Complexity news:

discrete logarithms In
multiplicative groups of
small-characteristic finite fields—
the algorithm of Barbulescu,
Gaudry, Joux, Thomé

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Advertisement, maybe related:
iml .univ-mrs.fr/ati/
geocrypt2013/
2013.10.07-11, Tahiti.
Submit talks this month!

Also somewhat related:

I'm starting to analyze

cost of NFS + CVP

for class groups, unit groups,
short generators of ideals, etc.;
exploiting subfields

(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions
with big Galois groups.
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with an irreducible divisor
@ of degree n.

Construct Fq as F 2 [z]/¢.
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Example: » = 1009, n = 997.
(Can you find all primes dividing

p°" —1=(p" —1)(p" +1)?)

Find “random” poly in F >[z]
with an irreducible divisor
@ of degree n.

Construct Fq as F 2 [z]/¢.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor
@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.



nstruction

 simplifying assumption:
where
dd prime power,

/P <n<p.

eresting: n = P.

: p = 1009, n = 997.

1 find all primes dividing
= (p" —1)(p" +1)?)

ndom” poly in F [z]
irreducible divisor
ree n.

t Fg as F2[z]/¢.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:
express each successful r
uniquely as ¢ - cofactor.
%(pZ)deg'rJrl oolys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e8 T+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't uc
(Starting
Find ¢ «
P — 2
Then z*

p? choic
SO overw
that at |

e.g. p—=
can have

Easily ge
2P = z?
P = (z

But larg



1g assumption:

pOwWer,
D.

np.

9, n = 997.
orimes dividing
)™ +1)7)

ly In sz [z]
» divisor

2[z]/e.

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't use random
(Starting now: ab

Find ¢ dividing
2P — 2 — 3 for sc
Then 2P = 2 +

p® choices of B €
so overwhelmingly
that at least one v
e.g. p = 1009, n -
can have 82 + 92

Easily generalize:
zP = g2 4 Bz + 7
zP = (z +06)/(z-

But larger degrees



tion:

How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pZ)deg'rJrl oolys 7,
~(p?)™ /n monic irreds ¢,
~(p?)9e8 7T+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don't use random polys!
(Starting now: abandon pro

Find ¢ dividing
P — 2 — 3 for some B € F
Then zP = z2 4+ B in F,.

p? choices of B € sz,

so overwhelmingly likely
that at least one works.

e.g. p = 1009, n = 997:

can have B2 4 9203 + 447 =

Easily generalize: e.g., take
zP = 2° 4+ Bz + vy or

zP = (z + B)/(z + 7).
But larger degrees are slowe



How many polys to try?
What's chance that r € F »[z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)deg'rJrl polys 7,
~(p?)™ /n monic irreds @,
~(p?)9e87 "+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.

Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
zP = 2° + Bz + v or

zP = (z +B)/(z+ 7).
But larger degrees are slower.



ny polys to try?
chance that 7 € F »|z]
‘reducible divisor

ree N’

degr < 2n:
sach successful r
as ( - cofactor.
27+1 holys 7,

'm monic irreds ¢,
27N+l cofactors =

v1/n that r works.
tory for degr > 2n.

g 7 is fast.
ly find 7, .

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € Fp2,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 926 + 447 = 0.

Easily generalize: e.g., take
2P = 2% + Bz + 7 or

zP = (z +B)/(z + 7).
But larger degrees are slower.

Low-deg

First ste
build tal
each sm
Easily ct

“Small /



o try?
)t r & sz [CC]
divisor

n.

ssful r
actor.

5 T,

rreds ¢,
factors =
- works.

eg T > 2n.

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discref

First step of algor

build table of A
each small A € Fp
Easily choose g at

“Small A": degh
D>1; D e Olog



]

Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € Fp2,

so overwhelmingly likely

that at least one works.
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2P = 2?2 + Bz + 7 or

zP = (z +B)/(z+ 7).
But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:
build table of A — log, A for
each small A € F»[z| — ¢F »[z].
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Non-uniform approach:

algorithm A, knows table!



Don’t use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € sz,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
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will be reused for larger h.
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For a,b,c, d € sz:

(cz + d) |_‘ (az + b — al(cz + a))

cx + d)(azx + b)"
az + b)(cz + d)P

= (

—

= (cz + d)(aPzP + bP)

— (az + b0)(cPzP + dP)

= (cz + d)(aP(z? + B) + bP)

— (az + b)(cP(z? + B) + dP).

Left side is product of
linear polys in F 2 [z].
Often right side is too.

b
= M, AM are redundant.

m € GLQ(FP), M € GLQ(FPQ
= M mM are redundant.

No other obvious redundanc

Is there a nice way to repres
the set of cosets of PGLy(F.
in PGL2(F,2)? Best hints s
Cremona points me to F;';4/
Bartel gives solution for Gl

Mindless enumeration of cos
Is not a real bottleneck here
but want fast multipoint ev:
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