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Goal: identify systems that are
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using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.
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1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.
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pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.
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Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.
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�
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�
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t: roughly 0:1p.
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Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.













1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.
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3), (X 00
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3 ).

Add these R-modules:
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+ (�0X 0
3; �

0Y 03 ; �
0Z 0

3)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 00

3 ) :

�; �0; �00 2 Rg.

Express as (X : Y : Z),

using trivial class group of R.
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