
High-speed cryptography,

part 3:

more cryptosystems

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users



High-speed cryptography,

part 3:

more cryptosystems

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.



High-speed cryptography,

part 3:

more cryptosystems

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.



High-speed cryptography,

part 3:

more cryptosystems

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.



Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.



Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.



Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.



Cryptographers

Working systems

��
Cryptanalytic

algorithm designers

Unbroken systems

��
Cryptographic

algorithm designers
and implementors

Efficient systems

��
Cryptographic users

1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.



1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.



1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.



1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.



1. Working systems

Fundamental question for

cryptographers:

How can we encrypt, decrypt,

sign, verify, etc.?

Many answers:

DES, Triple DES, FEAL-4, AES,

RSA, McEliece encryption,

Merkle hash-tree signatures,

Merkle–Hellman knapsack

encryption, Buchmann–Williams

class-group encryption,

ECDSA, HFEv�, NTRU, et al.

2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.



2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.



2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.



2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.



2. Unbroken systems

Fundamental question for

pre-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a classical computer?

Fundamental question for

post-quantum cryptanalysts:

What can an attacker do

using <2b operations

on a quantum computer?

Goal: identify systems that are

not breakable in <2b operations.

Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.



Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.



Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.



Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.



Examples of RSA cryptanalysis:

Schroeppel’s “linear sieve”,

mentioned in 1978 RSA paper,

factors pq into p; q using

(2 + o(1))(lg pq)1=2(lg lg pq)1=2

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:5 + o(1))b2=lg b bits.

Note 1: lg = log2.

Note 2: o(1) says nothing

about, e.g., b = 128.

Today: focus on asymptotics.

1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.



1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.



1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.



1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.



1993 Buhler–Lenstra–Pomerance,

generalizing 1988 Pollard

“number-field sieve”,

factors pq into p; q using

(3:79 : : : + o(1))(lg pq)1=3(lg lg pq)2=3

simple operations (conjecturally).

To push this beyond 2b,

must choose pq to have at least

(0:015 : : : + o(1))b3=(lg b)2 bits.

Subsequent improvements:

3:73 : : :; details of o(1).

But can reasonably conjecture

that 2(lg pq)1=3+o(1)
is optimal

—for classical computers.

Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.



Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.



Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.



Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.



Cryptographic systems surviving

pre-quantum cryptanalysis:

Triple DES (for b � 112),

AES-256 (for b � 256),

RSA with b3+o(1)-bit modulus,

McEliece with code length

b1+o(1), Merkle signatures

with “strong” b1+o(1)-bit hash,

BW with “strong” b2+o(1)-

bit discriminant, ECDSA with

“strong” b1+o(1)-bit curve,

HFEv� with b1+o(1) polynomials,

NTRU with b1+o(1) bits, et al.

Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.



Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.



Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.



Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.



Typical algorithmic tools for

pre-quantum cryptanalysts:

NFS, �, ISD, LLL, F4, XL, et al.

Post-quantum cryptanalysts

have all the same tools

plus quantum algorithms.

Spectacular example:

1994 Shor factors pq into p; q

using (lg pq)2+o(1)

simple quantum operations.

To push this beyond 2b,

must choose pq to have at least

2(0:5+o(1))b bits. Yikes.

Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.



Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.



Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.



Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.



Cryptographic systems surviving

post-quantum cryptanalysis:

AES-256 (for b � 128),

McEliece code-based encryption

with code length b1+o(1),

Merkle hash-based signatures

with “strong” b1+o(1)-bit hash,

HFEv� MQ signatures with

b1+o(1) polynomials,

NTRU lattice-based encryption

with b1+o(1) bits,

et al.

3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.



3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.



3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!



3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!



3. Efficient systems

Fundamental question for

designers and implementors

of cryptographic algorithms:

Exactly how efficient are the

unbroken cryptosystems?

Many goals: minimize encryption

time, size, decryption time, etc.

Pre-quantum example:

RSA encrypts and verifies

in b3+o(1) simple operations.

Signature occupies b3+o(1) bits.

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.



ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA.

Bonus: also b2+o(1) decryption.

Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.



Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.



Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).



Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).



Efficiency is important:

users have cost constraints.

Cryptographers, cryptanalysts,

implementors, etc. tend to

focus on RSA and ECC,

citing these cost constraints.

But Shor breaks RSA and ECC!

We think that

the most efficient unbroken

post-quantum systems will be

hash-based signatures,

code-based encryption,

lattice-based encryption,

multivariate-quadratic sigs.

1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?



1978 McEliece system (with

length-n classical Goppa codes,

reasonable padding, etc.):

Conjecture: Fastest attacks

cost 2(�+o(1))n=lg n.

Quantum attacks: smaller �.

Can take n 2 (1=� + o(1))b lg b.

Encryption: Matrix mult

costs n2+o(1) = b2+o(1).

Summary: McEliece costs b2+o(1).

Hmmm: is this faster than ECC?

Need more detailed analysis.

ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.



ECC encryption:

Θ(lg q) operations in Fq.

Each operation in Fq costs

Θ(lg q lg lg q lg lg lg q).

Total Θ(b2 lg b lg lg b).

McEliece encryption,

with 1986 Niederreiter speedup:

Θ(n=lgn) additions in Fn
2 ,

each costing Θ(n).

Total Θ(b2 lg b).

McEliece is asymptotically faster.

Bonus: Even faster decryption.

Another bonus: Post-quantum.

Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.



Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.



Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.



Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.



Algorithmic advances can change

the competition. Examples:

1. Speed up ECC: can reduce

lg lg b using 2007 Fürer; maybe

someday eliminate lg lg b?

2. Faster attacks on McEliece:

2010 Bernstein–Lange–Peters,

2011 May–Meurer–Thomae,

2012 Becker–Joux–May–Meurer.

: : : but still Θ(b2 lg b).

3. We’re optimizing “subfield

AG” variant of McEliece.

Conjecture: Fastest attacks cost

2(�+o(1))n; encryption Θ(b2).

Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.



Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.



Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.



Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.



Code-based encryption

Modern version of McEliece:

Receiver’s public key is “random”

t lgn� n matrix K over F2.

Specifies linear Fn
2 ! Ft lg n

2 .

Typically t lgn � 0:2n;

e.g., n = 2048, t = 40.

Messages suitable for encryption:�
m 2 Fn

2 : #fi : mi = 1g = t
	

.

Encryption of m is Km 2 Ft lg n
2 .

Use hash of m as secret AES-

GCM key to encrypt more data.

Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.



Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.



Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .



Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .



Attacker, by linear algebra,

easily works backwards

from Km to some v 2 Fn
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2n�t lg n.

Attacker wants to decode v:

to find element of KerK

at distance only t from v.

Presumably unique, revealing m.

But decoding isn’t easy!

Receiver builds K with secret

Goppa structure for fast decoding.

Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .



Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .



Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.



Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.



Goppa codes

Fix q 2 f8; 16; 32; : : :g;

t 2 f2; 3; : : : ; b(q � 1)= lg qcg;

n 2 ft lg q + 1; t lg q + 2; : : : ; qg.

e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver builds a matrix H

as the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t

binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.

: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.



: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.



: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.



: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.



: : :which means: H =

0
BBBBBBBBBBBB@

1

g(a1)
� � �

1

g(an)

a1

g(a1)
� � �

an
g(an)

...
. . .

...

at�1
1

g(a1)
� � �

at�1
n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in Flg q
2 .

Then H : Fn
2 ! Ft lg q

2 .

More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.



More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.



More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.



More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.



More useful view: Consider

the map m 7!
P

imi=(x� ai)

from Fn
2 to Fq[x]=g.

H is the matrix for this map

where Fn
2 has standard basis

and Fq[x]=g has basis

bg=xc,
�
g=x2

�
, : : : ,

�
g=xt

�
.

One-line proof: In Fq[x] have

g � g(ai)

x� ai
=
X
j�0

a
j
i

j
g=xj+1

k
.

Receiver generates key K

as row reduction of H,

revealing only KerH.

Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.



Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.



Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.



Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.



Lattice-based encryption

1998 Hoffstein–Pipher–Silverman

NTRU (textbook version,

without required padding):

Receiver’s public key is “random”

h 2 ((Z=q)[x]=(xp � 1))�.

Ciphertext: m + rh given

m; r 2 (Z=q)[x]=(xp � 1);

all coefficients in f�1; 0; 1g;

#fi : ri=�1g = #fi : ri=1g = t.

p: prime; e.g., p = 613.

q: power of 2 around 8p,

with order �(p� 1)=2 in (Z=p)�.

t: roughly 0:1p.

Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.



Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.



Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.



Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.



Receiver built h = 3g=(1 + 3f)

where f; g 2 (Z=q)[x]=(xp � 1),

all coeffs in f�1; 0; 1g,

#fi : fi=�1g = #fi : fi=1g = t,

#fi : gi=�1g�#fi : gi=1g� p
3 ,

both 1 + 3f and g invertible.

Given ciphertext c = m + rh,

receiver computes

(1 + 3f)c = (1 + 3f)m + 3rg

in (Z=q)[x]=(xp � 1),

lifts to Z[x]=(xp � 1) with

coeffs in f�q=2; : : : ; q=2� 1g,

reduces modulo 3

to obtain m.

Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.



Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.



Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.



Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”



Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”



Basic attack tool:

Lift pairs (u; uh) to Z2p

to obtain a lattice.

Attacking key h:

(1 + 3f; 3g) is a short vector

in this lattice.

Attacking ciphertext c:

(0; c) is close to

lattice vector (r; rh).

Standard lattice algorithms

(SVP, CVP) cost 2Θ(p).

Nothing subexponential known,

even post-quantum.

Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”



Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”



Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Take p 2 Θ(b) for security 2b

against all known attacks.

Θ(b lg b) bits in key.

Time b(lg b)2+o(1)

to multiply in

(Z=q)[x]=(xp � 1).

Time b(lg b)2+o(1)

for encryption, decryption.

Excellent overall performance.

The McEliece cryptosystem

inspires more confidence

but has much larger keys.

Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”

1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.



1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].



1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].



1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.

1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).



1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0
3; Y

0
3 ; Z

0
3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

My previous slide in this talk:

Bosma–Lenstra Y 03 ; Z
0
3.

Actually, slide shows

Publish(Y 03);Publish(Z 0
3),

where Publish introduces typos.

What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).



What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).



What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0
3 : Y 03 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).

2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



2009 Bernstein–T. Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0
3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 03 : T 03) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).

X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



X3 = X1Y2Z2T1 + X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 �X1X2T1T2,

T3 = Z1Z2T1T2 � dX1X2Y1Y2,

X 0
3 = X1Y1Z2T2 + X2Y2Z1T1,

Z 0
3 = X1X2T1T2 + Y1Y2Z1Z2,

Y 03 = X1Y1Z2T2 �X2Y2Z1T1,

T 03 = X1Y2Z2T1 �X2Y1Z1T2.

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.













1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0
3 : Y 03 : Z 0

3), (X 00
3 : Y 003 : Z 00

3 ).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0
3; �

0Y 03 ; �
0Z 0

3)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 00

3 ) :

�; �0; �00 2 Rg.

Express as (X : Y : Z),

using trivial class group of R.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0
3 : Y 03 : Z 0

3), (X 00
3 : Y 003 : Z 00

3 ).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0
3; �

0Y 03 ; �
0Z 0

3)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 00

3 ) :

�; �0; �00 2 Rg.

Express as (X : Y : Z),

using trivial class group of R.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0
3 : Y 03 : Z 0

3), (X 00
3 : Y 003 : Z 00

3 ).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0
3; �

0Y 03 ; �
0Z 0

3)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 00

3 ) :

�; �0; �00 2 Rg.

Express as (X : Y : Z),

using trivial class group of R.



1987 Lenstra: Use Lange–Ruppert

complete system of addition laws

to computationally define group

E(R) for more general rings R—

rings with trivial class group.

Define P2(R) = f(X : Y : Z) :

X; Y; Z 2 R; XR+Y R+ZR = Rg

where (X : Y : Z) is the module

f(�X; �Y; �Z) : � 2 Rg.

Define E(R) =

f(X : Y : Z) 2 P2(R) :

Y 2Z = X3 + a4XZ
2 + a6Z

3g.

To define (and compute) sum

(X1 : Y1 : Z1) + (X2 : Y2 : Z2):

Consider (and compute)

Lange–Ruppert (X3 : Y3 : Z3),

(X 0
3 : Y 03 : Z 0

3), (X 00
3 : Y 003 : Z 00

3 ).

Add these R-modules:

f (�X3; �Y3; �Z3)

+ (�0X 0
3; �

0Y 03 ; �
0Z 0

3)

+ (�00X 00
3 ; �

00Y 003 ; �
00Z 00

3 ) :

�; �0; �00 2 Rg.

Express as (X : Y : Z),

using trivial class group of R.


