
Complexity news:

discrete logarithms in

multiplicative groups of

small-characteristic finite fields—

the algorithm of Barbulescu,

Gaudry, Joux, Thomé

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Advertisement, maybe related:

iml.univ-mrs.fr/ati/

geocrypt2013/

2013.10.07–11, Tahiti.

Submit talks this month!

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Complexity news:

discrete logarithms in

multiplicative groups of

small-characteristic finite fields—

the algorithm of Barbulescu,

Gaudry, Joux, Thomé

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Advertisement, maybe related:

iml.univ-mrs.fr/ati/

geocrypt2013/

2013.10.07–11, Tahiti.

Submit talks this month!

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

Complexity news:

discrete logarithms in

multiplicative groups of

small-characteristic finite fields—

the algorithm of Barbulescu,

Gaudry, Joux, Thomé

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Advertisement, maybe related:

iml.univ-mrs.fr/ati/

geocrypt2013/

2013.10.07–11, Tahiti.

Submit talks this month!

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

Complexity news:

discrete logarithms in

multiplicative groups of

small-characteristic finite fields—

the algorithm of Barbulescu,

Gaudry, Joux, Thomé

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Advertisement, maybe related:

iml.univ-mrs.fr/ati/

geocrypt2013/

2013.10.07–11, Tahiti.

Submit talks this month!

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

Also somewhat related:

I’m starting to analyze

cost of NFS + CVP

for class groups, unit groups,

short generators of ideals, etc.;

exploiting subfields

(find short norms first),

small Galois groups, etc.

Anyone else working on this?

Cryptanalytic applications:

attack NTRU, Ring-LWE, FHE.

I think NTRU should switch to

random prime-degree extensions

with big Galois groups.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

Discrete logarithms

Goal: Compute some

group isomorphism

F�q ! Z=(q � 1),

represented in the usual way.

Algorithm input:

h1; h2; : : : 2 F�q .

Algorithm output:

logg h1; logg h2; : : : 2 Z=(q � 1)

for some g.

“logg” means the isomorphism

g 7! 1, if it exists.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Generic” logg algorithms:

on average q1=2+o(1) operations

uniform, q1=3+o(1) non-uniform.

Want something faster.

“Basic index calculus”: 1968

Western–Miller, 1979 Merkle,

1979 Adleman, 1983 Hellman–

Reyneri, 1984 Blake–Fuji-Hara–

Mullin–Vanstone, 1985 ElGamal,

1986 Coppersmith–Odlyzko–

Schroeppel, 1991 LaMacchia–

Odlyzko, 1993 Adleman–

DeMarrais, 1995 Semaev,

1998 Bender–Pomerance.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

“NFS”: 1991 Schirokauer, 1993

Gordon, 1993 Schirokauer, 1994

Odlyzko, 1996 Schirokauer–

Weber–Denny, 1996 Weber,

1998 Weber–Denny, 2001 Joux–

Lercier, 2006 Joux–Lercier–

Smart–Vercauteren.

“FFS”: 1984 Coppersmith, 1985

Coppersmith–Davenport, 1985

Odlyzko, 1990 McCurley, 1992

Gordon–McCurley, 1994 Adleman,

1999 Adleman–Huang, 2001

Joux–Lercier, 2006 Joux–Lercier,

2010/2012 Hayashi–Shinohara–

Wang–Matsuo–Shirase–Takagi.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

“FFS”, continued: 2012 Hayashi–

Shimoyama–Shinohara–Takagi,

2012.10 Barbulescu–Bouvier–

Detrey–Gaudry–Jeljeli–Thomé–

Videau–Zimmermann, 2013.04

Barbulescu–Bouvier–Detrey–

Gaudry–Jeljeli–Thomé–Videau–

Zimmermann.

“Not your grandpa’s FFS”:

2012.12 Joux, 2013.02 Joux,

2013.02 Göloğlu–Granger–

McGuire–Zumbrägel, 2013.05

Göloğlu–Granger–McGuire–

Zumbrägel, 2013.06 Barbulescu–

Gaudry–Joux–Thomé.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Reasonable conjectures

for fixed characteristic:

FFS costs �T where

log T 2 (log q)1=3+o(1).

2013.02 Joux algorithm:

log T 2 (log q)1=4+o(1).

2013.06 Barbulescu–Gaudry–

Joux–Thomé algorithm:

log T 2 (log log q)2+o(1).

1994 Shor algorithm:

log T 2 (log log q)1+o(1), proven;

but needs a quantum computer.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Field construction

I’ll make simplifying assumption:

q = p2n where

p is an odd prime power,

n 2 Z,
p
p � n � p.

Most interesting: n � p.

Example: p = 1009, n = 997.

(Can you find all primes dividing

p2n � 1 = (pn � 1)(pn + 1)?)

Find “random” poly in Fp2 [x]

with an irreducible divisor

' of degree n.

Construct Fq as Fp2 [x]='.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

How many polys to try?

What’s chance that r 2 Fp2 [x]

has an irreducible divisor

' of degree n?

For n � deg r < 2n:

express each successful r

uniquely as ' � cofactor.

�(p2)deg r+1 polys r,

�(p2)n=n monic irreds ',

�(p2)deg r�n+1 cofactors)
chance �1=n that r works.

Similar story for deg r � 2n.

Factoring r is fast.

) Quickly find r, '.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

Don’t use random polys!

(Starting now: abandon proofs.)

Find ' dividing

xp � x2 � � for some � 2 Fp2 .

Then xp = x2 + � in Fq.

p2 choices of � 2 Fp2 ,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have �2 + 92� + 447 = 0.

Easily generalize: e.g., take

xp = x2 + �x +
 or

xp = (x + �)=(x +
).

But larger degrees are slower.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

Low-degree discrete logs

First step of algorithm:

build table of h 7! logg h for

each small h 2 Fp2 [x]� 'Fp2 [x].

Easily choose g at same time.

“Small h”: degh � D. Choose

D � 1; D 2 O(logn= log logn).

Non-uniform approach:

algorithm Aq knows table!

Two reasons to be more explicit:

1. Want A with q as an input.

2. Method to build table

will be reused for larger h.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

The first relation for D = 1
Q

�2Fp(x� �) � x2 � x + �.

“�” for Fp2 [x]: equal mod

xp � x2 � �; forces = in Fq.

Hope that x2 � x + �

splits in Fp2 [x], say as f1 � f2.

Not an unreasonable hope:

�50% of quadratics split.

Then logg f1 + logg f2 =P
�2Fp logg(x� �).

This is a “relation”

among discrete logs

of monic linear polys.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for D = 1

For a; b; c; d 2 Fp2 :

(cx+ d)
Y
�2Fp

(ax+ b� �(cx+ d))

= (cx + d)(ax + b)p

� (ax + b)(cx + d)p

= (cx + d)(apxp + bp)

� (ax + b)(cpxp + dp)

� (cx + d)(ap(x2 + �) + bp)

� (ax + b)(cp(x2 + �) + dp).

Left side is product of

linear polys in Fp2 [x].

Often right side is too.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

� 2 F�
p2 ;M =

�a
c
b
d

� 2 GL2(Fp2)

) M;�M are redundant.

m 2 GL2(Fp);M 2 GL2(Fp2)

) M;mM are redundant.

No other obvious redundancies.

Is there a nice way to represent

the set of cosets of PGL2(Fp)

in PGL2(Fp2)? Best hints so far:

Cremona points me to F�
p4=F

�

p2 ;

Bartel gives solution for GL2.

Mindless enumeration of cosets

is not a real bottleneck here

but want fast multipoint eval.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

p3 + p potential relations,

conjecturally �independent.

Each succeeds with chance �1=6.

Only p2 monic linear polys.

Expect enough relations

to determine their logs

(or most logs: ok to miss a few),

unless p is very small.

BGJT say sparse linear algebra;

but fast matrix multiplication

gives better const in exponent.

(How to avoid annihilating F�
p2?

Maybe cleanest: xp = �x2 + 1,

where � generates F�
p2 .)

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

More relations for arbitrary D

For each small h 2 Fp2 [x]:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

= (ch + d)(ah + b)p

� (ah + b)(ch + d)p

= (ch + d)(aphp + bp)

� (ah + b)(cphp + dp)

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Left side is product of small polys;

sometimes right side is too.

�5% as D !1. BGJT say 1=6.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

Larger discrete logs

What if D < degh � 2D?

Use same equation:

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new

factor base: fh +
 :
 2 Fp2g.

Solve for each logg(h +
).

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.

For degh � (u=3)D:

D-smoothness chance �u�u
so �u�up3 relations.

Need �p2 relations.

Note free relations: smooth h+
.

Works for u � log p= log log p.

Reminiscent of linear sieve

(1977 Schroeppel):

(
�p

q
�

+ a)(
�p

q
�

+ b)

� (a + b)
�p

q
�

+ ab +
�p

q
�2 � q

mod large prime q.

Factor base in linear sieve:��p
q
�

+ a
	 [fsmall primesg.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.

Arbitrary discrete logs

For (u=3)D < degh � (u=3)2D:

Use same equation

(ch+ d)
Y
�2Fp

(ah+ b��(ch+ d))

� (ch + d)(aph(x2 + �) + bp)

� (ah + b)(cph(x2 + �) + dp).

Occasionally (u=3)D-smooth right

side; again fh +
g for left side.

Have seen subroutine to compute

(u=3)D-smooth discrete logs.

pO(1) subroutine calls,

of which Θ(p2) are important.

For larger h: recurse.

Reach degree n� 1 using

logn

log(u=3)
2 Θ

� logn

log logn

�

levels of recursion.

Total cost pΘ(logn= log logn)

= exp Θ
� (logn)2

log logn

�

= exp Θ
� (log log q)2

log log log q

�
.

What about p2n with p < n?

Embed into an extension field.

Can also use xchar etc.

