High-speed cryptography, part 2: more elliptic-curve formulas; field arithmetic

Daniel J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven

Speed-oriented Jacobian standards

2000 IEEE "Std 1363" uses Weierstrass curves in Jacobian coordinates to "provide the fastest arithmetic on elliptic curves." Also specifies a method of choosing curves $y^2 = x^3 - 3x + b$.

2000 NIST "FIPS 186–2" standardizes five such curves.

2005 NSA "Suite B" recommends two of the NIST curves as the only public-key cryptosystems for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky: Speed up ADD by switching from $(X/Z^2, Y/Z^3)$ to (X/Z, Y/Z). $7\mathbf{M} + 3\mathbf{S}$ for DBL if a = -3. $12\mathbf{M} + 2\mathbf{S}$ for ADD. $12\mathbf{M} + 2\mathbf{S}$ for reADD.

Option has been mostly ignored: DBL dominates in ECDH etc. But ADD dominates in some applications: e.g., batch signature verification.

Montgomery curves

1987 Montgomery:

Use
$$by^2 = x^3 + ax^2 + x$$
.
Choose small $(a+2)/4$.

$$2(x_2, y_2) = (x_4, y_4)$$
 $\Rightarrow x_4 = \frac{(x_2^2 - 1)^2}{4x_2(x_2^2 + ax_2 + 1)}.$

$$egin{align} (x_3,y_3) - (x_2,y_2) &= (x_1,y_1), \ (x_3,y_3) + (x_2,y_2) &= (x_5,y_5) \ \Rightarrow x_5 &= rac{(x_2x_3-1)^2}{x_1(x_2-x_3)^2}. \end{aligned}$$

Represent (x, y) as (X:Z) satisfying x = X/Z.

$$B = (X_2 + Z_2)^2,$$

 $C = (X_2 - Z_2)^2,$
 $D = B - C, X_4 = B \cdot C,$
 $Z_4 = D \cdot (C + D(a + 2)/4) \Rightarrow$
 $2(X_2:Z_2) = (X_4:Z_4).$

$$(X_3:Z_3) - (X_2:Z_2) = (X_1:Z_1),$$

 $E = (X_3 - Z_3) \cdot (X_2 + Z_2),$
 $F = (X_3 + Z_3) \cdot (X_2 - Z_2),$
 $X_5 = Z_1 \cdot (E + F)^2,$
 $Z_5 = X_1 \cdot (E - F)^2 \Rightarrow$
 $(X_3:Z_3) + (X_2:Z_2) = (X_5:Z_5).$

This representation does not allow ADD but it allows DADD, "differential addition": $Q, R, Q - R \mapsto Q + R$.

e.g.
$$2P, P, P \mapsto 3P$$
.

e.g.
$$3P$$
, $2P$, $P \mapsto 5P$.

e.g.
$$6P, 5P, P \mapsto 11P$$
.

$$2M + 2S + 1D$$
 for DBL.

$$4M + 2S$$
 for DADD.

Save 1**M** if
$$Z_1 = 1$$
.

Easily compute $n(X_1 : Z_1)$ using $\approx \lg n$ DBL, $\approx \lg n$ DADD.

Almost as fast as Edwards nP.

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche-Icart-Kohel:

Use
$$y^2 = x^3 + ax^2 + 16ax$$
.
Choose small a .

Use
$$(X : Y : Z : Z^2)$$

to represent $(X/Z, Y/Z^2)$.

$$3\mathbf{M} + 4\mathbf{S} + 2\mathbf{D}$$
 for DBL.
How? Factor DBL as $\hat{\varphi}(\varphi)$ where φ is a 2-isogeny.

2007 Bernstein-Lange: 2M + 5S + 2D for DBL on the same curves.

 $12\mathbf{M} + 5\mathbf{S} + 1\mathbf{D}$ for ADD. Slower ADD than other systems, typically outweighing benefit of the very fast DBL.

But isogenies are useful. Example, 2005 Gaudry: fast DBL+DADD on Jacobians of genus-2 hyperelliptic curves, using similar factorization.

Tricky but potentially helpful: tripling-oriented curves (see 2006 Doche–Icart–Kohel), double-base chains, . . .

Hessian curves

Credited to Sylvester by 1986 Chudnovsky-Chudnovsky:

$$(X:Y:Z)$$
 represent $(X/Z,Y/Z)$
on $x^3+y^3+1=3dxy$.

12M for ADD:

$$X_3 = Y_1 X_2 \cdot Y_1 Z_2 - Z_1 Y_2 \cdot X_1 Y_2,$$

 $Y_3 = X_1 Z_2 \cdot X_1 Y_2 - Y_1 X_2 \cdot Z_1 X_2,$
 $Z_3 = Z_1 Y_2 \cdot Z_1 X_2 - X_1 Z_2 \cdot Y_1 Z_2.$

 $6\mathbf{M} + 3\mathbf{S}$ for DBL.

2001 Joye-Quisquater:

$$2(X_1 : Y_1 : Z_1) =$$
 $(Z_1 : X_1 : Y_1) + (Y_1 : Z_1 : X_1)$
so can use ADD to double.

"Unified addition formulas," helpful against side channels. But need to permute inputs. 2009 Bernstein–Kohel–Lange: Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson: $(X : Y : Z : X^2 : Y^2 : Z^2 : 2XY : 2XZ : 2YZ).$

 $6\mathbf{M} + 6\mathbf{S}$ for ADD.

3M + 6S for DBL.

$$x^3 - y^3 + 1 = 0.3xy$$

Jacobi intersections

1986 Chudnovsky-Chudnovsky:

$$(S:C:D:Z)$$
 represent $(S/Z,C/Z,D/Z)$ on $s^2+c^2=1$, $as^2+d^2=1$.

14M + 2S + 1D for ADD.

"Tremendous advantage" of being strongly unified.

5M + 3S for DBL.

"Perhaps (?) ... the most efficient duplication formulas which do not depend on the coefficients of an elliptic curve."

2001 Liardet-Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein-Lange:

3M + 4S for DBL.

2008 Hisil-Wong-Carter-Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

$$(X:Y:Z)$$
 represent $(X/Z,Y/Z^2)$
on $y^2=x^4+2ax^2+1$.

1986 Chudnovsky-Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet-Joye:

New choice of neutral element.

 $10\mathbf{M} + 3\mathbf{S} + 1\mathbf{D}$ for ADD, strongly unified.

2007 Bernstein-Lange:

1M + 9S + 1D for DBL.

2007 Hisil-Carter-Dawson:

$$2M + 6S + 2D$$
 for DBL.

2007 Feng-Wu:

$$2M + 6S + 1D$$
 for DBL.

$$1M + 7S + 3D$$
 for DBL

on curves chosen with $a^2 + c^2 = 1$.

More speedups: 2007 Duquesne,

2007 Hisil-Carter-Dawson,

2008 Hisil–Wong–Carter–Dawson:

use
$$(X : Y : Z : X^2 : Z^2)$$

or
$$(X : Y : Z : X^2 : Z^2 : 2XZ)$$
.

Can combine with Feng-Wu.

Competitive with Edwards!

$$x^2 = y^4 - 1.9y^2 + 1$$

2007-Jan

Feb

Mar

More addition formulas

Explicit-Formulas Database: hyperelliptic.org/EFD

EFD has 583 computer-verified formulas and operation counts for ADD, DBL, etc. in 51 representations on 13 shapes of elliptic curves.

Not yet handled by computer: generality of curve shapes (e.g., Hessian order \in 3**Z**); complete addition algorithms (e.g., checking for ∞).

How to multiply big integers

Standard idea: Use polynomial with coefficients in {0, 1, . . . , 9} to represent integer in radix 10.

Example of representation:

$$839 = 8 \cdot 10^2 + 3 \cdot 10^1 + 9 \cdot 10^0 =$$
 value (at $t = 10$) of polynomial $8t^2 + 3t^1 + 9t^0$.

Convenient to express polynomial inside computer as array 9, 3, 8 (or 9, 3, 8, 0 or 9, 3, 8, 0, 0 or . . .): "p[0] = 9; p[1] = 3; p[2] = 8"

Multiply two integers by multiplying polynomials that represent the integers.

Polynomial multiplication involves *small* integer coefficients. Have split one big multiplication into many small operations.

Example, squaring 839:

$$(8t^2 + 3t^1 + 9t^0)^2 =$$
 $64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0$.

Oops, product polynomial usually has coefficients > 9.

So "carry" extra digits:

$$ct^j
ightarrow \lfloor c/10 \rfloor t^{j+1} + (c \bmod 10)t^j$$
.

Example, squaring 839:

$$64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$

 $64t^4 + 48t^3 + 153t^2 + 62t^1 + 1t^0;$
 $64t^4 + 48t^3 + 159t^2 + 2t^1 + 1t^0;$
 $64t^4 + 63t^3 + 9t^2 + 2t^1 + 1t^0;$
 $70t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0;$
 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

In other words, $839^2 = 703921$.

What operations were used here?

The scaled variation

$$839 = 800 + 30 + 9 =$$
value (at $t = 1$) of polynomial $800t^2 + 30t^1 + 9t^0$.

Squaring:
$$(800t^2 + 30t^1 + 9t^0)^2 = 640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0$$
.

Carrying:

$$640000t^4 + 48000t^3 + 15300t^2 + 540t^1 + 81t^0;$$
 $640000t^4 + 48000t^3 + 15300t^2 + 620t^1 + 1t^0;$
 \dots
 $700000t^5 + 0t^4 + 3000t^3 + 900t^2 + 20t^1 + 1t^0.$

What operations were used here?

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$
 has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$. 5 mults, 4 adds.

Speedup: double inside squaring

$$(\cdots + f_2t^2 + f_1t^1 + f_0t^0)^2$$
 has coefficients such as $f_4f_0 + f_3f_1 + f_2f_2 + f_1f_3 + f_0f_4$. 5 mults, 4 adds.

Compute more efficiently as $2f_4f_0 + 2f_3f_1 + f_2f_2$. 3 mults, 2 adds, 2 doublings.

Save $\approx 1/2$ of the mults if there are many coefficients.

Faster alternative:

$$2(f_4f_0+f_3f_1)+f_2f_2$$
.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Faster alternative:

$$2(f_4f_0+f_3f_1)+f_2f_2$$
.

3 mults, 2 adds, 1 doubling.

Save $\approx 1/2$ of the adds if there are many coefficients.

Even faster alternative:

$$(2f_0)f_4 + (2f_1)f_3 + f_2f_2,$$
 after precomputing $2f_0, 2f_1, \ldots$

3 mults, 2 adds, 0 doublings. Precomputation \approx 0.5 doublings.

Speedup: allow negative coeffs

Recall $159 \mapsto 15, 9$.

Scaled: $15900 \mapsto 15000, 900$.

Alternative: $159 \mapsto 16, -1$.

Scaled: $15900 \mapsto 16000, -100$.

Use digits $\{-5, -4, ..., 4, 5\}$ instead of $\{0, 1, ..., 9\}$.

Small disadvantage: need —.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $ab + c^2$: multiply a, b polynomials, carry, square c poly, carry, add, carry.

e.g.
$$a = 314$$
, $b = 271$, $c = 839$: $(3t^2 + 1t^1 + 4t^0)(2t^2 + 7t^1 + 1t^0) = 6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0$; carry: $8t^4 + 5t^3 + 0t^2 + 9t^1 + 4t^0$.

As before
$$(8t^2 + 3t^1 + 9t^0)^2 = 64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0;$$

 $7t^5 + 0t^4 + 3t^3 + 9t^2 + 2t^1 + 1t^0.$

+:
$$7t^5 + 8t^4 + 8t^3 + 9t^2 + 11t^1 + 5t^0$$
;
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.

$$(6t^4 + 23t^3 + 18t^2 + 29t^1 + 4t^0) +$$

 $(64t^4 + 48t^3 + 153t^2 + 54t^1 + 81t^0)$
 $= 70t^4 + 71t^3 + 171t^2 + 83t^1 + 85t^0;$
 $7t^5 + 8t^4 + 9t^3 + 0t^2 + 1t^1 + 5t^0.$

Eliminate intermediate carries.

Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba

How much work to multiply polys

$$f=f_0+f_1t+\cdots+f_{19}t^{19}, \ g=g_0+g_1t+\cdots+g_{19}t^{19}?$$

Using the obvious method: 400 coeff mults, 361 coeff adds.

Faster: Write f as $F_0 + F_1 t^{10}$; $F_0 = f_0 + f_1 t + \dots + f_9 t^9$; $F_1 = f_{10} + f_{11} t + \dots + f_{19} t^9$. Similarly write g as $G_0 + G_1 t^{10}$.

Then
$$fg = (F_0 + F_1)(G_0 + G_1)t^{10} + (F_0G_0 - F_1G_1t^{10})(1 - t^{10}).$$

20 adds for $F_0 + F_1$, $G_0 + G_1$. 300 mults for three products F_0G_0 , F_1G_1 , $(F_0+F_1)(G_0+G_1)$. 243 adds for those products. 9 adds for $F_0G_0 - F_1G_1t^{10}$ with subs counted as adds and with delayed negations. 19 adds for $\cdots (1 - t^{10})$. 19 adds to finish.

Total 300 mults, 310 adds. Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows. $O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of *n* that occur in cryptography? In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current CPUs.

Modular reduction

How to compute $f \mod p$?

Can use definition:

 $f \bmod p = f - p \lfloor f/p \rfloor$.

Can multiply f by a precomputed 1/p approximation; easily adjust to obtain |f/p|.

Slight speedup: "2-adic inverse"; "Montgomery reduction."

e.g. 314159265358 mod 271828:

Precompute [10000000000000/271828]

= 3678796.

Compute

314159 - 3678796

= 1155726872564.

Compute

 $314159265358 - 1155726 \cdot 271828$

= 578230.

Oops, too big:

578230 - 271828 = 306402.

306402 - 271828 = 34574.

We can do better: normally p is chosen with a special form to make f mod p much faster.

Special primes hurt security for \mathbf{F}_{p}^{*} , $\text{Clock}(\mathbf{F}_{p})$, etc., but not for elliptic curves!

gls1271: $p = 2^{127} - 1$, with degree-2 extension.

Curve 25519: $p = 2^{255} - 19$.

NIST P-224: $p = 2^{224} - 2^{96} + 1$.

secp112r1: $p = (2^{128} - 3)/76439$. *Divides* special form.

Small example: p=1000003. Then $10000000a + b \equiv b - 3a$.

e.g.
$$314159265358 =$$
 $314159 \cdot 10000000 + 265358 \equiv$
 $314159(-3) + 265358 =$
 $-942477 + 265358 =$
 -677119 .

Easily adjust b-3a to the range $\{0,1,\ldots,p-1\}$ by adding/subtracting a few p's: e.g. $-677119 \equiv 322884$.

Hmmm, is adjustment so easy?

Conditional branches are slow. (Also dangerous for defenders: branch timing leaks secrets.)
Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results.

"Lazy reduction."

Adjust only for output.

b-3a is small enough to continue computations.

Can delay carries until after multiplication by 3.

e.g. To square 314159 in $\mathbf{Z}/1000003$: Square poly $3t^5+1t^4+4t^3+1t^2+5t^1+9t^0$, obtaining $9t^{10}+6t^9+25t^8+14t^7+48t^6+72t^5+59t^4+82t^3+43t^2+90t^1+81t^0$.

Reduce: replace $(c_i)t^{6+i}$ by $(-3c_i)t^i$, obtaining $72t^5 + 32t^4 + 64t^3 - 32t^2 + 48t^1 - 63t^0$.

Carry: $8t^6 - 4t^5 - 2t^4 + 1t^3 + 2t^2 + 2t^1 - 3t^0$.

To minimize poly degree, mix reduction and carrying, carrying the top sooner.

e.g. Start from square $9t^{10} + 6t^9 + 25t^8 + 14t^7 + 48t^6 + 72t^5 + 59t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Reduce $t^{10} \rightarrow t^4$ and carry $t^4 \rightarrow t^5 \rightarrow t^6$: $6t^9 + 25t^8 + 14t^7 + 56t^6 - 5t^5 + 2t^4 + 82t^3 + 43t^2 + 90t^1 + 81t^0$.

Finish reduction: $-5t^5 + 2t^4 + 64t^3 - 32t^2 + 48t^1 - 87t^0$. Carry $t^0 \to t^1 \to t^2 \to t^3 \to t^4 \to t^5$: $-4t^5 - 2t^4 + 1t^3 + 2t^2 - 1t^1 + 3t^0$.

Speedup: non-integer radix

$$p=2^{61}-1$$
.

Five coeffs in radix 2^{13} ?

$$f_4t^4 + f_3t^3 + f_2t^2 + f_1t^1 + f_0t^0$$
.

Most coeffs could be 2^{12} .

Square
$$\cdots + 2(f_4f_1 + f_3f_2)t^5 + \cdots$$

Coeff of t^5 could be $> 2^{25}$.

Reduce:
$$2^{65} = 2^4$$
 in $\mathbf{Z}/(2^{61} - 1)$; $\cdots + (2^5(f_4f_1 + f_3f_2) + f_0^2)t^0$. Coeff could be $> 2^{29}$.

Very little room for additions, delayed carries, etc. on 32-bit platforms.

Scaled: Evaluate at t = 1. f_4 is multiple of 2^{52} ; f_3 is multiple of 2^{39} ; f_2 is multiple of 2^{26} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2^0 . Reduce: $\cdots + (2^{-60}(f_4f_1 + f_3f_2) + f_0^2)t^0$.

Better: Non-integer radix $2^{12.2}$. f_4 is multiple of 2^{49} ; f_3 is multiple of 2^{37} ; f_2 is multiple of 2^{25} ; f_1 is multiple of 2^{13} ; f_0 is multiple of 2^{0} . Saves a few bits in coeffs.