Complexity news:

discrete logarithms In
multiplicative groups of
small-characteristic finite fields—
the algorithm of Barbulescu,
Gaudry, Joux, Thomé

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Advertisement, maybe related:
iml .univ-mrs.fr/ati/
geocrypt2013/
2013.10.07-11, Tahiti.
Submit talks this month!

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.

Ity news:

logarithms In

ative groups of
aracteristic finite fields—
rithm of Barbulescu,
Joux, Thomé

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

ement, maybe related:
v-mrs.fr/ati/
t2013/

07-11, Tahiti.

talks this month!

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.

Discrete

Goal: C
group IS
Fo = Z,

represen

Algorith
hi, ho, .

Algorith

log, A1,
for some

log,” 1
g— 1,1

S5 1IN

Ips of

c finite fields—
arbulescu,

ymeé

is at Chicago &
siteit Eindhoven

ybe related:
~/ati/

hitl.
month!

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.

Discrete logarithm

Goal: Compute sc
group Isomorphisn
Fo = Z/(g—1)

represented in the

Algorithm Input:
hi,ho,... E FZ';.

Algorithm output:

|Ogg h,l, |Ogg h2, .
for some g.

‘log,” means the
g — 1, if it exists.

g0 &
hoven

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.

Discrete logarithms

Goal: Compute some
group iIsomorphism

Fo = Z/(q—1),
represented In the usual way

Algorithm input:
hi,ho, ... E F(’;.

Algorithm output:

Iogg hi, |Ogg ho,...€ Z/(q -
for some g.

‘log,” means the isomorphi
g — 1, if it exists.

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.

Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(q—-1),
represented in the usual way.

Algorithm input:
hi,ho,... E FZ';.

Algorithm output:

log, hi1,logg no, ... € Z/(qg—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

newhat related:

Ing to analyze

NFS + CVP

groups, unit groups,
nerators of ideals, etc.:
g subfields

ort norms first),

lols groups, etc.

else working on this?

alytic applications:

| TRU, Ring-LWE, FHE.
N TRU should switch to

prime-degree extensions
Galois groups.

Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(g—1),
represented in the usual way.

Algorithm input:
hi,ho, ... E F(’;.

Algorithm output:

log, h1,logg ho, ... € Z/(qg—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

“Generic
on averse
uniform,
Want so

ated:

lyze

'P

nit groups,

f ideals, etc.;
S

first),

S, etc.

ng on this?

Ications:
g-LWE, FHE.
uld switch to
ree extensions
OUpS.

Discrete logarithms

Goal: Compute some

group Isomorphism
Fo = Z/(q—-1),
represented in the usual way.

Algorithm input:
hi,ho,... E FZ';.

Algorithm output:

log, hi1,logg no, ... € Z/(qg—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

"Generic” log, alg
on average gl/2+°
uniform, gt/3+o(1)

Want something f

to
10NS

Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(g—1),
represented in the usual way.

Algorithm input:
hi,ho,... E F(’;.

Algorithm output:

|Ogg hi, |Ogg ho,...€Z/(g—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

"Generic” log, algorithms:
on average ¢1/27°(1) gperat
uniform, q1/3+0(1) non-unifc
Want something faster.

Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(q—-1),
represented in the usual way.

Algorithm input:
hi,ho,...€E FZ';.

Algorithm output:

|Ogg hi, |Ogg ho,...€ Z/(g—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

"Generic” log, algorithms:

on average ¢1/27°(1) gperations
uniform, q1/3+0(1) non-uniform.
Want something faster.

Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(q—-1),
represented in the usual way.

Algorithm Input:
hi,ho,... E FZ';.

Algorithm output:

log, hi1,logg no, ... € Z/(qg—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.

"Generic” log, algorithms:

on average ¢1/27°(1) gperations
uniform, q1/3+0(1) non-uniform.
Want something faster.

“Basic index calculus™: 1968
Western—Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—
Mullin—Vanstone, 1985 ElGamal,
1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia—
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,

1998 Bender—Pomerance.

logarithms

ompute some
omorphism

/(g — 1),

ted in the usual way.
m Input:

%
. € Fy.

m output:

logy ho, ... € Z/(q — 1)
9.

neans the isomorphism
f it exists.

"Generic” log, algorithms:

on average q1/21°(1) gperations
uniform, q1/3+0(1) non-uniform.

Want something faster.

“Basic index calculus’: 1968
Western—Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—
Mullin—Vanstone, 1985 ElGamal,

1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia—
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,
1998 Bender—Pomerance.

“NES":

Gordon,
Odlyzko
Weber—|
1998 Wi
Lercier,

Smart-\

“FES”:
Coppers
Odlyzko
Gordon-
1999 Ad
Joux—Le
2010/20
Wang—N\

usual way.

. €Z/(qg—1)

iIsomorphism

"Generic” log, algorithms:

on average ¢1/27°(1) gperations
uniform, q1/3+0(1) non-uniform.
Want something faster.

“Basic index calculus™: 1968
Western—Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—

Mullin—Vanstone, 1985 ElGamal,

1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia—
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,
1998 Bender—Pomerance.

"NFS": 1991 Schi
Gordon, 1993 Sch
Odlyzko, 1996 Sct
Weber—Denny, 19¢
1998 Weber—Denr
Lercier, 2006 Joux
Smart—Vercautere|

“"FFS": 1984 Copy
Coppersmith—Dav:
Odlyzko, 1990 Mc
Gordon—McCurley,
1999 Adleman—HL
Joux—Lercier, 200t
2010/2012 Hayast
Wang—Matsuo—Sh

SM

"Generic” log, algorithms:

1/2+0(1) gperations

on average q
uniform, q1/3+0(1) non-uniform.

Want something faster.

"Basic index calculus™: 1968
Western—Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—

Mullin—Vanstone, 1985 ElGamal,

1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia—
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,
1998 Bender—Pomerance.

"NFS”: 1991 Schirokauer, 1
Gordon, 1993 Schirokauer, 1
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 J«
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, :
Coppersmith—Davenport, 19
Odlyzko, 1990 McCurley, 19
Gordon—McCurley, 1994 AdI
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Le
2010/2012 Hayashi—Shinohz
Wang—Matsuo—Shirase—Tak:

"Generic” log, algorithms:

on average ¢1/27°(1) gperations
uniform, q1/3+0(1) non-uniform.
Want something faster.

“Basic index calculus™: 1968
Western—Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—

Mullin—Vanstone, 1985 ElGamal,

1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia—
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,
1998 Bender—Pomerance.

“NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

" log, algorithms:

ge g1/2to(1) gperations
g1/3+°(1) non-uniform.
mething faster.

ndex calculus’: 1968
—Miller, 1979 Merkle,
leman, 1983 Hellman—

1984 Blake—Fuji-Hara—

/anstone, 1985 ElGamal,

ppersmith—Odlyzko—
pel, 1991 LaMacchia—
1993 Adleman—

1s, 1995 Semaey,
nder—Pomerance.

"NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

“FES”,
Shimoya
2012.10
Detrey—!
Videau—
Barbules
Gaudry-

Zimmeri

orithms:
(1) operations
non-uniform.

aster.

lus’: 1968
)79 Merkle,
83 Hellman-—
<e—Fuji-Hara—

1985 ElGamal,

—QOdlyzko—
LaMacchia—
leman—
yemaeyv,

erance.

"“NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

“FFS”, continued:
Shimoyama—Shino
2012.10 Barbulesc
Detrey—Gaudry—Je
Videau—Zimmerm:
Barbulescu—Bouvie
Gaudry—Jeljeli-=Th

/immermann.

ons

rm.

“NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

“FFS”, continued: 2012 Ha
Shimoyama—Shinohara—Taka
2012.10 Barbulescu—Bouvier
Detrey—Gaudry—Jeljeli—Thon
Videau—Zimmermann, 2013.
Barbulescu—Bouvier—Detrey-
Gaudry—Jeljeli-Thomé—Vide

/immermann.

"“NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé-Videau—

/immermann.

"“NFS": 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“FFS": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992

Gordon—McCurley, 1994 Adleman,

1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—

Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—

Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.

1991 Schirokauer, 1993
1993 Schirokauer, 1994
. 1996 Schirokauer—
Denny, 1996 Weber,
sber—Denny, 2001 Joux—
2006 Joux—Lercier—
/ercauteren.

1984 Coppersmith, 1985
mith—Davenport, 1985

, 1990 McCurley, 1992
McCurley, 1994 Adleman,
leman—Huang, 2001

rcier, 2006 Joux—Lercier,
12 Hayashi—Shinohara—
latsuo—Shirase—Takagi.

"FFS”, continued: 2012 Hayashi—

Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—-Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—

Gaudry—Jeljeli-Thomé—Videau—

/immermann.

“Not your grandpa’s FFS":

2012.12 Joux,
2013.02 Golog
McGuire—Zum

2013.02 Joux,
u—Granger—

oragel, 2013.05

Gologlu—Granger—McGuire—

Zumbragel, 20

13.06 Barbulescu—

Gaudry—Joux—Thomé.

Reasona
for fixed

FFS cos
log I €

rokauer, 1993
rokauer, 1994
1irokauer—
)6 Weber,
y, 2001 Joux—
—Lercier—

.

yersmith, 1985
anport, 1985
Curley, 1992
1994 Adleman,
ang, 2001

y Joux—Lercier,
1i—Shinohara—
irase—Takagi.

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—

Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":

2012.12 Joux,
2013.02 Golog
McGuire—Zum

2013.02 Joux,
u—Granger—

oragel, 2013.05

Gologlu—Granger—McGuire—

Zumbragel, 20

13.06 Barbulescu—

Gaudry—Joux—Thomé.

Reasonable conjec
for fixed character

FFS costs <T wh:
log T € (log ¢)!/3

993 "FFS", continued: 2012 Hayashi- Reasonable conjectures
994 Shimoyama—-Shinohara—Takagi, for fixed characteristic:

2012.10 Barbulescu—Bouvier—

o FFS costs <T where
Detrey—Gaudry—Jeljeli—-Thomé-—

log T € (log q)1/3+o(1),

DUX— Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé—Videau—

/immermann.

1985

85 “Not your grandpa’s FFS":

92 2012.12 Joux, 2013.02 Joux,

eman, 2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05

rcier, Gologlu—Granger—McGuire—

ra— Zumbragel, 2013.06 Barbulescu—

gl Gaudry—Joux—Thomé.

"FFS", continued: 2012 Hayashi- Reasonable conjectures
Shimoyama-Shinohara—Takagi, for fixed characteristic:
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—

FFS costs <T where

log T € (log q)1/3+o(1),

Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.

Reasonable conjectures
for fixed characteristic:

FFS costs <T where

log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.

Reasonable conjectures
for fixed characteristic:

FFS costs <T where

log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log g)%t°(1).

“"FES”, continued: 2012 Hayashi-
Shimoyama—Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé-Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.

Reasonable conjectures
for fixed characteristic:

FFS costs <T where
log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log g)%t°(1).

1994 Shor algorithm:
og T € (loglog q)HO(l), proven:

out needs a quantum computer.

continued: 2012 Hayashi—
ma—Shinohara—Takagi,
Barbulescu—Bouvier—
Gaudry—Jeljeli—Thomé-
/immermann, 2013.04
,cu—Bouvier—Detrey—
Jeljeli—-Thomé—Videau—

nann.

ur grandpa’s FFS”:
Joux, 2013.02 Joux,
Gologlu—Granger—
—/umbragel, 2013.05
-Granger—McGuire—

rel, 2013.06 Barbulescu—
Joux—Thomé.

Reasonable conjectures
for fixed characteristic:

FES costs <T where
log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—

Joux—Thomé algorithm:

log T € (log log ¢)%+o(1),

1994 Shor algorithm:

Field col

og T € (loglog ¢)11°(), proven:
out needs a quantum computer.

I'll make
g =p"
D 1S an ¢
nel,,

Most In1
Example
(Can yol
p2’n —1

Find “ra
with an
@ of deg

Construt

2012 Hayashi—
hara—Takagi,
u—Bouvier—
|jeli-Thomé—
ann, 2013.04
2r—Detrey—
omé—Videau—

's FFS™

3.02 Joux,
sranger—

el, 2013.05
McGuire—

)0 Barbulescu—

mé.

Reasonable conjectures
for fixed characteristic:

FFS costs <T where
log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log ¢)%t°(1).

1994 Shor algorithm:

Field construction

og T € (loglog q)HO(l), proven:
out needs a quantum computer.

I'll make simplityir
g = p°™ where

» Is an odd prime
nel /p<n<

Most interesting:

Example: p = 10C
(Can you find all |
pt —1=(p" 1

Find “random” pc
with an irreducible
@ of degree n.

Construct Fyas F

yashi—
g,

né—
04

dU—

SCU—

Reasonable conjectures
for fixed characteristic:

FES costs <T where
log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log ¢)%+o(1),

1994 Shor algorithm:

Field construction

og T € (loglog ¢)11°(), proven:
out needs a quantum computer.

I'll make simplifying assump
g = p°™ where

» Is an odd prime power,
necl /p<n<p.

Most Interesting: n =~ p.

Example: » = 1009, n = 99
(Can you find all primes divi
p°" —1=(p" - 1)(p" + 1)

Find “random” poly in F |
with an irreducible divisor
@ of degree n.

Construct Fq as F > [z]|/¢.

Reasonable conjectures
for fixed characteristic:

FFS costs <T where
log T € (log q)1/3+o(1),

2013.02 Joux algorithm:
log T € (log q)1/4+o(1),

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log g)%t°(1).

1994 Shor algorithm:

Field construction

og T € (loglog q)HO(l), proven:
out needs a quantum computer.

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

neclZ /p<n<p.

Most interesting: n ~ p.
Example: » = 1009, n = 997.
(Can you find all primes dividing
p°" —1=(p" —1)(p" +1)?)

Find “random” poly in F >[z]
with an irreducible divisor
@ of degree n.

Construct Fq as F 2 [z]/¢.

ble conjectures
characteristic:

ts <7 where
(log q)1/3+0(1)_

Joux algorithm:
(log q)1/4+0(1).

Barbulescu—Gaudry—
1omé algorithm:

(log log q)>™().

or algorithm:
(log log q)HO(l), proven;
Is a quantum computer.

Field construction

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

necl /p<n<p.

Most Interesting: n =~ p.
Example: » = 1009, n = 997.
(Can you find all primes dividing

p°" —1=(p" —1)(p" +1)7)

Find “random” poly in F 2 [z]
with an irreducible divisor
@ of degree n.

Construct Fq as F > [z]/¢.

How ma
What's
has an 1
@ of deg

For n <
EXPress ¢
uniquely
%(pZ)deg
~(p%)™
~(p?)%e
chance -

Similar ¢

Factorin
= Quicl

tures
Istic:

cre

-o(1).

rithm:

-o(1)

u—Gaudry—

1thm:
2+0(1)

m:
L+0(1) proven:

um computer.

Field construction

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

neclZ /p<n<p.

Most interesting: n ~ p.
Example: » = 1009, n = 997.
(Can you find all primes dividing

p°" —1=(p" —1)(p" +1)7)

Find “random” poly in F >[z]
with an irreducible divisor
@ of degree n.

Construct Fq as F 2 [z]/¢.

How many polys t
What's chance th:
has an irreducible
@ of degree n?

Forn < degr <2
express each succe
uniquely as ¢ - cof
%(pZ)deg’H—l polys
~(p?)™/n monic |
%(p2)degr—n+1 cc

chance ~1/n that
Similar story for d

Factoring r is fast
= Quickly find r,

ven:

1ter.

Field construction

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

necl /p<n<p.

Most Interesting: n = p.
Example: p = 1009, n = 997.
(Can you find all primes dividing
p°" —1=(p" - 1)(p" +1)7)

Find “random” poly in F 2 [z]
with an irreducible divisor
@ of degree n.

Construct Fq as F > [z]/¢.

How many polys to try?
What's chance that r € Fpg
has an irreducible divisor

@ of degree n?

For n < degr < 2n:
express each successful r
uniquely as ¢ - cofactor.
%(pZ)deg'rJrl polys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e8 T+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n

Factoring r is fast.
= Quickly find r, o.

Field construction

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

neclZ /p<n<p.

Most interesting: n ~ p.
Example: » = 1009, n = 997.
(Can you find all primes dividing

p°" —1=(p" —1)(p" +1)?)

Find “random” poly in F >[z]
with an irreducible divisor
@ of degree n.

Construct Fq as F 2 [z]/¢.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor
@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

nstruction

 simplifying assumption:
where
dd prime power,

/P <n<p.

eresting: n = P.

: p = 1009, n = 997.

1 find all primes dividing
= (p" —1)(p" +1)?)

ndom” poly in F [z]
irreducible divisor
ree n.

t Fg as F2[z]/¢.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:
express each successful r
uniquely as ¢ - cofactor.
%(pZ)deg'rJrl oolys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e8 T+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't uc
(Starting
Find ¢ «
P — 2
Then z*

p? choic
SO overw
that at |

e.g. p—=
can have

Easily ge
2P = z?
P = (z

But larg

1g assumption:

pOwWer,
D.

np.

9, n = 997.
orimes dividing
)™ +1)7)

ly In sz [z]
» divisor

2[z]/e.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't use random
(Starting now: ab

Find ¢ dividing
2P — 2 — 3 for sc
Then 2P = 2 +

p® choices of B €
so overwhelmingly
that at least one v
e.g. p = 1009, n -
can have 82 + 92

Easily generalize:
zP = g2 4 Bz + 7
zP = (z +06)/(z-

But larger degrees

tion:

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pZ)deg'rJrl oolys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e8 7T+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't use random polys!
(Starting now: abandon pro

Find ¢ dividing
P — 2 — 3 for some B € F
Then zP = z2 4+ B in F,.

p? choices of B € sz,

so overwhelmingly likely
that at least one works.

e.g. p = 1009, n = 997:

can have B2 4 9203 + 447 =

Easily generalize: e.g., take
zP = 2° 4+ Bz + vy or

zP = (z + B)/(z + 7).
But larger degrees are slowe

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds @,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
zP = 2° + Bz + v or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

ny polys to try?
chance that 7 € F »|z]
‘reducible divisor

ree N’

degr < 2n:
sach successful r
as (- cofactor.
27+1 holys 7,

'm monic irreds ¢,
27N+l cofactors =

v1/n that r works.
tory for degr > 2n.

g 7 is fast.
ly find 7, .

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € Fp2,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 926 + 447 = 0.

Easily generalize: e.g., take
2P = 2% + Bz + 7 or

zP = (z +B)/(z + 7).
But larger degrees are slower.

Low-deg

First ste
build tal
each sm
Easily ct

“Small /

o try?
)t r & sz [CC]
divisor

n.

ssful r
actor.

5 T,

rreds ¢,
factors =
- works.

eg T > 2n.

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discref

First step of algor

build table of A
each small A € Fp
Easily choose g at

“Small A": degh
D>1; D e Olog

]

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € Fp2,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have B2 + 926 + 447 = 0.

Easily generalize: e.g., take
2P = 2% + Bz + 7 or

zP = (z +B)/(z + 7).
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A fo
each small h € F »[z| — oF

Easily choose g at same tim

“Small A": degh < D. Chc
D >1;, D e O(logn/loglog

Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for
each small A € F»[z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for
each small A € F»[z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Non-uniform approach:

algorithm A, knows table!

Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for
each small A € F»[z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Non-uniform approach:

algorithm A, knows table!

Two reasons to be more explicit:
1. Want A with ¢ as an input.

2. Method to build table
will be reused for larger h.

e random polys!

y now: abandon proofs.)
lividing

— 3 for some B € sz.

es of B € sz,
/helmingly likely

east one works.

1009, n = 997:

> 32 + 923 + 447 = 0.

neralize: e.g., take
+ Bz +y or
+6)/(z +).

er degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for

each small A € F»|z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Non-uniform approach:

algorithm A; knows tablel

Two reasons to be more explicit:

1. Want A with g as an input.
2. Method to build table
will be reused for larger h.

The first

FWaEch

=" for

P — 12

Hope th
splits In
Not an |
~50% o

Then log

E:aEFpl
This iIs ¢
among ¢
of monic

polys!
andon proofs.)

me B € sz.
in Fg.

F 2,
likely
vorks.
= 997
7 4+ 447 = 0.

e.g., take
or

Ey).
“are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for

each small A € F »[z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Non-uniform approach:

algorithm A, knows table!

Two reasons to be more explicit:

1. Want A with g as an input.
2. Method to build table
will be reused for larger h.

The first relation 1

ﬂaer(a; —a)=

=" for F»[z]: e
2P — 2 — 3; force

Hope that 2 — z
splits in F 2[z], sa
Not an unreasonal
~50% of quadrati

Then log, f1 + log
Zaer Iogg(ac — 0
This i1s a “relation

among discrete lo;
of monic linear po

ofs.)

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for

each small A € F»|z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1,D e O(logn/loglogn).

Non-uniform approach:

algorithm A; knows tablel

Two reasons to be more explicit:

1. Want A with g as an input.
2. Method to build table
will be reused for larger h.

The first relation for D =1

[Nacr,(z —a) = z° — T + |

=" for F 2[z]: equal mod

2

P — z° — B; forces = in F,

Hope that 2 — z + 3

splits in F 2[z], say as fi - f
Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: — Q).
This is a “relation”

among discrete logs
of monic linear polys.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for

each small A € F»[z| — ¢F »[z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1; D e O(logn/loglogn).

Non-uniform approach:

algorithm A, knows table!

Two reasons to be more explicit:

1. Want A with ¢ as an input.
2. Method to build table
will be reused for larger h.

The first relation for D =1

ﬂaer(ac —a)=z’—z+p.

=" for F 2[z]: equal mod

2

P — z° — B; forces = in F,.

Hope that 22 — z + 8

splits in F 2[z], say as fi - fo.
Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: — Q).
This i1s a “relation”

among discrete logs
of monic linear polys.

ree discrete logs

p of algorithm:
le of A — log, A for

all h € Folz] — ¢F »|z].

100se g at same time.

v degh < D. Choose
D € O(logn/loglogn).

form approach:
n Ag; knows table!

sons to be more explicit:

- A with g as an input.
od to build table
eused for larger h.

The first relation for D =1

Haer(fB —a)=z’—z+p.

=" for F 2[z]: equal mod

2

P — z° — B, forces = in Fy.

Hope that 22 — z + 8

splits in F 2[z], say as f1 - fo.

Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: —a).
This is a “relation”

among discrete logs
of monic linear polys.

More rel

For a, b,

(cz + d)

Left side
linear pc
Often ri;

e logs

thm:

- log, h for

same time.

< D. Choose
n/loglogn).

bach:
vs tablel

> more explicit:

as an input.
d table
larger h.

The first relation for D =1

(2]~ oF pla].

ﬂaer(ac —a)=z’—z+p.

=" for F »[z|: equal mod

2

P — z° — B; forces = in Fy.

Hope that 22 — z + 8

splits in F 2[z], say as fi - fo.

Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: — Q).
This i1s a “relation”

among discrete logs
of monic linear polys.

More relations for

For a,b,c,d € sz

(cz + d) |_‘ (az -

acky
= (cz + d)(azx + ¢
— (az + b)(cz + ¢
= (cz + d)(aPz? -
— (az + b)(cPzP A
= (cz + d)(aP(z?
— (az + b)(cP(z?

Left side is produc
linear polys In sz
Often right side is

licit:

Ut.

The first relation for D =1

Haer($ —a)=z’—z+p.

=" for F 2[z]: equal mod

2

P — z° — B, forces = in Fy.

Hope that 22 — z + 8

splits in F 2[z], say as fi - fo.

Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: —a).
This i1s a “relation”

among discrete logs
of monic linear polys.

More relations for D =1

For a,b,c, d € sz:

(cz + d) |_‘ (az + b — afca
acFy

= (cz + d)(az + b)P

— (az + b)(cz + d)P

= (cz + d)(aPzP + bP)

— (az + b0)(cPzP + dP)

(

= (cz + d)(aP(z® + B) + b7
— (az + b)(cP(z%2 + B) + dP

Left side is product of
linear polys in F 2 [z].
Often right side is too.

The first relation for D =1

ﬂaer(ac —a)=z’—z+p.

=" for F 2[z]: equal mod
p—xz—ﬁ forces = in F.

Hope that 22 — z + 8

splits in F 2[z], say as fi - fo.

Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, f2 =
Zaer Iogg(a: — Q).
This i1s a “relation”

among discrete logs
of monic linear polys.

More relations for D =1

For a,b,c,d € szi

(cz + d) |_‘ (az + b — a(cz + a))

= (cz + d)(az + b)P

— (az + b)(cz + d)P

= (cz + d)(aPzP + bP)

— (az + b)(cPzP + dP)

= (cz + d)(aP(z? + B) + bP)
— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2[z].
Often right side is too.

- relation for D =1

t—a)=z°—z+0.

F 2[z]: equal mod
— [B; forces = in Fy.

atz? —z 40

sz [z], say as f1 - fo.

inreasonable hope:
f quadratics split.

gg fl = logg f2 —
og,(z — a).
' ‘relation”

liscrete logs
- linear polys.

More relations for D =1

For a,b,c, d € sz:

(cz + d) |_‘ (az + b — al(cz + a))

cx + d)(azx + b)"
az + b)(cz + d)P

= (

—

= (cz + d)(aPzP + bP)

— (az + b0)(cPzP + dP)

= (cz + d)(aP(z* + B) +)

— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2 [z].
Often right side is too.

AeF,
p
= M, X

= M, m

No othe

Is there
the set ¢
in PGL>
Cremon:
Bartel g

Mindles:

IS not a
but wan

More relations for D =1

For a,b,c,d € szi

(cz + d) |_‘ (az + b — a(cz + a))
acky

= (cz + d)(az + b)P

— (az + b)(cz + d)P

= (cz + d)(aPzP + bP)

— (az + b)(cPzP + dP)

= (cz + d)(aP(z° + B) +)
— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2[z].
Often right side is too.

C C

= M, M are red

= M, mM are rec

No other obvious

Is there a nice way
the set of cosets c
' ?

N PGLQ(FPQ.). Be
Cremona points r
Bartel gives solutie

Mindless enumera
Is not a real bottle
but want fast mul

More relations for D =1

For a,b,c, d € sz:

(cz + d) |_‘ (az + b — al(cz + a))

cx + d)(azx + b)"
az + b)(cz + d)P

= (

—

= (cz + d)(aPzP + bP)

— (az + b0)(cPzP + dP)

= (cz + d)(aP(z? + B) + bP)

— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2 [z].
Often right side is too.

b
= M, AM are redundant.

m € GLQ(FP), M € GLQ(FPQ
= M mM are redundant.

No other obvious redundanc

Is there a nice way to repres
the set of cosets of PGLy(F.
in PGL2(F,2)? Best hints s
Cremona points me to F;';4/
Bartel gives solution for Gl

Mindless enumeration of cos
Is not a real bottleneck here
but want fast multipoint ev:

More relations for D =1

For a,b,c,d € szi

(cz + d) |_‘ (az + b — a(cz + a))
acky

= (cz + d)(az + b)P

— (az + b)(cz + d)P

= (cz + d)(aPzP + bP)

— (az + b)(cPzP + dP)

= (cz + d)(aP(z? + B) + bP)
— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2[z].
Often right side is too.

b
= M, XM are redundant.

m € GLQ(FP), M € GLQ(FpQ)
= M mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fy)

in PGLQ(FPQ)? Best hints so far:

Cremona points me to F*, /F*,;
p p
Bartel gives solution for GLs.

Mindless enumeration of cosets
Is not a real bottleneck here
but want fast multipoint eval.

ationsfor D =1

c,d € sz:

|_‘ (az + b — al(cz + a))

acFy

d)(az + b)?
b)(cz + d)?
d)(aPzP + bP)
b)(cPzP + dP)

d)(aP(z* + B) +)
b)(cP(z? + B) + dP).

 Is product of
lys in Fo[z].
ht side Is too.

b
= M, AM are redundant.

m C GLQ(FP), M € GLQ(FPQ)
= M mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fy)

in PGLQ(FPQ)? Best hints so far:

X .
pa

Cremona points me to F;';4/Fp

Bartel gives solution for GLs.

Mindless enumeration of cosets
Is not a real bottleneck here
but want fast multipoint eval.

D> +p§
conjectu
Each suc

Only p?
Expect e
to deter
(or mosi

unless p

BGJT s:
but fast
gives be

(How to

Maybe ¢
where

+b— a(cx + d))

)P
)P

- bP)
- dP)
+B) + 67)
+B) + dP).

t of

too.

b
= M, MM are redundant.

m € GLQ(FP), M € GLQ(FpQ)
= M mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fy)

in PGLQ(FPQ)? Best hints so far:

X* .
PR

Cremona points me to F;';4/Fp

Bartel gives solution for GL>.

Mindless enumeration of cosets
Is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential r
conjecturally ~ind
Each succeeds wit

Only p? monic lin
Expect enough rel
to determine their
(or most logs: ok
unless p Is very sn

BGJT say sparse |
but fast matrix mi
gives better const

(How to avoid ant
Maybe cleanest: z
where B generates

>+ d))

b
= M, AM are redundant.

m € GLQ(FP), M € GLQ(FPQ)
= M mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fy)

in PGLQ(FPQ)? Best hints so far:

X .
pa

Cremona points me to F;';4/Fp

Bartel gives solution for GLs.

Mindless enumeration of cosets
Is not a real bottleneck here
but want fast multipoint eval.

p3 + p potential relations,
conjecturally ~independent.
Each succeeds with chance :

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a
unless p I1s very small.

BGJT say sparse linear algel
but fast matrix multiplicatio
gives better const in expone

(How to avoid annihilating |
Maybe cleanest: zP = Bz? -

where B generates F;';Q.)

b
= M, XM are redundant.

m € GLQ(FP), M € GLQ(FpQ)
= M mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fy)

in PGLQ(FPQ)? Best hints so far:

Cremona points me to F*, /F*,;
p p
Bartel gives solution for GLs.

Mindless enumeration of cosets
Is not a real bottleneck here
but want fast multipoint eval.

p3 + p potential relations,
conjecturally ~independent.
Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a few),
unless p Is very small.

BGJT say sparse linear algebra:;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F;z?
Maybe cleanest: zP = Bz2 + 1,

where B generates F;';z.)

b
M = (g’ d) - GLQ(FPQ)
M are redundant.

2(Fp), M € GLQ(FPQ)
,M are redundant.

r obvious redundancies.

a nice way to represent
f cosets of PGLy(Fp)

(sz)? Best hints so far:

X .
pa

) points me to F;';4/Fp

ves solution for GL».

> enumeration of cosets
real bottleneck here
t fast multipoint eval.

p3 + p potential relations,
conjecturally ~independent.

Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a few),
unless p Is very small.

BGJT say sparse linear algebra;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F*,?
Maybe cleanest: zP = Bz + 1,

where B generates F;';Q.)

More rel

For eacl

(ch + d)

= (ch +
— (ah +
= (ch +
— (ah +
= (ch +
— (ah +

L eft side
sometim
~5% as

;) - GLQ(FPQ)
undant.

- GLQ(FpQ)
lundant.

redundancies.

/ tO represent

st hints so far:

e to F;';4/F;';2;
on for GLQ.
tion of cosets

neck here
tipoint eval.

p3 + p potential relations,
conjecturally ~independent.

Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a few),
unless p Is very small.

BGJT say sparse linear algebra:;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F;z?
Maybe cleanest: zP = Bz2 + 1,

where B generates F;';z.)

More relations for

For each small h ¢

(ch + d) |_‘ (ah -
ackFy

= (ch + d)(ah + !

— (ah + b)(ch +

(
= (ch + d)(aPhP -
— (ah + b)(cPhP -
(
(

= (ch + d)(aPh(z
— (ah + b)(cPh(z

Left side is produc
sometimes right si
~5% as D — .

18

p3 + p potential relations,
conjecturally ~independent.

Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a few),
unless p Is very small.

BGJT say sparse linear algebra;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F*,?
Maybe cleanest: zP = Bz2 + 1,

where B generates F;';Q.)

More relations for arbitrary

For each small h € F 2[z]:

(ch+d) | | (ah+b—a(c
acky
= (ch + d)(ah + b)P
— (ah + b)(ch + d)P
= (ch + d)(aPhP + bP)
— (ah + b)(cPhP 4 dP)
((
(

= (ch + d)(aPh(z® + B) + !
— (ah + b)(cPh(z? + B) + ¢

Left side is product of small

sometimes right side is too.
~5% as D — oco. BGJT say

p3 + p potential relations,
conjecturally ~independent.

Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations
to determine their logs

(or most logs: ok to miss a few),

unless p Is very small.

BGJT say sparse linear algebra:;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F;z?
Maybe cleanest: zP = Bz2 + 1,

where B generates F;';z.)

More relations for arbitrary D

For each small h € F »[z]:

(ch+d) | | (ah+b—a(ch+d))
ackFy

= (ch + d)(ah + b)P

— (ah + b)(ch + d)P

(
= (ch + d)(aPhP 4 bP)
— (ah + b)(cPAP 4 dP)
= (ch + d)(aPh(z® + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Left side is product of small polys;

sometimes right side is too.
~5% as D — co. BGJT say 1/6.

otential relations,
rally ~independent.

~ceeds with chance ~1/6.

monic linear polys.
nough relations
mine their logs

- logs: ok to miss a few),

Is very small.

)y sparse linear algebra;
matrix multiplication
tter const In exponent.

avoid annihilating F*,?
leanest: zP = Bz? + 1,

generates F;I;Q)

More relations for arbitrary D

For each small h € F 2[z]:

(ch+d) | |(ah+b—a(ch+d))

Left side is product of small polys;

sometimes right side is too.
~5% as D — oco. BGJT say 1/6.

Larger d

What if

Use sam
(ch + d)

= (ch +
— (ah +

Occasiotl
product
We now

Left side

factor b:
Solve fo

alations,

ependent.

h chance ~1/6.

ar polys.
ations
logs

to miss a few),

1all.

inear algebra:;
1ltiplication
In exponent.

1hilating F* ?
P = ,6:1:2 + 1
. F;z.)

More relations for arbitrary D

For each small h € F »[z]:

(ch+d) | | (ah+b—a(ch+d))
ackFy
= (ch + d)(ah + b)P
— (ah + b)(ch + d)P
= (ch + d)(aPhP 4 bP)
— (ah + b)(cPhP + dP)
(

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Left side is product of small polys;
sometimes right side is too.

~5% as D — co. BGJT say 1/6.

Larger discrete log

What if D < deg/

Use same equatiol

(ch + d) |_‘ (ah -

acFy
= (ch + d)(aPh(z
— (ah + b)(cPh(z

Occasionally right
product of small p

We now know tho

Left side is produc
factor base: {h +
Solve for each log,

More relations for arbitrary D

For each small h € F 2[z]:

(ch+d) | |(ah+b—a(ch+d))

Left side is product of small polys;

sometimes right side is too.
~5% as D — 0co. BGJT say 1/6.

Larger discrete logs
What it D < degh < 2D?

Use same equation:

(ch+d) | | (ah+b—a(ct
ackFy

= (ch + d)(aPh(z® + B) + !

— (ah + b)(cPh(z? + B) + ¢

Occasionally right side is
product of small polys.

We now know those discrete

Left side is product on new
factor base: {h+v:79 € F,
Solve for each log,(h + 7).

More relations for arbitrary D

For each small h € F »[z]:

(ch+d) | | (ah+b—a(ch+d))
ackFy
= (ch + d)(ah + b)P
— (ah + b)(ch + d)P
= (ch + d)(aPhP + bP)
— (ah + b)(cPAP 4 dP)
(

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Left side is product of small polys;

sometimes right side is too.
~5% as D — co. BGJT say 1/6.

Larger discrete logs
What it D < degh < 2D?

Use same equation:

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally right side is
product of small polys.

We now know those discrete logs.

Left side is product on new
factor base: {h+7:9 € sz}.
Solve for each log,(h + 7).

ations for arbitrary D

small h € Folz]:

| | (ah +b—a(ch+ d))

acky
d)(ah + b)
-b)

 Is product of small polys;

es right side is too.
D — oco. BGJT say 1/6.

Larger discrete logs
What it D < degh < 2D?

Use same equation:

(ch+d) | | (ah+b—a(ch+d))
ackFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally right side is
product of small polys.

We now know those discrete logs.

Left side is product on new
factor base: {h+7:79 € sz}.
Solve for each log,(h + 7).

For deg.
D-smoo

SO ~u

Need =~
Note fre

Works f«

Reminist
(1977 S

(Iva]
= (a + ¢
mod larg
Factor b

VAl -

arbitrary D

Eprzhﬂ:

+b— a(ch + d))

t of small polys;
de Is too.

BGJT say 1/6.

Larger discrete logs

What if D < degh < 2D~

Use same equation:

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally right side is
product of small polys.

We now know those discrete logs.

Left side is product on new
factor base: {h+7:79 € sz}.
Solve for each log,(h + 7).

For degh < (u/3)
D-smoothness che
so ~u " Up3 relatic

Need ~p? relation

Note free relations
Works for u ~ log

Reminiscent of lin
(1977 Schroeppel)

([va] +a)([va
= (a + b) [\/ﬂ -+

mod large prime ¢

Factor base in line

UV +afUdsr

L+ d))

P)
Py,

polys;

Larger discrete logs

What if D < degh <2D?

Use same equation:
(ch+d) | | (ah+b—a(ch+d))

ackFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally rig
product of smal
We now know t

nt side Is
polys.

nose discrete logs.

Left side is product on new

factor base: {h

+y:y€Fpl

Solve for each log,(h + 7).

For degh < (u/3)D:

D-smoothness chance ~u™

1

so ~u " ¥p3 relations.

Need ~p? relations.
Note free relations: smooth

Works for u ~ log p/ log log

Reminiscent of linear sieve

(1977 Schroeppel):

([va] +a)([a] +b)
=(a+0b)[/q| +ab+ |\/q

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small prime:

Larger discrete logs

What if D < degh < 2D~

Use same equation:

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally right side is
product of small polys.

We now know those discrete logs.

Left side is product on new
factor base: {h+7:79 € sz}.
Solve for each log,(h + 7).

For degh < (u/3)D:

D-smoothness chance ~u %

so ~u " ¥p3 relations.

Need ~p? relations.

Note free relations: smooth A +1y.
Works for u =~ logp/ log log p.

Reminiscent of linear sieve
(1977 Schroeppel):

(|v/a] +a)(|va]| +b)
= (a+06)[a] +ab+ [\a]° — g

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small primes}.

Iscrete logs

D < degh <2D7

e equation:

| | (ah +b—a(ch+d))
ackFy

d)(aPh(z? + B) + bP)
b)(cPh(z? + B) + dP).

1ally right side Is
of small polys.

know those discrete logs.

 Is product on new
se: {h+7:9E sz}.
r each log,(h + 7).

For degh < (u/3)D:

D-smoothness chance ~u™

U

so ~u " ¥p3 relations.

Need ~p? relations.
Note free relations: smooth A +1y.

Works for u =~ logp/ log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

([va] +a)([a] +b)
= (a+06) [a] +ab+ [\a]° — g

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small primes}.

Arbitran

For (u/:

Use sam
(ch + d)

= (ch +
— (ah +

Occasiotl
side; ag:
Have se
(u/3)D-
0(1) g

of which

side Is
olys.
se discrete logs.

For degh < (u/3)D:

D-smoothness chance ~u™

U

so ~u " ¥p3 relations.

Need ~p? relations.
Note free relations: smooth A +1y.

Works for u = logp/ log log p.

Reminiscent of linear sieve

(1977 Schroeppe

([val +a)(|va

):
+ b)

= (a+06)[a] +ab+ [\a]° — g

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small primes}.

Arbitrary discrete

For (u/3)D < deg

Use same equatior

(ch + d) |_‘ (ah -

acFy
= (ch + d)(aPh(z
— (ah + b6)(cPh(z

Occasionally (u/3
side; again {h + v
Have seen subrout
(u/3)D-smooth d

po(l) subroutine c
of which ©(p?) ar

L+ d))

)
P).

> logs.

For degh < (u/3)D:

D-smoothness chance ~u™

U

so ~u " ¥p3 relations.

Need ~p? relations.
Note free relations: smooth A +1y.

Works for u =~ logp/ log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

([va] +a)([] +b)
= (a+06)[a] +ab+ [\a]° — g

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small primes}.

Arbitrary discrete logs

For (u/3)D < degh < (u/3

Use same equation

(ch+d) | | (ah+b—a(ct
acFyp

= (ch + d)(aPh(z® + B) + !

— (ah + b)(cPh(z? + B) + ¢

Occasionally (u/3)D-smoot
side; again {h + y} for left .
Have seen subroutine to con
(u/3)D-smooth discrete log

po(l) subroutine calls,
of which ©(p?) are importa

For degh < (u/3)D:

D-smoothness chance ~u %

so ~u " ¥p3 relations.

Need ~p? relations.

Works for u = logp/ log log p.

Reminiscent of linear sieve
(1977 Schroeppel):

(|v/a] +a)(|va]| +b)
= (a+06)[a] +ab+ [\a]° — g

mod large prime g.

Factor base in linear sieve:

V4l

a} U {small primes}.

Arbitrary discrete logs

Note free relations: smooth A +1y.

For (u/3)D < degh < (u/3)°D:

Use same equation

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally (u/3)D-smooth right
side; again {h + y} for left side.
Have seen subroutine to compute
(u/3)D-smooth discrete logs.

po(l) subroutine calls,
of which @(pz) are important.

h < (u/3)D:

thness chance ~u™

Lp3 relations.

U

»? relations.

e relations: smooth A +1.

or u = logp/ log log p.

~ent of linear sieve
“hroeppel):

a)([va] + 8
) [va] +ab+[va]* g

re prime q.

ase In linear sieve:
- a} U {small primes}.

Arbitrary discrete logs

For (u/3)D < degh < (u/3)°D:

Use same equation

(ch+d) | |(ah+b—a(ch+d))
ackFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally (% /3)D-smooth right
side; again {h + 7y} for left side.
Have seen subroutine to compute
(u/3)D-smooth discrete logs.

po(l) subroutine calls,
of which @(p2) are important.

For large

Reach d
logn

log(u/3
levels of

Total co

— exp ©
— exp ©

What akt
Embed |

Can alsc

D:

nce ~u Y

ns.

S.

. smooth h 4.

p/ log log p.

car sleve
-

+ b)
ab+ [\/7]° — g

ar sleve:
nall primes}.

Arbitrary discrete logs

For (u/3)D < degh < (u/3)°D:

Use same equation

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally (u/3)D-smooth right
side; again {h + y} for left side.
Have seen subroutine to compute
(u/3)D-smooth discrete logs.

po(l) subroutine calls,
of which @(pz) are important.

For larger h: recu

Reach degree n —
logn |
O

og(u/3)

log
levels of recursion.

Total cost p°logn

| 2
— exp@((ogn) -
log logn

log |
— exp@((og 28
log log Ic

What about %" v

Embed into an ex

Can also use zchar

Arbitrary discrete logs For larger h: recurse.

For (u/3)D < degh < (u/3)?D: Reach degree n — 1 using
| |
Use same equation e € @(s)
o o o log(u/3) loglogn
(ch +d) I_‘ (ah +b—alch +d)) levels of recursion.
aEFp

= (ch + d)(aPh(z? + B) + bP) Total cost p©(logn/ loglogn)
S CRDICECET RN PN o

| | log log n
Occasionally (u/3)D-smooth right a (log log q)?
side; again {h + v} for left side. — &P log loglog g/

Have seen subroutine to compute _
P What about p2™ with p < n

Embed into an extension fie
char

(u/3)D-smooth discrete logs.

Po(l) subroutine calls, Can also use z etc.

of which ©(p?) are important.

Arbitrary discrete logs

For (u/3)D < degh < (u/3)°D:

Use same equation

(ch+d) | | (ah+b—a(ch+d))
acFy

= (ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally (u/3)D-smooth right
side; again {h + v} for left side.
Have seen subroutine to compute
(u/3)D-smooth discrete logs.

po(l) subroutine calls,
of which @(pz) are important.

For larger h: recurse.

Reach degree n — 1 using
| |
ogn - @(ogn)

log(w/3) log log n
levels of recursion.

Total cost pe('og n/loglogn)

_ (logn)?
- P @(Iog Iogn)

log log q)°
_ exp@((og 0g q))
log log log ¢
What about p2™ with p < n?

Embed into an extension field.
char

Can also use z etc.

