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I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.
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Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.
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Göloğlu–Granger–McGuire–
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Göloğlu–Granger–McGuire–
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Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).



“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–
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Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–
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Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.
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McGuire–Zumbrägel, 2013.05
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Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–
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Y
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= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.
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m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.
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p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)
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�5% as D !1. BGJT say 1=6.
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).
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g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.



Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh + 
 : 
 2 Fp2g.

Solve for each logg(h + 
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [ fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh + 
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.



Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh + 
 : 
 2 Fp2g.

Solve for each logg(h + 
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [ fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh + 
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.



For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [ fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh + 
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.



For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [ fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh + 
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.
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�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.



Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh + 
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.


