
McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Univariate “Coppersmith”

Lattice-basis reduction finds all

small r with large gcdfN; f(r)g.

Correct credits: 1984 Lenstra,

1986 Rivest–Shamir, 1988 Håstad,
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Given N; f 2 Z,

find all small r 2 Z
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For N = 2 � 3 � 5 � � � y:

find all small r 2 Z

with many primes �y in f � r.



McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Univariate “Coppersmith”

Lattice-basis reduction finds all

small r with large gcdfN; f(r)g.

Correct credits: 1984 Lenstra,

1986 Rivest–Shamir, 1988 Håstad,
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Easily replace Z with Fq[x]

in all of these methods;
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distinct �1; : : : ; �n 2 Fq:
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bt=2c errors. (1968 Berlekamp)

Unique decoding and list decoding

trivially generalize to C =

f(�1r(�1); : : : ; �nr(�n))g.

Today: unique decoding for

classical binary Goppa code

Γ2(�1; : : : ; �n; g) = Fn
2 \ C

assuming �i = g(�i)=N
0(�i),

g 2 Fq[x], deg g = t, q 2 2Z.

1970 Goppa: g squarefree )

Γ2(: : : ; g) = Γ2(: : : ; g2)

so actually correct t errors.
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Code-based encryption

Modern variant of 1978 McEliece:

Public key is systematic-form

t lg q � n matrix K over F2.

Specifies linear Fn
2 ! Ft lg q

2 .

Key gen: KerK = Γ2(secret key).

Typically t lg q � 0:2n;

e.g., n = q = 2048, t = 40.

Messages suitable for encryption:
�
e 2 Fn

2 : #fi : ei = 1g = t
	

.

Encryption of e is Ke 2 Ft lg q
2 .

Use hash of e as secret AES-GCM

key to encrypt more data.
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McBits objectives

Set new speed records

for public-key cryptography.
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Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lgn?

Standard radix-2 FFT:

Want to evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

at all the nth roots of 1.

Write f as f0(x2) + xf1(x2).

Observe big overlap between

f(�) = f0(�2) + �f1(�2),

f(��) = f0(�2)� �f1(�2).

f0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly f1.
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Gao and Mateer evaluate

f = c0 + c1x + � � �+ cn�1x
n�1

on a size-n F2-linear space.

Main idea: Write f as

f0(x2 + x) + xf1(x2 + x).

Big overlap between f(�) =

f0(�2 + �) + �f1(�2 + �)

and f(� + 1) =

f0(�2 + �) + (� + 1)f1(�2 + �).

“Twist” to ensure 1 2 space.

Then
�
�2 + �

	
is a

size-(n=2) F2-linear space.

Apply same idea recursively.
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not all of which are automated
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For t = 0: copy c0.

For t 2 f1; 2g:

f1 is a constant.

Instead of multiplying

this constant by each �,

multiply only by generators

and compute subset sums.
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2
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...,
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t
2 + � � �+ rn�
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n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.
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