Tanja Lange

Technische Universiteit Eindhoven

Alexander Meurer

Ruhr-Universität Bochum

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Subset-sum example:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having sum 36634?

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence

knowing that one exists;

allow range of sums;

coefficients outside f0; 1g; etc.

“Subset-sum problem”;

“knapsack problem”; etc.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The lattice connection

Define x1 = 499, : : : , x12 = 9413.

Define L � Z12 as

fv : v1x1 + � � �+ v12x12 = 0g.
Define u 2 Z12 as

(70; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0).

If J � f1; 2; : : : ; 12g
and
P

i2J xi = 36634 then

v 2 L where vi = ui � [i 2 J].

v is very close to u.

Reasonable to hope that

v is the closest vector in L to u.

Subset-sum algorithms �
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

The coding connection

A weight-w subset-sum problem:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and sum 36634?

Replace Z with (Z=2)m:

Is there a subsequence of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413)

having length w and xor 1060?

This is the central algorithmic

problem in coding theory.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Recent asymptotic news

Eurocrypt 2010

Howgrave-Graham–Joux:

subset-sum exponent �0:337.

(Incorrect claim: �0:311.)

Eurocrypt 2011

Becker–Coron–Joux:

subset-sum exponent �0:291.

Adaptations to decoding:

Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012

Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Post-quantum subset sum

Claimed in TCC 2010

Lyubashevsky–Palacio–Segev

“Public-key cryptographic

primitives provably

as secure as subset sum”:

There are “currently no known

quantum algorithms that perform

better than classical ones

on the subset sum problem”.

Hmmm. What’s the best

quantum subset-sum exponent?

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Interlude: Algorithm design

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

) Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Quantum search (0.5)

Assume that function f

has n-bit input, unique root.

Generic brute-force search

finds this root using

�2n evaluations of f .

1996 Grover method

finds this root using

�20:5n quantum evaluations of f

on superpositions of inputs.

Cost of quantum evaluation of f

� cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Easily adapt to handle

different # of roots,

and # not known in advance.

Faster if # is large,

but typically # is not very large.

Most interesting: # 2 f0; 1g.
Apply to the function

J 7! Σ(J)� t where

Σ(J) =
P

i2J xi.

Cost 20:5n to find root (i.e.,

to find indices of subsequence

of x1; : : : ; xn with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Algorithm details for unique root:

Represent J � f1; : : : ; ng as an

integer between 0 and 2n � 1.

n bits are enough space

to store one such integer.

n qubits store much more,

a superposition over sets J:

2n complex amplitudes

a0; : : : ; a2n�1 with

ja0j2 + � � �+ ja2n�1j2 = 1.

Measuring these n qubits

has chance jaJ j2 to produce J.

Start from uniform superposition,

i.e., aJ = 1=2n=2 for all J.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 2� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 3� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 4� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 5� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 6� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 7� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 8� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 9� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 10� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 11� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 12� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 13� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 14� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 15� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 16� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 17� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 18� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 19� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 20� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 25� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 30� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 35� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 40� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 45� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 50� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 60� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 70� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 80� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 90� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Step 1: Set a b where

bJ = �aJ if Σ(J) = t,

bJ = aJ otherwise.

This is about as easy

as computing Σ.

Step 2: “Grover diffusion”.

Set a b where

bJ = �aJ + (2=2n)
P

I aI .

This is also easy.

Repeat steps 1 and 2

about 0:58 � 20:5n times.

Measure the n qubits.

With high probability this finds

the unique J such that Σ(J) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Graph of J 7! aJ
for 36634 example with n = 12

after 100� (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

J 7! aJ is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aJ for roots J;

(2) aJ for non-roots J.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

) Probability is �1

after �(�=4)20:5n iterations.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Left-right split (0.5)

Don’t need quantum computers

to achieve exponent 0:5.

For simplicity assume n 2 2Z.

1974 Horowitz–Sahni:

Sort list of Σ(J1)

for all J1 � f1; : : : ; n=2g
and list of t� Σ(J2)

for all J2 � fn=2 + 1; : : : ; ng.
Merge to find collisions

Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Cost 20:5n for sorting, merging.

We assign cost 1 to RAM.

e.g. 36634 as sum of

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Sort the 64 sums

0; 499; 852; 499 + 852; : : : ;

499 + 852 + 1927 + � � �+ 3608

and the 64 differences

36634� 0; 36634� 4688; : : : ;

36634� 4688� � � � � 9413

to see that

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Moduli (0.5)

For simplicity assume n 2 4Z.

Choose M � 20:25n.

Choose t1 2 f0; 1; : : : ;M � 1g.
Define t2 = t� t1.

Find all J1 � f1; : : : ; n=2g
such that Σ(J1) � t1 (mod M).

How? Split J1 as J11 [J12.

Find all J2 � fn=2 + 1; : : : ; ng
such that Σ(J2) � t2 (mod M).

Sort and merge to find all

collisions Σ(J1) = t� Σ(J2),

i.e., Σ(J1 [J2) = t.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Finds J iff Σ(J1) � t1.

There are �20:25n choices of t1.

Each choice costs 20:25n.

Total cost 20:5n.

Not visible in cost metric:

this uses space only 20:25n,

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans–Jahnel;

2010 Howgrave-Graham–Joux.

Different technique

for similar space reduction:

1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

e.g. M = 8, t = 36634, x =

(499; 852; 1927; 2535; 3596; 3608;

4688; 5989; 6385; 7353; 7650; 9413):

Try each t1 2 f0; 1; : : : ; 7g.
In particular try t1 = 6.

There are 12 subsequences of

(499; 852; 1927; 2535; 3596; 3608)

with sum 6 modulo 8.

There are 6 subsequences of

(4688; 5989; 6385; 7353; 7650; 9413)

with sum 36634� 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634�5989�6385�7353�9413.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum left-right split (0:333 : : :)

Cost 2n=3, imitating

1998 Brassard–Høyer–Tapp:

For simplicity assume n 2 3Z.

Compute Σ(J1) for all

J1 � f1; 2; : : : ; n=3g.
Sort L = fΣ(J1)g.
Can now efficiently compute

J2 7! [t� Σ(J2) =2 L]

for J2 � fn=3 + 1; : : : ; ng.
Recall: we assign cost 1 to RAM.

Use Grover’s method to see

whether this function has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision fp; qg:
i.e., p 6= q, f(p) = f(q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability �(r=2n)2:

Choose a set S of size r.

Compute f(S), sort.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f(S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r, #(S\T) = r�1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] � 0:938; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000; +

Pr[class (1; 1)] � 0:060; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:001; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

1 negation and 46 diffusions:

Pr[class (0; 0)] � 0:935; +

Pr[class (0; 1)] � 0:000; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:057; +

Pr[class (1; 2)] � 0:000; +

Pr[class (2; 1)] � 0:000;�
Pr[class (2; 2)] � 0:008; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

2 negations and 92 diffusions:

Pr[class (0; 0)] � 0:918; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:059; +

Pr[class (1; 2)] � 0:001; +

Pr[class (2; 1)] � 0:000;�
Pr[class (2; 2)] � 0:022; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

3 negations and 138 diffusions:

Pr[class (0; 0)] � 0:897; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:058; +

Pr[class (1; 2)] � 0:002; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:042; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

4 negations and 184 diffusions:

Pr[class (0; 0)] � 0:873; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:000;�
Pr[class (1; 1)] � 0:054; +

Pr[class (1; 2)] � 0:002; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:070; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

5 negations and 230 diffusions:

Pr[class (0; 0)] � 0:838; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:054; +

Pr[class (1; 2)] � 0:003; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:104; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

6 negations and 276 diffusions:

Pr[class (0; 0)] � 0:800; +

Pr[class (0; 1)] � 0:001; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:051; +

Pr[class (1; 2)] � 0:006; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:141; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

7 negations and 322 diffusions:

Pr[class (0; 0)] � 0:758; +

Pr[class (0; 1)] � 0:002; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:047; +

Pr[class (1; 2)] � 0:007; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:184; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

8 negations and 368 diffusions:

Pr[class (0; 0)] � 0:708; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:046; +

Pr[class (1; 2)] � 0:007; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:234; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

9 negations and 414 diffusions:

Pr[class (0; 0)] � 0:658; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:001;�
Pr[class (1; 1)] � 0:042; +

Pr[class (1; 2)] � 0:009; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:287; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

10 negations and 460 diffusions:

Pr[class (0; 0)] � 0:606; +

Pr[class (0; 1)] � 0:003; +

Pr[class (1; 0)] � 0:002;�
Pr[class (1; 1)] � 0:037; +

Pr[class (1; 2)] � 0:013; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:338; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

11 negations and 506 diffusions:

Pr[class (0; 0)] � 0:547; +

Pr[class (0; 1)] � 0:004; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:036; +

Pr[class (1; 2)] � 0:015; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:394; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

12 negations and 552 diffusions:

Pr[class (0; 0)] � 0:491; +

Pr[class (0; 1)] � 0:004; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:032; +

Pr[class (1; 2)] � 0:014; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:455; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

13 negations and 598 diffusions:

Pr[class (0; 0)] � 0:436; +

Pr[class (0; 1)] � 0:005; +

Pr[class (1; 0)] � 0:003;�
Pr[class (1; 1)] � 0:026; +

Pr[class (1; 2)] � 0:017; +

Pr[class (2; 1)] � 0:000; +

Pr[class (2; 2)] � 0:513; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

14 negations and 644 diffusions:

Pr[class (0; 0)] � 0:377; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:004;�
Pr[class (1; 1)] � 0:025; +

Pr[class (1; 2)] � 0:022; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:566; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

15 negations and 690 diffusions:

Pr[class (0; 0)] � 0:322; +

Pr[class (0; 1)] � 0:005; +

Pr[class (1; 0)] � 0:004;�
Pr[class (1; 1)] � 0:021; +

Pr[class (1; 2)] � 0:023; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:623; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

16 negations and 736 diffusions:

Pr[class (0; 0)] � 0:270; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:017; +

Pr[class (1; 2)] � 0:022; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:680; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

17 negations and 782 diffusions:

Pr[class (0; 0)] � 0:218; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:015; +

Pr[class (1; 2)] � 0:024; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:730; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

18 negations and 828 diffusions:

Pr[class (0; 0)] � 0:172; +

Pr[class (0; 1)] � 0:006; +

Pr[class (1; 0)] � 0:005;�
Pr[class (1; 1)] � 0:011; +

Pr[class (1; 2)] � 0:029; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:775; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

19 negations and 874 diffusions:

Pr[class (0; 0)] � 0:131; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:006;�
Pr[class (1; 1)] � 0:008; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:816; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

20 negations and 920 diffusions:

Pr[class (0; 0)] � 0:093; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:007; +

Pr[class (1; 2)] � 0:027; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:857; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

21 negations and 966 diffusions:

Pr[class (0; 0)] � 0:062; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:006;�
Pr[class (1; 1)] � 0:004; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:890; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

22 negations and 1012 diffusions:

Pr[class (0; 0)] � 0:037; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:002; +

Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:910; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

23 negations and 1058 diffusions:

Pr[class (0; 0)] � 0:017; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:002; +

Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:930; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

24 negations and 1104 diffusions:

Pr[class (0; 0)] � 0:005; +

Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:000; +

Pr[class (1; 2)] � 0:030; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:948; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

25 negations and 1150 diffusions:

Pr[class (0; 0)] � 0:000; +

Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:008;�
Pr[class (1; 1)] � 0:000; +

Pr[class (1; 2)] � 0:031; +

Pr[class (2; 1)] � 0:001; +

Pr[class (2; 2)] � 0:952; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

26 negations and 1196 diffusions:

Pr[class (0; 0)] � 0:002;�
Pr[class (0; 1)] � 0:008; +

Pr[class (1; 0)] � 0:008;�
Pr[class (1; 1)] � 0:000;�
Pr[class (1; 2)] � 0:035; +

Pr[class (2; 1)] � 0:002; +

Pr[class (2; 2)] � 0:945; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

How the quantum walk works:

Start from uniform superposition.

Repeat �0:6 � 2n=r times:

Negate aS;T
if S contains collision.

Repeat �0:7 � pr times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r+2n=
p
r. Optimize: 22n=3.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Classify (S; T) according to

(#(S \ fp; qg);#(T \ fp; qg));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] � 0:011;�
Pr[class (0; 1)] � 0:007; +

Pr[class (1; 0)] � 0:007;�
Pr[class (1; 1)] � 0:001;�
Pr[class (1; 2)] � 0:034; +

Pr[class (2; 1)] � 0:003; +

Pr[class (2; 2)] � 0:938; +

Right column is sign of aS;T .

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Subset-sum walk (0:333 : : :)

Consider f defined by

f(1; J1) = Σ(J1)

for J1 � f1; : : : ; n=2g;
f(2; J2) = t� Σ(J2)

for J2 � fn=2 + 1; : : : ; ng.
Good chance of unique

collision Σ(J1) = t� Σ(J2).

n=2 + 1 bits of input,

so quantum walk costs 2n=3.

Easily tweak quantum walk

to handle more collisions,

ignore Σ(J1) = Σ(J 01), etc.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Generalized moduli

Choose M, t1, r with M � r.

(Original moduli algorithm

is the special case r = 2n=4.)

Take set S11, #S11 = r, where

J11 2 S11) J11 � f1; : : : ; n=4g.
(Original algorithm: S11 is the set

of all J11 � f1; : : : ; n=4g.)
Compute Σ(J11) mod M

for each J11 2 S11.

Similarly take a set S12 of r

subsets of fn=4 + 1; : : : ; n=2g.
Compute t1 � Σ(J12) mod M

for each J12 2 S12.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Find all collisions

Σ(J11) � t1 � Σ(J12),

i.e., Σ(J1) � t1 (mod M)

where J1 = J11 [J12.

Compute each Σ(J1).

Similarly S21, S22)
list of J2 with Σ(J2) � t� t1
) each t� Σ(J2).

Find collisions Σ(J1) = t� Σ(J2).

Success probability r4=2n

at finding any particular J with

Σ(J) = t, Σ(J1) � t1 (mod M).

Assuming typical distribution:

cost r, since M � r.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

Quantum moduli (0:3)

Capture execution of

generalized moduli algorithm

as data structure

D(S11; S12; S21; S22).

Easy to move

from Sij to adjacent Tij .

Convert into quantum walk:

cost r +
p
r2n=2=r2.

20:2n for r � 20:2n.

Use “amplitude amplification”

to search for correct t1.

Total cost 20:3n.

Quantum reps (0:241 : : :)

Central result of the paper:

Combine quantum walk

with “representations” idea of

2010 Howgrave-Graham–Joux.

Subset-sum exponent 0:241 : : :;

new record.

Lower-level improvement:

Ambainis uses ad-hoc

“combination of a hash table

and a skip list” to ensure

history-independence.

We use radix trees.

Much easier, presumably faster.

