High-speed cryptography,
part 2:

more elliptic-curve formulas;
fleld arithmetic

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y2 = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B”" recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y/2Z).
/M + 38 for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.

But ADD dominates in
some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by? = z3 + az® + z.
Choose small (a + 2)/4.

(z3,93) — (22, ¥2) = (21, Y1),
(z3.43) + (%2, 92) = (=5, ys)
(zpz3 — 1)°

= Tr — -
> z1(z0 — 73)2

Represent (z, y)
as (X:Z) satisfying x = X/Z.

B = (X2 + Z2)°,

C =(X2—22)°,

D=B-C, X4=8-C,

Zy =D (C+D(a+2)/4) =
2(X0:2Z2) = (Xa:2Z4).

(X3:23) — (X2:22) = (X1:21),
E=(X3—423) (X2+ 22),
F=(X3+ Z3)- (X2 — 22),
Xs=21-(E+F)?,

Zs = X1 (E—-F)* =
(X3:23) + (X2:22) = (X5:Z5).

This representation

does not allow ADD but it allows
DADD, “differential addition” :

QR Q—R— Q@+ R.

e.g. 2P, P,P — 3P.
e.g. 3P,2P, P — b5P.
e.g. 6P, 5P, P— 11P.

2M + 2S5 + 1D for DBL.
4M + 2S for DADD.
Save IM if Z1 = 1.

Easily compute n(X1 : Z1) using
~ lgn DBL, ~ Ign DADD.
Almost as fast as Edwards nP.
Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.
Choose small a.

Use (X :Y :Z:2Z%)

to represent (X/Z,Y/Z?).
3M + 4S + 2D for DBL.

How? Factor DBL as @(y)
where ¢ Is a 2-1sogeny.

2007 Bernstein—Lange:

2M + 58S + 2D for DBL
on the same curves.

12M + 5S + 1D for ADD.
Slower ADD than other systemes,

typically outweighing benefit
of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves

(see 2006 Doche—lcart—Kohel),
double-base chains, . ..

Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 4+ y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1 X2 Y14y — Z1Y7 - X1Y2,
Y3 = X14p - X1Y2 — Y1 X0 - £1 X0,
L3 = L1Y2 - L1 Xo — X1Zo - Y1Z£>.

6M —+ 3S for DBL.

2001 Joye—Quisquater:
2(X1:Y1: 41) =

(Zl X1 Yl) + (Yl AR X1)
so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.
But need to permute inputs.

2009 Bernstein—Kohel-Lange:
Easily avoid permutation!

2008 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X°:Y%:2Z°
2XY 12X Z :2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

23 —y3+1=023zy

The Hassian—r'ay: uniform
fr—

not sfr'angi y so

Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:2Z) represent
(5/Z,C/Z,D/Z) on
s?4+c?2=1,as°+d*=1.

14M + 2S + 1D for ADD.
“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.
“Perhaps (7) ... the most
efficient duplication formulas

which do not depend on the
coefficients of an elliptic curve.”

2001 Liardet—Smart:
13M +2S + 1D for ADD.
4M + 3S for DBL.

2007 Bernstein—Lange:
3M + 4S5 for DBL.

2008 Hisil-Wong—Carter—Dawson:
13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S:C:D:Z:5C:DZ):
11M + 1S + 2D for ADD.

2M + 58 + 1D for DBL.

Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y2 = g% + 2az% + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:

New choice of neutral element.
10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M + 9S + 1D for DBL.

2007 Hisil—-Carter—Dawson:
2M 4 6S + 2D for DBL.

2007 Feng—Wu:
2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL
on curves chosen with a?-+c? = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008 Hisil-Wong—Carter—Dawson:
use (X 1Y : Z: X?: Z?%)

or (X:Y :Z:X?:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!

r? =y* —1.9y° + 1

The Jacab;-quar'ﬁc squrd can be
extended h:n \

XXYZZR t
giant squid.

' \

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD

EFD has 583 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co0).

How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0, 1, ..., 9}
to represent integer in radix 10.

Example of representation:

839 = 8-10% +3 101 +9-10° =
value (at ¢ = 10) of polynomial
8t% + 3t1 + 9t°.

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; pl[1] =3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
into many small operations.

Example, squaring 839:
(8% + 3t 4-9t0)? =
t* + 483 + 1532 + 54¢l + 8140,

Oops, product polynomial
usually has coefficients > 9.
So “carry” extra digits:

ct! — |c/10] 771 4+ (¢ mod 10)#.

Example, squaring 839:
t4 + 4883 + 15382 4+ 54¢1 + 81¢Y;
t4 4+ 4883 + 15382 + 62t + 140
t* 4+ 4883 + 159¢2 + 21 + 140
t* 4+ 63¢3 + 9¢2 + 2t + 149

70t% + 3¢3 + o2 4+ 2¢1 + 149

72 + Ot* + 3¢3 + 92 + 2t + 140,

In other words, 839% = 703921.

What operations were used here?

VAzld

159

divide by 10
/lmod 10

15 9

3 3

\\ /272 27 81
24 9 27\
64 24 T2 \

81
/\L
1
/
62
v
|
4
159
|
4
63
Y ¢
l 6 3
4
70
v
7 0

~ <~

The scaled variation

839 = 800 + 30 + 9 =
value (at £ = 1) of polynomial
800t* + 30t + 9t°.

Squaring: (800¢% +30t! +9t0)? =
640000¢% + 48000%3 + 15300¢2 +
540t + 81¢9.

Carrying:

640000£% + 4800083 + 15300¢2 +
540t1 + 81¢Y;

640000¢% + 48000¢3 + 15300¢2 +

620¢1

1£0-

700000¢° + 0+ + 3000t3 1+ 900#2 +
20t + 140,

What operations were used here?

300 30 9
i imultiply
7200 900 7200
\ l Aj

a

600

VL

15900

S“by lmod 1000

15000 900

Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ fafi+ fafo + f1f3 + fofa.
5 mults, 4 adds.

Speedup: double inside squaring

(- + fot? + ft! + fot")’
has coefficients such as

fafo+ fafi+ fafo + f1f3 + fofa.
5 mults, 4 adds.

Compute more efficiently as

2fafo +2f3f1 + faf2.
3 mults, 2 adds, 2 doublings.

Save & 1/2 of the mults
if there are many coetfficients.

Faster alternative:

2(fafo + f3f1) + fafo
3 mults, 2 adds, 1 dou

Save ~ 1/2 of the adc

if there are many coet

o~
=

bling.

S
icients.

Faster alternative:

2(fafo+ f3f1) + fafo.
3 mults, 2 adds, 1 doubling.

Save ~ 1/2 of the adds
if there are many coetficients.

Even faster alternative:

(2fo)fa + (2f1)f3 + fa /o

after precomputing 2o, 2f1,. ...

3 mults, 2 adds, 0 doublings.
Precomputation & 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1,..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + ¢*:
multiply a, b6 polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, 0 =271, ¢ = 839:
(3t2 + 1L +4¢0) (2t2 + 7t +1¢0) =
t* + 23¢3 + 18¢2 + 20t! + 4¢0;
carry: 8t* + 5t3 4+ 0t% + 9t! + 44
As before (8t% + 3t! + 9tY)% =
t4 14883 1+ 15382 1+ 54¢l 1+ 87140
782 + 0t% + 3t3 + ot? + 2t + 140,
o TR +8t*+8t3+9t2 +11¢1 +5¢9
782 + 8t% + 93 + 02 + 1t + 540,

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6¢% +23¢3 + 18¢2 + 29t 4 4¢0) +
(64t* 4 4883 4153t + 54¢! 4-81¢0)
= 70t*+ 7183 +171¢°+83¢1 +85¢°;
7t + 8t* + 9> + 0t + 1t + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

f=1Ffo+ fit+---+ frot?,
g =90+ git+---+ giot'’?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + F1t19:

Fo = fo+ fit +-- + fot’;

F1 :f10‘|‘f11t+"'-|-f19t9.

Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Go + Gl)tlo
+ (FoGo — FlGltlo)(l — th)_

20 adds for Fg + F1, Gg + G1.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Gp + G1).
243 adds for those products.

9 adds for FyGy — F1 GtV

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢10).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlgnlglgn) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the [imit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:
fmodp=F—plflp

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain | f/p].

Slight speedup: “2-adic inverse”;
“Montgomery reduction.”

e.g. 314159265358 mod 271828:

Precompute

1 1000000000000/271828|
= 3678796.

Compute

314159 - 3673796
= 1155726872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574.

We can do better: normally

p Is chosen with a special form

to make f mod » much faster.

Special primes hurt security
for F;;, Clock(Fp), etc.,
but not for elliptic curves!

gls1271: p =227 — 1,
with degree-2 extension.

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 296 4 1

secpl12rl: » = (21%% — 3)/76439.
Divides special form.

Small example: » = 1000003.
Then 1000000a + b = 6 — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =
—942477 + 265358 =
—677119.

Easily adjust 6 — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —677119 = 322884.

Hmmm, is adjustment so easy?

Conditional branches are slow.

(Also dangerous for defenders:
branch timing leaks secrets.)
Can eliminate the branches,

but adjustment isn't free.

Speedup: Skip the adjustment
for intermediate results.

“Lazy reduction.”

Adjust only for output.

b — 3a 1s small enough
to continue computations.

Can delay carries until after
multiplication by 3.

e.g. To square 314159
in Z/1000003: Square poly
3t + 1% + 4¢3 + 1#2 + 5¢ + 940,
obtaining 9t10 + 67 + 25¢3 +
t7 4+ 48t0 4 728 + 50t* +
t3 + 43t% + 90t! + 810,

Reduce: replace (¢;)t°** by
(—3c;)t?, obtaining 72¢° + 32t* +
64> — 32t° + 48t1 — 63t

Carry: 8t — 4¢°> — 2t% +
183 + 22 + 2t1 — 30,

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9tV +6¢7 +
t8 + 148" +48t° + 72¢° + 50t* +
t3 + 43¢2 + 90t! + 810,

Reduce t19 — #* and carry t* —

£ — 0. 69 1 05¢8% 1 1447 15680 —
5#2 +2¢4 4823 +43¢2 490t +81¢Y.

Finish reduction: —5¢2 -+ 2t% +
643 — 322 + 48t — 87tY. Carry
t0 5 ¢l 5 2 5 13 5 o P
A2 — 2% 13 + 22 — 1¢1 4+ 340,

Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
fat* + f3t° + fot? + frt! + fot®.
Most coeffs could be 212.

Square - - +2(fafi+ f3fo)>+- - -.
Coeff of > could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);

o ((fah1 + f3f2) + fE)E.
Coeff could be > 229

Very little room for
additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.
f4 is multiple of 2°2;

f3 is multiple of 239.
226.

f> is multiple of
f1 is multiple of 213;
fo is multiple of 2V Reduce:

(270 f f1 + f3f2) + £

Better: Non-integer radix 2122,
249.

fa is multiple of
f3 1s multiple of 237

f> is multiple of 225;
213.

f1 1s multiple of

fo is multiple of 29.
Saves a few bits in coeffs.

