McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Be

rnstein

University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Ch
Technisc

Peter Sc
Radbouc

ou

he Universiteit Eindhoven

nwabe

University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Be

rnstein

University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Ch
Technisc

Peter Sc
Radbouc

ou

he Universiteit Eindhoven

nwabe

University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

McBits:

fast constant-time
code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

McBits:
fast constant-time
code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven

Peter Schwabe

Radboud University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein
University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Ch
Technisc

Peter Sc

ou
he Universiteit Eindhoven

nwabe

Radbouc

University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

McBits:

fast constant-time

code-based cryptography

(to appear at CHES 2013)

D. J. Bernstein
University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Ch
Technisc

Peter Sc

ou
he Universiteit Eindhoven

nwabe

Radbouc

University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

. all of the above at once.

stant-time
sed cryptography

ar at CHES 2013)

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

rk with:

ou
he Universiteit Eindhoven

hwabe

1 University Nijmegen

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

. all of the above at once.

The con

bench.c¢

CPU cy
(Intel Cc

to encry

46940
61440
94464
398912

mceliec
(n,t) =
from Bis
See Pap

graphy
S 2013)

is at Chicago &
siteit Eindhoven

siteit Eindhoven

y Nijmegen

Objectives

Set new speed records

for public-key cryptography.

. at a high security level.

. Including protection

against quantum computers.

. Including full protection

against cac

branch-prediction attacks, etc.

ne-timing attacks,

. using code-based crypto

with a solid track record.

. all of the above at once.

The competition

bench.cr.yp.to:

CPU cycles on h9:
(Intel Core i5-321(

to encrypt 59 byte

46940 ronaldlC
61440 mceliece
94464 ronald2C
398912 ntruees’

mceliece:

(n,t) = (2048, 32
from Biswas and ¢
See paper at PQC

g0 &
hoven

hoven

N

Objectives

Set new speed records
for public-key cryptography.

. at a high security level.

. Including protection
against quantum computers.

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.

. using code-based crypto
with a solid track record.

. all of the above at once.

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bi
to encrypt 59 bytes:

46940 ronald1024 (RSA-

61440 mceliece

94464 ronald2048
398912 ntruees787epl

mceliece:

(n,t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 200

Objectives The competition

Set new speed records bench.cr.yp.to:

for public-key cryptography. CPU cycles on h9ivy

. at a high security level. (Intel Core i5-3210M, vy Bridge)

. Including protection to encrypt 59 bytes;

against quantum computers. 46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees737epl

. Including full protection
against cache-timing attacks,

branch-prediction attacks, etc.
mceliece:

(7, t) = (2048, 32) software
from Biswas and Sendrier.

. all of the above at once. See paper at PQCrypto 2008.

. using code-based crypto
with a solid track record.

€S

speed records
c-key cryptography.

high security level.

iding protection
quantum computers.

iding full protection
cache-timing attacks,

yrediction attacks, etc.

o code-based crypto
olid track record.

f the above at once.

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees787epl

mceliece:

(n,t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds
What's -

ords
tography.

rity level.

action
omputers.

rotection
ng attacks,

attacks, etc.

sed crypto
record.

/e at once.

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees737epl

mceliece:

(7, t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably
What's the proble

[C.

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees’387epl

mceliece:

(n,t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees737epl

mceliece:

(7, t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees737epl

mceliece:

(7, t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees737epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2048

The competition

bench.cr.yp.to:

CPU cycles on h9ivy
(Intel Core i5-3210M, lvy Bridge)
to encrypt 59 bytes:

46940 ronald1024 (RSA-1024)
61440 mceliece
94464 ronald2048

398912 ntruees737epl

mceliece:

(7, t) = (2048, 32) software
from Biswas and Sendrier.
See paper at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees737epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2048

But Biswas and Sendrier
say they re faster now,
even beating NTRU.
What's the problem?

1petition

r.yp.to:

“les on h9ivy
ore 15-3210M, Ivy Bridge)
pt 59 bytes:

ronald1024 (RSA-1024)
mceliece

ronald2043
ntruees/87epl

e
(2048, 32) software
was and Sendrier.

er at PQCrypto 2008.

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees787epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2043

But Biswas and Sendrier
say they re faster now,
even beating NTRU.
What's the problem?

The seri

Some D

bench.c

77468
(binary ¢
116944

(hyperel
182632

(conserv

Use DH
Decrypt

Encrypti
+ key-g

1Vy
)M, Ivy Bridge)

S.

24 (RSA-1024)

48
8repl

) software
yendrier.

rypto 2008.

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees7387epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2048

But Biswas and Sendrier
say they re faster now,
even beating NTRU.
What's the problem?

The serious compt

Some Diffie—Hellrr
bench.cr.yp.to:

77468 gls254
(binary elliptic cur
116944 kumfpl27
(hyperelliptic; Eur
132632 curve2lbt
(conservative ellip

Use DH for public
Decryption time A

Encryption time &
+ key-generation

idge)

1024)

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees787epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2043

But Biswas and Sendrier
say they re faster now,
even beating NTRU.
What's the problem?

The serious competition

Some Diffie—Hellman speeds

bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES
116944 kumfpl27g
(hyperelliptic; Eurocrypt 20:
182632 curve25519
(conservative elliptic curve)

Use DH for public-key encry

Decry
Encry

btion time

btion time

~ DH time
~ DH time

+ key-generation time.

Sounds reasonably fast.
What's the problem?

Decryption i1s much slower:

700512 ntruees7387epl
1219344 mceliece
1340040 ronald1024
5766752 ronald2048

But Biswas and Sendrier
say they re faster now,
even beating NTRU.
What's the problem?

The serious competition

Some Diffie-Hellman speeds from

bench.cr.yp.to:

(7468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfpl27g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)

Use DH for public-key encryption.

Decry
Encry

btion time

btion time

~ DH time.
~ DH time

+ key-generation time.

reasonably fast.
the problem?

ion 1S much slower:

> ntruees/37epl
l mceliece

) ronald1024

) ronald2048

vas and Sendrier
're faster now,

ting NTRU.
the problem?

The serious competition

Some Diffie—Hellman speeds from
bench.cr.yp.to:

77468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfpl27g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)

Use DH for public-key encryption.
Decryption time ~ DH time.

Encryption time ~ DH time
+ key-generation time.

Elliptic/
fast enc

(Also sig
key exct
let’s foc
Also shc

let's foc

kumfpl:
protect
branch-y

Broken |
but high
for the s

- fast.

m?

h slower:

(87epl
€

024
048

sndrier
NOW,

U.

m?

The serious competition

Some Diffie-Hellman speeds from
bench.cr.yp.to:

(7468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfpl27g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519
(conservative elliptic curve)

Use DH for public-key encryption.
~ DH time.

Decryption time =~
Encryption time ~ DH time

+ key-generation time.

Elliptic/hyperellipt
fast encryption an

(Also signatures, r
key exchange, mot
let’s focus on encr
Also short keys et
let's focus on spese

kumfpl27g and c
protect against tin
branch-prediction

Broken by quantul
but high security |
for the short term

The serious competition Elliptic/hyperelliptic curves

Some Diffie-Hellman speeds from fast encryption and decrypti

bench.cr.yp.to: (Also signatures, non-interac

k h -
77468 gls254 ey exchange, more; but

(binary elliptic curve; CHES 2013)
116944 kumfpl27g

(hyperelliptic; Eurocrypt 2013)
182632 curve25519 kumfpl27g and curve2551
(conservative elliptic curve) protect against timing attac

let's focus on encrypt/decry
Also short keys etc.; but
let's focus on speed.)

i - -predicti ks, e
Use DH for public-key encryption. branch-prediction attacks, e

Decryption time ~ DH time. Broken by quantum comput

Encryption time &~ DH time but high security level
+ key-generation time. for the short term.

The serious competition

Some Diffie—Hellman speeds from
bench.cr.yp.to:

(7468 gls254
(binary elliptic curve; CHES 2013)
116944 kumfpl27g
(hyperelliptic; Eurocrypt 2013)
182632 curve25519

(conservative elliptic curve)

Use DH for public-key encryption.
Decryption time ~ DH time.

Encryption time ~ DH time
+ key-generation time.

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

ous competition

ffie—Hellman speeds from
r.yp.to:

gls254

|liptic curve; CHES 2013)
kumfpl27g

liptic; Eurocrypt 2013)
curve25519

ative elliptic curve)

for public-key encryption.
on time &~ DH time.
on time &~ DH time

aneration time.

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New dec

(n.t) =

2tition

\an speeds from

ve; CHES 2013)
g

ocrypt 2013)
19

tic curve)

-key encryption.
DH time.

» DH time

time.

e

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding spe

(n,t) = (4096, 41)

. from

2013)

3)

ption.

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl27g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding speeds

(n,t) = (4096, 41); 2128 seci

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding speeds

(n,t) = (4096, 41); 2128 security:

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding speeds

(n,t) = (4096, 41); 2128 security:
60493 lvy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding speeds

(n,t) = (4096, 41); 2128 security:
60493 lvy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 lvy Bridge cycles.

Elliptic/hyperelliptic curves offer
fast encryption and decryption.

(Also signatures, non-interactive
key exchange, more; but

let's focus on encrypt/decrypt.
Also short keys etc.; but

let's focus on speed.)

kumfpl127g and curve25519
protect against timing attacks,
branch-prediction attacks, etc.

Broken by quantum computers,
but high security level
for the short term.

New decoding speeds

(n,t) = (4096, 41); 2128 security:
60493 lvy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 lvy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

hyperelliptic curves offer
yption and decryption.

'natures, non-interactive
ange, more; but

us on encrypt/decrypt.
rt keys etc.; but

us on speed.)

7g and curve25519
against timing attacks,
rediction attacks, etc.

Oy quantum computers,
security level
hort term.

New decoding speeds

(n,t) = (4096, 41); 2128 security:

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 |lvy Bridge cycles.

All load /store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constan

The extl
to elimir
Handle :
using on
XOR (=

IC curves offer
d decryption.

1on-Interactive
e; but
ypt/decrypt.
~.: but

d.)

1rve25519
ning attacks,
attacks, etc.

M computers,
evel

New decoding speeds

(n,t) = (4096, 41); 2128 security:

60493 lvy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 lvy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fan

The extremist's ag
to eliminate timin;
Handle all secret ¢
using only bit ope
XOR (7), AND (&

offer
on.

“tive

ers,

New decoding speeds

(n,t) = (4096, 41); 2128 security:

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 vy Bridge cycles.

All load /store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

New decoding speeds

(n,t) = (4096, 41); 2128 security:

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 lvy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

New decoding speeds

(n,t) = (4096, 41); 2128 security:

60493 Ivy Bridge cycles.
Talk will focus on this case.

(Decryption is slightly slower:
includes hash, cipher, MAC.)

(n,t) = (2048, 32); 280 security:
26544 lvy Bridge cycles.

All load/store addresses
and all branch conditions

are public. Eliminates
cache-timing attacks etc.

Similar improvements for CFS.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

New decoding speeds Constant-time fanaticism

(n,t) = (4096, 41); 2128 security: The extremist’s approach
60493 Ivy Bridge cycles. to eliminate timing attacks:
Talk will focus on this case. Handle all secret data

using only bit operations—

Decryption is slightly slower:
(Decryp Tt XOR (), AND (&), etc.

includes hash, cipher, MAC.)

(n,t) = (2048, 32); 20 security: We take this approach.

26544 vy Bridge cycles. "How can this be

competitive in speed?
All load/store addresses P P

. Are vou really simulatin
and all branch conditions Y y g

. L fleld multiplication with
are public. Eliminates

. hundreds of bit operations
cache-timing attacks etc.

instead of simple log tables?”
Similar improvements for CFS.

oding speeds

(4096, 41); 2128 security:

vy Bridge cycles.
' focus on this case.

tion is slightly slower:
hash, cipher, MAC.)

(2048, 32); 280 security:
vy Bridge cycles.

/store addresses
yranch conditions

ic. Eliminates
ming attacks etc.

mprovements for CFS.

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we

Not as s
On a tyj
the XOF
Is actual
operatin
on vectc

eds

. 2128
cycles.
this case.

htly slower:
er, MAC.)

. 280

cycles.

security:

resses
ditions
ytes
ks etc.

nts for CFS.

security:

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as It s
On a typical 32-bi
the XOR instructic
Is actually 32-bit 7
operating In parall

on vectors of 32 b

arity:

rity:

Constant-time fanaticism

The extremist’'s approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations
instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Constant-time fanaticism

The extremist's approach
to eliminate timing attacks:
Handle all secret data
using only bit operations—
XOR (7), AND (&), etc.

We take this approach.

"How can this be
competitive in speed?

Are you really simulating
fleld multiplication with
hundreds of bit operations

instead of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

t-time fanaticism

emist’'s approach
1ate timing attacks:
|| secret data

ly bit operations—
), AND (&), etc.

this approach.

in this be

tive In speed?
really simulating
ltiplication with

s of bit operations

of simple log tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not imn
that this
saves tir
multiplic

aticism

yproach

r attacks:
lata
rations—
), etc.

vach.

ed?

ulating

' with
erations

og tables?”

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately ¢
that this “bitslicin
saves time for, e.g

multiplication in F

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

is actually 32-bit XOR,

operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:

128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

Yes, we are.

Not as slow as it sounds!
On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR,
operating In parallel

on vectors of 32 bits.

Low-end smartphone CPU:
128-bit XOR every cycle.

lvy Bridge:
256-bit XOR every cycle,
or three 128-bit XORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Yes, we are. Not immediately obvious

Not as slow as it sounds! that this “bitslicing

On a typical 32-bit CPU,
the XOR instruction

Is actually 32-bit XOR, But quite obvious that it
operating in parallel saves time for addition in F51z.

saves time for, e.g.,
multiplication in F,12.

on vectors of 32 bits. Typical decoding algorithms

Low-end smartphone CPU: have add, mult roughly balanced.

128-bit XOR every cycle. Coming next: how to save

lvy Bridge: many adds and most mults.
256-bit XOR every cycle, Nice synergy with bitslicing.
or three 128-bit XORs.

dre.

low as it

sounds!

vical 32-bit CPU,
 Instruction

ly 32-bit

g In para

rs of 32

smartphone CPU:

XOR,
lel

DItS.

XOR every cycle.

e

XOR every cycle,
128-bit XORs.

Not immec

that this

oitslicing”

saves time for, e.g.,

multiplication in F,12.

lately obvious

But quite obvious that it

saves time for addition In F212.

Typical decoding algorit

have adc

Coming next:
many adds anc

, mult roughly

NMS

NOW tO save
most mults.

Nice synergy with bitslicing.

halanced.

The add

Fix n =

Big final
IS to finc
of f =c

For eackh

compute
41 adds,

ounds!
t CPU,
on
COR,

el

Its.

ne CPU:
/ cycle.

/ cycle,
ORs.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that it
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 2

Big final decoding
Is to find all roots
of f =cqrz* + -

For each a € F212
compute f(a) by
41 adds, 41 mults

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that it
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 ¢ = 41

Big final decoding step
is to find all roots in F,1»
of f = carzt 4+ -+ coa;o.

For each a € F,12,
compute f(a) by Horner's r
41 adds, 41 mults.

Not immediately obvious The additive FFT

that this “bitslicing” Fix n — 4006 — 212 + — 41

saves time for, e.g.,
multiplication in F,12. Big tinal decoding step
Is to find all roots In Fsi0

But quite obvious that it
d off:c41$41+---+c0330.

saves time for addition in F212.

For each a € F212,

Typical decoding algorithms compute f(a) by Horner's rule:

41 adds, 41 mults.

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

Not immediately obvious

that this “bitslicing”
saves time for, e.g.,
multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 t = 41.

Big final decoding step
is to find all roots in F,12
of f = carztt + -+ ozl

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute

c;q%, ¢;g°t, ;g etc. Cost per

point: again 41 adds, 41 mults.

Not immediately obvious
that this “bitslicing”
saves time for, e.g.,

multiplication in F,12.

But quite obvious that i1t
saves time for addition iIn F212.

Typical decoding algorithms

have add, mult roughly balanced.

Coming next: how to save

many adds and most mults.
Nice synergy with bitslicing.

The additive FFT

Fix n = 4096 = 212 t = 41.

Big final decoding step
is to find all roots in F,12
of f = carztt + -+ ozl

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig”
point: again 41 adds, 41 mults.

;93 etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

1ediately obvious

, “bitslicing”

ne for, e.g.,
ation In F212.

e obvious that It
ne for addition in F212.

decoding algorithms

next: how to save

|[ds and most mults.
ergy with bitslicing.

The additive FFT

1, mult roughly balanced.

Fix n = 4006 = 212 ¢ = 41.

Big final decoding step
is to find all roots in F,1»
of f = carzt 4+ -+ coa;o.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute

cigt, c;9°, cig>

point: again 41 adds, 41 mults.

, etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

Asymptc
normally
so Horne

O(nt) =

Ybvious

that It
Ition In F212.

lgorithms

ughly balanced.

/ to save
ost mults.
bitslicing.

The additive FFT

Fix n = 4096 = 212 t = 41.

Big final decoding step
is to find all roots in F,12
of f = carztt + -+ ozl

For each a € F,12,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig”
point: again 41 adds, 41 mults.

;93 etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally ¢t € ©(n,
so Horner's rule cc

O(nt) = O(n?/ g

212-

nced.

The additive FFT

Fix n = 4006 = 212 ¢ = 41.

Big final decoding step
is to find all roots in F,1»
of f = carzt 4+ -+ coa;o.

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute

cig®, c;g°

point: again 41 adds, 41 mults.

;93 etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ign),
so Horner's rule costs

O(nt) = O(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + = 41.

Big final decoding step
is to find all roots in F,12
of f = carztt + -+ ozl

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute

cig®, c;9°

point: again 41 adds, 41 mults.

;93 etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/lgn),
so Horner's rule costs

O(nt) = ©(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + = 41.

Big final decoding step
is to find all roots in F,12
of f = carztt + -+ ozl

For each a € F212,

compute f(a) by Horner's rule:
41 adds, 41 mults.

Or use Chien search: compute
cig', cig”
point: again 41 adds, 41 mults.

;93 etc. Cost per

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/lgn),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n11°(1) operations?
Isn’t this better than n?/Ign?

itive FFT

4006 = 212 ¢t = 41.

decoding step
1 all roots in Fy10

r41$41 + - COSBO.

NolS F212,
 f(a) by Horner's rule:
41 mults.

_hien search: compute

21 cz-g3i, etc. Cost per

gain 41 adds, 41 mults.

- 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ign),
so Horner's rule costs

O(nt) = O(n?/Ign).

Wait a minute.

Didn't we learn in school

that FF T evaluates

an n-coeff polynomial

at n points

using n11°(1) operations?
Isn’t this better than n?/Ign?

Standarce

Want to

f=co-
at all th

Write f
Observe
fla) =
f—a) -

fo has .
evaluate
by same
Similarly

12 ¢+ =41

step

-+ Co::BO.

Horner's rule:

“h: compute
etc. Cost per
lds, 41 mults.

ds, 2.09 mults.

Asymptotics:
normally t € ©(n/lgn),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.

Didn't we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n11°(1) operations?
Isn’t this better than n?/Ign?

Standard radix-2 |

Want to evaluate
f=co+cz+--
at all the nth root

Write f as fo(z?)
Observe big overl:
fla) = fo(a®) +
f(=a) = fo(a?) -
fo has n/2 coeffs;

evaluate at (n/2)
by same idea recu

Similarly f7.

ule:

Ite
per
1lts.

nults.

Asymptotics:
normally t € ©(n/Ign),
so Horner's rule costs

O(nt) = O(n?/Ign).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n11o(1) operations?
Isn’t this better than n?/Ign?

Standard radix-2 FFT:

Want to evaluate
f=ctcaz+ - +cop12
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?
Observe big overlap betweer

f(a) = fo(a®) + afi(e?),
f(=a) = fo(a®) — afi(e?)
fo has n/2 coeffs;

evaluate at (n/2)nd roots o

by same idea recursively.
Similarly fy.

Asymptotics:
normally t € ©(n/lgn),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.

Didn't we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n11°(1) operations?
Isn’t this better than n?/Ign?

Standard radix-2 FFT:

Want to evaluate
f=c+caz+- - +cp12"!
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?).
Observe big overlap between

f(a) = fo(a®) + afi(a?),
f(=a) = fo(a®) — afi(e?).
fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly f7.

tics:
t€0(n/lgn),
or's rule costs

- O(n?/lgn).

ninute.

/e learn in school

I evaluates

=ff polynomial

nts

+o(1) gperations?

5 better than n?/Ign?

Standard radix-2 FFT:

Want to evaluate
f=co+cz+ - +cp_1z"}
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?).
Observe big overlap between

f(e) = fo(a®) + afi(a?),
f(=a) = fo(a®) — afi(e?).
fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly fy.

Useless |
Standarc
FFT cor

19388 W.

indepenc
“additivi
Still quit

1996 vol
some Im

2010 Ga
much be

We use
plus son

gn),
)Sts

school
S

mial

rations?
an n°/lgn?

Standard radix-2 FFT:

Want to evaluate
f=co+caz+- - +cp_1z"?
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?).
Observe big overlap between

f(a) = fo(a®) + afi(a?),
f(=a) = fo(a®) — afi(e?).
fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly f7.

Useless in char 2:

Standard workarot
FFT considered in

1988 Wang—Zhu,
independently 198
“additive FFT" In

Still quite expensi

1996 von zur Gatl
some Improvemen

2010 Gao—Mateer:
much better addit

We use Gao—Mate

plus some new Im

Standard radix-2 FFT:

Want to evaluate
f=co+caz+- - +cp12"!
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?).
Observe big overlap between

f(e) = fo(a®) + afi(a?),
f(=a) = fo(a®) — afi(e?).
fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly f1.

Useless in char 2: a = —a.
Standard workarounds are p
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerha
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvement

Standard radix-2 FFT:

Want to evaluate
f=c+caz+- - +cp12"!
at all the nth roots of 1.

Write f as fo(z?) + z f1(z?).
Observe big overlap between

f(a) = fo(a®) + afi(a?),
f(=a) = fo(a®) — afi(e?).
fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly fy.

Useless in char 2: a = —a.
Standard workarounds are painful.
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

1 radix-2 FFT:

“evaluate
-1+ -+ cepo1z™
e nth roots of 1.

as fo(z?) +z f1(z?).
big overlap between

fo(a®) + afi(a?).
= fo(a®) — afi(a?).
,/2 coeffs;

at (n/2)nd roots of 1
idea recursively.

' J1-

1

Useless in char 2: a = —a.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and
f=co-
on a Size
Main ide
fo(z? +

Big over

fo(a?
and f(a

fo(a® +

“Twist”
Then {c

size-(n/
Apply sc

-FT:

-+ cp—1z"
s of 1.

+zf1(z?).
p between
xf1(a®),

- afi(a®).

1d roots of 1
rsively.

1

Useless in char 2: a = —«a.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer e
f=co+cz+--
on a size-n Fo-line

Main idea: Write
fo(z? +) + zf1(

Big overlap betwe:
fo(e® +a) + afi
and f(a+1) =

fo(@® +a) + (a-

“Twist” to ensure
Then {a2 + a} 1S
size-(n/2) F»-line
Apply same idea r

f 1

Useless in char 2: a = —a.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
f=co+ciz+- -+ cpn_1Z
on a size-n F»-linear space.

Main idea: Write f as
f0($2 +)+ $f1(3:2 +).

Big overlap between f(a
fo(a? + a) + afi(a’® + a)
and f(a+1) =

fole® +) + (a + 1) fo(e?

“Twist” to ensure 1 € space
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Useless in char 2: a = —«a.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
f=cot+az+ - +cp12"!
on a size-n Fo-linear space.

Main idea: Write f as
f0($2 +)+ a:f1($2 +).

Big overlap between f(a) =
fo(a® + a) +afi(a® +)
and f(a+1) =

fola?® + a) + (a + 1) fi(a® + a).

“Twist” to ensure 1 € space.
Then {a® + a}is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

n char 2: a = —«a.

1 workarounds are painful.

isidered impractical.

ang—/hu,
lently 1989 Cantor:
= FFT" in char 2.

e expensive.

n zur Gathen—Gerhard:
provements.

o—Mateer:
tter additive FFT.

Gao—Mateer,

1e new Improvements.

Gao and Mateer evaluate
f=cot+caz+ - +cp1z"!
on a size-n F»-linear space.

Main idea: Write f as
f0($2 +)+ $f1(3:2 +).

Big overlap between f(a

fo(a2 a) afl(a2 a)

and f(a+1) =

fo(a® +a)+ (a + 1) fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

for any 1

—> sever
not all o
by simpl

For t =

For t € -
fiisac
Instead
this con:
multiply

daNa CoIr

a = —Q.

Inds are painful.

\practical.

O Cantor:
char 2.

/€.

1en—Gerhard:
LS.

ive FFT.

er,
provements.

Gao and Mateer evaluate
f=cot+az+ - +cp12"!
on a size-n F»-linear space.

Main idea: Write f as
f0($2 +)+ a:f1($2 +).

Big overlap between f(a) =
fo(a® + a) +afi(a® +)

and f(a+1) =

fola?® + a) + (a + 1) fi(a® + a).

“Twist” to ensure 1 € space.
Then {a® + a}is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We generalize to
f=co+cz+--
for any t < n.

= several optimiz
not all of which ar
by simply tracking

For ¢t = 0: copy ¢

For t € {1,2}:
f1 is a constant.
Instead of multiph

this constant by e
multiply only by g

and compute subs

qinful.

rd:

Gao and Mateer evaluate
f=cot+caz+ - +cp1z"!
on a size-n F»-linear space.

Main idea: Write f as
f0($2 +)+ $f1(3:2 +).

Big overlap between f(a

fo(a2 a) afl(a2 a)

and f(a+1) =

fo(a® +a)+ (a + 1) fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,
not all of which are automas
by simply tracking zeros.

For t = 0: copy ¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Gao and Mateer evaluate
f=cot+az+ - +cp12"!
on a size-n Fo-linear space.

Main idea: Write f as
fo(z® + z) + zf1(z° +).

Big overlap between f(a) =
fo(a2 a) afl(a2 a)

and f(a+1) =

fo(a® +a)+ (a + 1) fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a}is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy ¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Mateer evaluate
-1+ -+ o1z
-1 Fo-linear space.

1

a: Write f as
z) + zf1(z® +).

lap between f(a

a) + afi(a® + a)

+1) =

a) + (a+1)fi(a® +).

to ensure 1 € space.
x>+ a}is a

2) Fo-linear space.
ime idea recursively.

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,

not all of which are automated

by simply tracking zeros.
For ¢t = 0: copy c¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Syndron

Initial de
S) = 1T1
S1 = T1¢(
So = T1(

St = T1C

1,72, ..
scaled b
Typically
mapping
Not as s
still n2+

valuate
-+ cp_1z"
2ar space.

f as
z° +).

en fa) =
2

(a” +a)

1

- 1) fi(a® + a).

1 € space.
a

Ar space.
ecursively.

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy ¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Syndrome comput

Initial decoding st
So =7T1+7T2+- -
S1 = T1Q1 T 1242

Sy = rla% + 'rga%

St = 'rla'i + 'rgag

r1,T2,...,Tn are
scaled by Goppa c
Typically precomp
mapping bits to sy
Not as slow as Ch
still n2+°(1) and h

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy ¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compt
SO =T1+ T2+ - 1T 7Tn,

S1 =711y oy +—---1T7T
Sy = rla% n ?"Qa% T—---T7

st:rlaﬁ—l—rga5—|—---—|—r,

r1,7To,...,Tn are received b
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.
Not as slow as Chien search
still n21°(1) and huge secret

We generalize to
f=co+ciz+ - +cxt
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy ¢p.

For t € {1,2}:
f1 is a constant.
Instead of multiplying

this constant by each a,
multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute
SO =T1+7T2+ " +7Tn,

S1 =T101 T 1202 — - 1T Tpln,
Sy = 'rla% + 7‘20{% + -+ rna%,

St = 'rla'i -+ 'rgag + -+ rna%.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

ralize to
%6133—|—---+ctact
< n.

al optimizations,
f which are automated
y tracking zeros.

0: copy ¢p.

[1,2}:
onstant.
of multiplying

stant by each «,
only by generators
pute subset sums.

Syndrome computation

Initial decoding step: compute
SO =T1+ T2+ - 1T 7Tn,

51 =T1Q1 T 1202 T - 1T TnQn,
Sy = rla% + ?"20{% + -+ rna%,

St = 'rlatl -+ 'rga'é + -+ rnaf,,,.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare
floa) =
flaz) =

F(an)

-+ thct

ations,
e automated
Zeros.

/INg

ach a,
enerators
et sums.

Syndrome computation

Initial decoding step: compute
SO =T1+7T2+ -+ 7Tn,

S1 =T101 T 1202 — - 1T Tpln,
Sy = 'rla% + 7‘20{% + -+ rna%,

St = 'rla'i -+ 'rgag + -+ rna%.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multi
flai1) =co+c1a
flaz) =co+ c1a:

flayn) =co + c1a

ed

Syndrome computation

Initial decoding step: compute
SO =T1+ T2+ - 1T 7Tn,

51 =T1Q1 T 1202 T - 1T TnQn,
Sy = rla% + ?"20{% + -+ rna%,

St = 'rlatl -+ 'rga'é + -+ rnaf,,,.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evall
fla1) =co+crag + -+«
f(ag):co—l—clag—l—---—l—c

flan) =co+cran +--- +

Syndrome computation

Initial decoding step: compute
SO =T1+7T2+ - +7Tn,

S1 =T101 T 1202 — - 1T Tpln,
Sy = 'rla% + 'rga% + -+ rna%,

St = 'rla'i -+ 'rgag + -+ rna%.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evaluation:
flar) =co+crar +--- + el
flaz) =co+crap + -+ crab,

flan) =co+cron + -+ crat,.

Syndrome computation

Initial decoding step: compute
SO =T1+7T2+ - +7Tn,

S1 =T101 T 1202 — - 1T Tpln,
Sy = 'rla% + 'rga% + -+ rna%,

St = 'rla'i -+ 'rgag + -+ rna%.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evaluation:
flar) =co+crar +--- + el
flaz) =co+crap + -+ crab,

flan) =co+cron + -+ crat,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Syndrome computation

Initial decoding step: compute
SO =T1+7T2+ - +7Tn,

S1 =T101 T 1202 — - 1T Tpln,
Sy = 'rla% + 'rga% + -+ rna%,

St = 'rla'i -+ 'rgag + -+ rna%.

r1,To,...,Tn are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but

still n21°(1) and huge secret key.

Compare to multipoint evaluation:
flar) =co+crar +--- + el
flaz) =co+ cra +---+Cta'§,

flan) =co+cron + -+ crat,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

1e computation

coding step: compute

X1 T T202 T - 1T Tnln,
2 2 2
11 T 7"20(2 T- " T 'rnan,

L L t

., Tn are received bits

vy Goppa constants.

/ precompute matrix

- bits to syndrome.

low as Chien search but
o(1) and huge secret key.

Compare to multipoint evaluation:

flar1) =co+crag +---+ cta’i,
flap) = co+cran + - -+ + cab,

floan) =co +cran + -+ cral,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transpo
If a line:
compute
then rev
exchang
compute

1956 Bo
Indepen

for Bool

1973 Fic
Dreserve
Dreserve

number

ation

ep: compute
. _|_ Tn'

— s Tnan,

— s Tna%,

recelved bits
onstants.

ute matrix
/ndrome.

len search but
uge secret key.

Compare to multipoint evaluation:

fla1) =co+cia1 + - +cat,
flaz) =co+crap + -+ crab,

flan) =co+cron + -+ crat,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition prin
If a linear algorithi
computes a matrp
then reversing edg
exchanging inputs
computes the tran

1956 Bordewijk;
independently 195
for Boolean matric

1973 Fiduccia ana
reserves number

reserves number

number of nontriv

Ite

nn,

but
- key.

Compare to multipoint evaluation:

flar1) =cog+crag +---+ cta’i,
flap) = co+cran + -+ - + cab,

floan) =co +cran + -+ cral,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm
computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of /

1956 Bordewijk;
independently 1957 Lupanoy
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds pl
number of nontrivial output:

Compare to multipoint evaluation:

flar) =co+cra1 + -+ ctal,
flap) = co+cran + -+ - + cpab,

flan) =co+cron + -+ crat,.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

> to multipoint evaluation:

:co+c1a1+---+cta’i,

co+cran + -+ cad,

:co+c1an+---+cta%.

or syndrome computation
ose of
or multipoint evaluation.

T consequence:

e computation is as few
wltipoint evaluation.

e precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built
producir

Too mai

gcc ran

yoint evaluation:

1-|—----|—Ct0tﬁ,
z-l-----I-CtOtg,

n+---+cta%.

ne computation

int evaluation.

nce:
ytion is as few
evaluation.
yuted matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposi

producing C code.
Too many variable
gcc ran out of me

1ation:

N
.tal,

N
.taz,

cral, .

Fation

tion.

few

1X.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compll

producing C code.
Too many variables for m =
gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Built new interpreter,
allowing some code compression.
Still big; still some overhead.

sition principle:

ir algorithm

s a matrix M

ersing edges and

ing inputs/outputs

s the transpose of M.

rdewijk;
lently 1957 Lupanov
ean matrices.

luccia analysis:

s number of mults:

s number of adds plus
of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used ghasm register a
to optimize the variab

locator
es.

Worked, but not very quickly.

Worote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better s
stared a
wrote dc
with san

Small cc

Speedug
translate
to transj

Further
merged
scaling |

ciple:

m

« M

es and
/outputs
spose of M.

{ Lupanov
“€es.

lysis:

of mults;

of adds plus
lal outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:
stared at additive

wrote down transg

with same loops e

Small code, no ov

Speedups of addit

translate easi
to transposed

y
algc

Further savings:

merged first stage

scaling by Goppa

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Worote faster register allocator.
Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi
to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,
wrote down transposition
with same loops etc.

Small code, no overhead.

Speedups of additive FFT
translate easily

to transposed algorithm.

Further savings:
merged first stage with
scaling by Goppa constants.

- transposing compiler
g C code.

1y variables for m = 13;
out of memory.

asm register allocator

11ze the variables.
but not very quickly.

yster register allocator.
ossive code size.

w Interpreter,

some code compression.

still some overhead.

Better solution:

stared at additive FFT,
wrote down transposition
with same loops etc.

Small code, no overhead.

Speedups of additive FFT
translate easily

to transposed algorithm.

Further savings:
merged first stage with

scaling by Goppa constants.

Secret p

Adc

field

Itive
eler

Thisis
needed |

Must ap

part of t

Same is

Solution

Almost «

Benes ni

ng compiler

s for m = 13;
mory.

er allocator

riables.
ery quickly.

ter allocator.
e g|Ze.

ter,

e compression.

» overhead.

Better solution:

stared at additive FFT,
wrote down transposition
with same loops etc.

Small code, no overhead.

Speedups of additive FFT
translate easily

to transposed algorithm.

Further savings:
merged first stage with

scaling by Goppa constants.

Secret permutatio

Ac

fie

C

C

itive FFT = ;
elements in a

This 1s not the orc

needed In code-ba

Must apply a secr

part of the secret

Same issue for syr

Solution: Batcher

Almost done with

Bene$ network.

- 13;

I

Or.

slon.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi

to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT = f values at
field elements in a standard

This Is not the order

needed In code-based cryptc
Must apply a secret permut:
part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.
Almost done with faster soll
Benes network.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi
to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Secret permutation

Additive FFT = f values at
field elements in a standard order.

This I1s not the order

needed In code-based crypto!
Must apply a secret permutation,
part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.
Almost done with faster solution:
Benes$ network.

olution:
t additive FFT,
own transposition

e loops etc.

)yde, no overhead.

s of additive FFT
 easlly

vbosed algorithm.

savings:
first stage with

)y Goppa constants.

Secret permutation

Additive FFT = f values at

field elements in a standard order.

This Is not the order

needed In code-based crypto!
Must apply a secret permutation,
part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.
Almost done with faster solution:
Benes$ network.

Results

60493 |\

8622 fc
20846 fc
7714 fc
14794 fc
8520 fc

Code wi
We're st

More inf
paper or

FFT,

yosition
{C.

erhead.

ive FFT

rithm.

with

“onstants.

Secret permutation

Ac

fie

C

C

itive FFT = f values at

elements /n a standard order.

This I1s not the order

needed In code-based crypto!

Must apply a secret permutation,

part of the secret key.

Same issue for syndrome.

Solution: Batcher sorting.

Almost done with faster solution:

Bene$ network.

Results

60493 lvy Bridge «

8622 for permuts
20846 for syndron

7714 for BM.
14794 for roots.

8520 for permutz

Code will be publi
We're still speedin

More information:
paper online very

Secret permutation Results

Additive FFT = f values at 60493 lvy Bridge cycles:
field elements in a standard order.

8622 for permutation.

This Is not the order 20846 for syndrome.

needed in code-based cryptol! (714 tfor BM.

Must apply a secret permutation, 14794 for roots.

part of the secret key. 8520 for permutation.
Same issue for syndrome. Code will be public domain.

Solution: Batcher sorting. We're still speeding it up.

Almost done with faster solution: More information:
Benes network. paper online very soon.

Secret permutation Results

Additive FFT = f values at 60493 lvy Bridge cycles:
field elements in a standard order.

8622 for permutation.

This Is not the order 20846 for syndrome.

needed in code-based crypto! (714 tor BM.

Must apply a secret permutation, 14794 for roots.

part of the secret key. 8520 for permutation.
Same issue for syndrome. Code will be public domain.

Solution: Batcher sorting. We're still speeding it up.

Almost done with faster solution: More information:
Benes network. paper online very soon.

