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Subset-sum example:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having sum 366347

Many variations: e.g.,

find such a subsequence

if one exists;

find such a subsequence
knowing that one exists;

allow range of sums;
coefficients outside {0, 1}; etc.

“Subset-sum problem”;
“knapsack problem™; etc.
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Subset-sum example: The lattice connection

Is there a subsequence of Define z; = 499, . ... z1, — 9413,
(499, 852, 1927, 2535, 3596, 3608, | "

4688, 5989, 6385, 7353, 7650, 9413)  Defne L € 277 as
having sum 366347 W vz + -+ vz = 05
Define u € Z'? as
(70,2,0,0,0,0,0,0,0,0,0,0).

If JC{1,2,..., 12}
and ) ., z; = 36634 then
v € L where v; =u; — [t € J].

Many variations: e.g.,
find such a subsequence
If one exists;

find such a subsequence

knowing that one exists;
allow range of sums; v Is very close to wu.
coefficients outside {0, 1}; etc. Reasonable to hope that

v 1s the closest vector in L to .
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The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.



Ice connection

1 =499, ..., 10 = 9413.

CZ'? as

1+ +wvz1p = 0.
€ 7212 5
0,0,0,0,0,0,0,0,0).
1,2,...,12}

-y T = 30034 then
here v; = u; — |1 € J].

' close to w.
ble to hope that
closest vector in L to .

um algorithms =~
sion-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This Is the central algorithmic
problem in coding theory.

Recent :

Eurocryj
Howgraxy
subset-s
(Incorre

Eurocryj
Becker—
subset-s

Adaptat
Asiacryg
Thomae
Becker—



tion

.., T120 = 9413.

12212 = 0}

0,0,0,0,0).

634 then
u; — |1 € J].

e that
ctor in L to u.
hms ~

P algorithms.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Recent asymptotic

Eurocrypt 2010

Howgrave-Graharmr
subset-sum expont
(Incorrect claim: +

Eurocrypt 2011
Becker—Coron—Jot
subset-sum expon

Adaptations to de
Asiacrypt 2011 M.
Thomae, Eurocryy
Becker—Joux—May



- 9413.

O U.

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413)
having length w and sum 366347

Replace Z with (Z/2)™:

Is there a subsequence of

(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413)
having length w and xor 10607

This is the central algorithmic
problem in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham—Joux:
subset-sum exponent x0.33
(Incorrect claim: ~0.311.)

Eurocrypt 2011
Becker—Coron—Joux:
subset-sum exponent ~0.29

Adaptations to decoding:
Asiacrypt 2011 May—Meurer
Thomae, Eurocrypt 2012
Becker—Joux—May—Meurer.
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Claimed in TCC 2010

L yubashevsky—Palacio—Segev
“Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f
has n-bit input, unique root

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method
finds this root using
~20-2" quantum evaluations
on superpositions of inputs.

Cost of quantum evaluation
~ cost of evaluation of f
if cost counts qubit “operat



Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky—Palacio—Segev
“"Public-key cryptographic
primitives provably

as secure as subset sum’':

There are “currently no known
quantum algorithms that perform
better than classical ones

on the subset sum problem”.

Hmmm. What's the best
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Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f
if cost counts qubit “operations”.
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Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to ha
different # of roo
and # not known
Faster it # is larg

out typically # 1s
Most interesting:




W

rform

Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-5" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations’”.

Easily adapt to handle
different # of roots,

and # not known in advanc
Faster it # is large,

out typically # 1s not very |
Most interesting: # € {0,1




Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.




Quantum search (0.5)

Assume that function f
has n-bit input, unique root.

Generic brute-force search
finds this root using
~2™ evaluations of f.

1996 Grover method

finds this root using

~20-9" quantum evaluations of f
on superpositions of inputs.

Cost of quantum evaluation of f
~ cost of evaluation of f

if cost counts qubit “operations”.

Easily adapt to handle

different # of roots,

and # not known In advance.
Faster it # is large,

out typically # Is not very large.
Most interesting: # € {0, 1}.

Apply to the function
J = 2(J)—t where

2(J) = ZieJ Ly

Cost 2™ to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.
We suppress poly factors in cost.
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Easily adapt to handle
different # of roots,

and # not known In advance.
Faster it # is large,

Most interesting: # € {0, 1}.

Apply to the function
J = 2(J)—t where

2(J) = ZieJ Ly

Cost 2> to find root (i.e.,

to find indices of subsequence
of ¢1,..., Ty with sum t)

or to decide that no root exists.

We suppress poly factors in cost.

out typically # Is not very large.

Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
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2™ complex amplitudes

ag, ..., a»m_1 with
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Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.
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integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

ag, ..., a»m_1 with

ao‘z + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.

Step 1: Set a + ¢
bJ — —Q ifZ(J)
b, = a; otherwise
This Is about as e
as computing 2.

Step 2: “Grover d
Set a <+ b where

b) = —aJ+(2/2"
This Is also easy.

Repeat steps 1 an
about 0.58 - 20->7

Measure the n qu
With high probabi
the unique J such



Algorithm details for unique root: Step 1: Set a < b where
Represent J C {1,...,n} as an by =—ayif Z(J) =t
< integer between 0 and 2" — 1. °J B _a’J otherwise.
This Is about as easy
rge. n bits are enough space as computing ¥.
| to store one such integer.
| Step 2: “Grover diffusion”.
n qubits st.o.re much more, Set a < b where
ansuperposmon oyer sets J: by =—a,+(2/2")S ,a;.
2" complex amplitudes This is also easy.
ag, ..., ar»_1 with
GO\Q +o+ lagn_g 2 _ 1 Repeat steps 1 and 2
- 0.5n 4:
-€ Measuring these n qubits about 0.58 - 277" times.
| nas chance aJ\z to produce J. Measure the n qubits.
IStS. . . . D
cost Start from uniform superposition, With high probability this i
’ e, a;=1/2"2 for all J. the unique J such that > (J




Algorithm details for unique root:

Represent J C {1,...,n} as an
integer between 0 and 2™ — 1.

n bits are enough space
to store one such integer.

n qubits store much more,
a superposition over sets J:
2™ complex amplitudes

apg, .- ., aon_1 with

ao‘z + -+ ‘azn_l 2 —1.
Measuring these n qubits

has chance |a|? to produce J.

Start from uniform superposition,
e, a; = 1/2”’/2 for all J.

Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.



m details for unique root:

it JCA{L,...,n} as an
yetween 0 and 2™ — 1.

‘e enough space
one such integer.

. store much more,
osition over sets J:
lex amplitudes
1on_1 with

e ‘azn_l 2 —1.
g these n qubits

ice |a|? to produce J.

m uniform superposition,
— 1/2™/2 for all J.

Step 1. Set a <+ b where
bJ — —Q if Z(J) = t,
b, = a; otherwise.

This Is about as easy

as computing 2.

Step 2: “Grover diffusion”.
Set a < b where

b) = —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t¢.

Graph o

for 3663
after 0 s

1.0

0.5

0.0

—-0.5

-1.0




for unique root: Step 1: Set a < b where Graph of J — a;
. n}asan b)=—ay if X(J) =1, for 36634 example
and O — 1 b, = a; otherwise. after 0 steps:
This is about as easy 10
Space as computing X.
integer. _
Step 2: “Grover diffusion”. 05|
ch more, Set a < b where '
er sets J; by = —as+(2/2") Y a; oo
udes This is also easy. '-
]
LPP=1 Repeat steps 1 and 2 osl
, qubits about 0.58 - 292" times. -
o produce J. Measure the n qubits. ol
| superposition, With high probability this finds |
or all J. the unique J such that >(J) = t.




root: Step 1: Set a < b where Graph of J — a
o b =—ay if X(J) =1, for 36634 example with n =
1 b, = a; otherwise. after O steps:
This is about as easy 10
as computing 2.
Step 2: “Grover diffusion”. 05|
Set a < b where |
bJ:—a.J—I—(Q/Qn)Z,a,/. :
. . OO_ ...........................................................................................................
This Is also easy. -
Repeat steps 1 and 2 :
| -0.5
about 0.58 - 292" times. -
J. Measure the n qubits. 1ol
ition With high probability this finds |
the unique J such that X(J) = t¢.




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 15 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 16 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 17 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 18 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 19 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 20 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 25 x (Step 1 + Step 2):
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-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 35 x (Step 1 4 Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

oo '

This Is also easy. : j
Repeat steps 1 and 2 _
051 .- -0.5-
about 0.58 - 2 times. -
Measure the n qubits. Lol

With high probability this finds
the unique J such that >(J) = t. Good moment to stop, measure.




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 40 x (Step 1 + Step 2):
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0.5

0.0

-0.5

-1.0




Step 1: Set a < b where Graph of J — ay

b)=—ay if X(J) =1, for 36634 example with n = 12
b, = a otherwise. after 45 x (Step 1 + Step 2):
This is about as easy 10

as computing 2.

Step 2: “Grover diffusion”. 05|
Set a < b where '

b= —a + (2/2”’) ZI aj.

0.0

This Is also easy. -
Repeat steps 1 and 2 :
0.57 4 B

about 0.58 - 2 times. -
Measure the n qubits. ol

With high probability this finds
the unique J such that X(J) = t.




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.0

-0.5+

-1.0

Traditional stopping point.



Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 60 x (Step 1 + Step 2):
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-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 70 x (Step 1 + Step 2):
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-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 80 x (Step 1 + Step 2):
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-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds
the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 90 x (Step 1 + Step 2):
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-0.5

-1.0




Step 1: Set a < b where
bJ — —Q ifZ(J) = t,
b, = a otherwise.

This I1s about as easy

as computing 2.

Step 2: “Grover diffusion” .
Set a < b where

b= —a + (2/2”’) ZI aj.
This Is also easy.

Repeat steps 1 and 2
about 0.58 - 299" times.

Measure the n qubits.
With high probability this finds

the unique J such that X(J) = t.

Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

-0.5+

-1.0

0.0 b o

Very bad stopping point.



Set a < b where
y if X(J) = ¢,
otherwise.

bout as easy
uting 2.

“Grover diffusion” .
b where

. +(2/2%) ) s ay.
Iso easy.

steps 1 and 2
58 - 2097 times.

the n qubits.
rh probability this finds

ue J such that X(J) =t¢.

Graph of J — a

for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

—0.5+

-1.0

0.0 b o

Very bad stopping point.

J = a
by a vec
(with fix
(1) Q f
(2) a f

Step 1 -
act linea

Easily cc
and pow
to under
of state
= Prob.
after ~(



) where Graph of J — a J — aj 1s comple

= t, for 36634 example with n = 12 by a vector of two
after 100 x (Step 1 + Step 2): (with fixed multip
Asy 10 (1) ay for roots J

(2) ay for non-roc

iffusion” . 05| 1 | Step 1 + Step 2
| || act linearly on this

') 1ar

00 e || Easily compute eig
| | and powers of this

d 2 - | to understand evo
times. | : . of state of Grover’
ite L _ :; Pmbablztéoli:
lity this finds | after ~(m/4)

that X(J) = t. Very bad stopping point.




Graph of J — a
for 36634 example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

—0.5+

-1.0

Very bad stopping point.

J — a is completely descri
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability i1s ~1

after ~s(m/4)29°" iterations



Graph of J — a J — a; is completely described

for 36634 example with n = 12 by a vector of two numbers
after 100 x (Step 1 + Step 2): (with fixed multiplicities):
10 (1) ay for roots J;

(2) a for non-roots J.

05. 1 Step 1 + Step 2
| | act linearly on this vector.

00 o | Easily compute eigenvalues

and powers of this linear map
to understand evolution

_o5. ]
- | of state of Grover's algorithm.
_ | = Probability is ~1

-1.0 after ~s(m/4)29°" iterations.

Very bad stopping point.




fJ — a J
4 example with n = 12
) X (Step 1 + Step 2):

1 stopping point.

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-righ

Don't ne
to achie

For simy

1974 Hc
Sort list
for all J
and list
for all J.
Merge t
2 (J1) =
e, 2(J



with n = 12
1 4 Step 2):

“point.

J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.

Don't need quantl
to achieve expone

For simplicity assu

1974 Horowitz—Sa
Sort list of ¥(J1)

for all /1 C{1,...
and list of t — X (.
for all /o C {n/2-
Merge to find colli
X (J1) =t —2()
e, X(J1U )=



12

I\J
v

J — a is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots J;

(2) ay for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(7/4)29°" iterations.

Left-right split (0.5)

Don't need quantum compu
to achieve exponent 0.5.

For simplicity assume n € 2

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}
and list of ¢ — X ()

forall L C{n/2+1,..., 0
Merge to find collisions

2 (1) =t —1(N),

e, 2(J1U ) =t.



J — a; is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a for roots J,

(2) a for non-roots J.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s ~1

after ~s(m/4)29°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J1 C{1,..., n/2}

and list of ¢t — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U ) =t.



Is completely described
tor of two numbers

ed multiplicities):

or roots J;

or non-roots J.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s &1

7 /4)20-°" iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2 (/1) =t —X1(L),

e, 2(J1U ) =t.

Cost 20
We assig

e.g. 366
(499, 85.
4688, 59

Sort the
0,499, 8
499 4 8!
and the
360634 —
360634 —
to see tt
499 4 8!
36634 —



ely described
numbers

licities):

ts J.

, vector.

renvalues

- linear map
lution

s algorithm.
51
iterations.

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N)

e, 2(J1U ) =t.

Cost 29" for sort
We assign cost 1 1

e.g. 36634 as sum
(499, 852, 1927, 2¢
4683, 59389, 6385,

Sort the 64 sums
0, 499, 852, 499
499 4 852 4+ 1927
and the 64 differe
36634 — 0, 36634 -
36634 — 4688 — -
to see that

499 + 852 + 2535
36634 —5989 — 6 3¢




bed

Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥ (/1)

for all J; CH1,..., n/2}

and list of ¢ — X ()

forall h C{n/2+1,..., n}.
Merge to find collisions

2(J1) =t —1(L),

e, 2(J1U ) =t.

Cost 292" for sorting, merg
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Sort the 64 sums

0,499, 852,499 4 852, . ..,
499 + 852 + 1927 + - - - + 3¢
and the 64 differences
36634 — 0, 36634 — 4638, . .

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 -



Left-right split (0.5)

Don't need quantum computers
to achieve exponent 0.5.

For simplicity assume n € 2Z.

1974 Horowitz—Sahni:

Sort list of ¥(J1)

for all J1 C{1,..., n/2}

and list of ¢ — X ()

forall b C{n/2+1,..., n}.
Merge to find collisions

2 (J1) =t —Xx(N),

e, 2(J1Uh) =t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

36634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.



t split (0.5)

red quantum computers
ve exponent 0.5.

licity assume n € 2Z.

rowitz—Sahni:

of 2(J1)

o find collisions
t— X (D),
1 U JQ) = t.

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, . ..,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli |

For simy

C
C

N100S€E

N100SE

Define ¢

Find all
such tha
How? S

Find all
such tha

Sort anc
collision

e, X(J



5)

Im computers
nt 0.5.

men € 2Z.
hni:

SIONS

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assu

C
C

hoose M as 20-29

noose t1 € {0, 1,

Define to =t — t3

Find all J; C {1,.
such that X(J1) =
How? Split Jj as

Find all J» C {n/:
such that X (/) =

Sort and merge to
collisions 2(J1) =
e, 2(J1Uh) =



ters

Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4+ 852, . ..,

499 + 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

30634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3008 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M —
Define to =t — 7.

Find all J; CH{1,..., n/2}
such that X(J1) =¢1 (mo
How? Split J1 as J11 U Jio.

Find all b C{n/2+1,...,
such that X () =t (mo

Sort and merge to find all
collisions 2(J1) =t — X(J)o)
e, 2(J1U ) =t.



Cost 292" for sorting, merging.
We assign cost 1 to RAM.

e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums

0,499, 852,499 4 852, . ..,

499 4+ 852 4+ 1927 + - - - 4+ 3608
and the 64 differences

36634 — 0,36634 — 4688, ...,

306634 — 4688 — - - - — 9413
to see that
499 + 852 + 2535 + 3608 =

36634 —5989 - 6385 — 7353 —9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that X(J;) =¢t1 (mod M).
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}
such that ¥(J) =t (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.



T for sorting, merging.
'n cost 1 to RAM.

34 as sum of
2.1927. 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

64 sums

52,499 4+ 852, ...,

)2 + 1927 4 - - - + 3608
64 differences

0, 36634 — 4688, .. .,

4688 — - -- — 9413
1at
2 + 2535 + 3608 =

59389 — 6385 — 7353 —-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — t7.

Find all J; CH{1,..., n/2}
such that X (/1) = ¢4
How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that (/) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U ) =t.

Finds J
There ar
Each ch
Total co

Not visil
this uses

assumin,

Algorith
introduc
2006 Els
2010 Hc

Differens
for simil
1981 Sc



ing, merging.
0 RAM.

of
35, 3596, 3608,
7353, 7650, 9413):

+ 3608 =
35—7353—-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}
such that 2(J1) = £;
How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1Uh) =t.

Finds J iff 2(J71) :
There are ~20-2°7

Each choice costs

Total cost 2V->7".

Not visible in cost
this uses space on
assuming typical c

Algorithm has bee
introduced at leas
2006 Elsenhans—J:
2010 Howgrave-Gi

Different techniqu
for similar space r

1981 Schroeppel-



ng.

3608,

,9413):

-9413.

Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~s 20-2571

Choose t1 € {0,1, ..., M — 1}
Define to =t — 7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U J1o.

Find all L C{n/2+4+1,..., n}

such that () =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(J)),
e, 2(J1U ) =t.

Finds J iff X(J1) = £1.
There are ~29-29" choices o

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible in cost metric:

this uses space only 2V-2°7

assuming typical distributior

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Jot

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.



Moduli (0.5)

For simplicity assume n € 4Z.

Choose M ~ 20-25710

Choose t1 € {0,1, ..., M — 1}
Define to =t — ¢7.

Find all J; CH{1,..., n/2}

such that X(J;) =¢t1 (mod M).

How? Split J1 as J11 U Jio.

Find all L C{n/2+4+1,..., n}

such that ¥(J) =t> (mod M).

Sort and merge to find all
collisions 2(J1) =t — X(Jh),
e, 2(J1U b)) =t.

Finds J iff X(J1) = ¢1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.



0.5
licity assume n € 4Z.

M%20'25n.
t1 € {0,1,..., M—1}.
» =1 — 11.

plit J1 as J11 U Jqo.

HC{n/2+1,..., n}

tX(/h)=tr (mod M).

| merge to find all
5 2(J1) =t —X(h),
1U) =t.

Finds J iff £(J1) = t1.

There are ~2%-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:
20.2572,

this uses space only

assuming typical distribution.

Algorithm has been

introduced at least twice:

2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

4633, 59
Try eact

In partic
There ar
(499, 85
with sun
There ar
(4688, 5
with sur
Sort anc
499 4 8!
36634 —



men € 4/.

find all
t—2(Jh),
t.

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost metric:

this uses space only 20-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique
for similar space reduction:

1981 Schroeppel-Shamir.

eg. M=8,1t=3
(499, 852, 1927, 2¢
4688, 5989, 6385, |

Try each t1 € {0,

In particular try %4
There are 12 subs

(499, 852, 1927, 2¢
with sum 6 modul
There are 6 subsec
(4688, 5989, 6385,
with sum 36634 —
Sort and merge to
499 4 852 + 2535
36634 —5989 — 63¢



| M),

| M).

Finds J iff X(J1) = £1.
There are ~29-2°" choices of 7.

Each choice costs 2V-2°7

Total cost 2V->7.

Not visible In cost metric:

this uses space only 2V-2°7

assuming typical distribution.

Algorithm has been
Introduced at least twice:

2006 Elsenhans—Jahnel;
2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596,
4688, 5989, 6385, 7353, 7650

Try each t; € {0,1,..., 7}.

In particular try t; = 6.
There are 12 subsequences ¢
(499, 852, 1927, 2535, 3596,
with sum 6 modulo 8.
There are 6 subsequences of
(4688, 5989, 6385, 7353, 765
with sum 36634 — 6 modulc
Sort and merge to find

499 + 852 + 2535 + 3608 =
36634 — 5989 — 6385 — 7353 -



Finds J iff £(J1) = ¢1.

There are ~20-2°7

choices of %7.

Each choice costs 29-2°7

Total cost 2V->7".

Not visible In cost
this uses space on

assuming typical ¢

metric:
y 20.25??,,

Istribution.

Algorithm has been

Introduced at least twice:
2006 Elsenhans—Jahnel:

2010 Howgrave-Graham—Joux.

Different technique

for similar space reduction:
1981 Schroeppel-Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —9413.



iff T(J1) = 4.

o %20.25?’&

choices of t7.

oice costs 2V-297

yle 1n cost
, space on

o typical ©

metric:
y 20.2572,,

Istribution.

m has been

ed at least twice:

,enhans—Jahnel:

wgrave-Graham—Joux.

t technique

ar space reduction:

hroeppel-Shamir.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.
Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantur

Cost 2™«
1998 Br.

For simy

Comput
J1 CA{1
Sort L =

Can now
Jo — [t
for Jo C
Recall:

Use Gro

whether



= {7.

choices of %7.
20.25??,_

metric:
y 20.25??,,

Istribution.

n
t twice:
 hnel:
aham—Joux.

e
sduction:
Shamir.

e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-righ

Cost 2'”'/3, Imitatil
1998 Brassard—Hg

For simplicity assu

Compute X (J7) fc
J1 C {1, 2. ..., 'n/
Sort L ={X(J1)}

Can now efficient!
Jo = [t —2()) ¢
for Jo C{n/3+1
Recall: we assign

Use Grover's metfh
whether this funct



f¢q.

1X.

eg. M =8, t=236634, =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0,1,..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.:

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to |

Use Grover's method to see
whether this function has a



e.g. M =8, t=236634, T =
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):

Try each t; € {0, 1, ..., 7}.

In particular try t; = 6.

There are 12 subsequences of

(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8.

There are 6 subsequences of

(4688, 5989, 6385, 7353, 7650, 9413)
with sum 36634 — 6 modulo 8.

Sort and merge to find

499 + 852 + 2535 + 3608 =

36634 — 5989 — 6385 — 7353 —-9413.

Quantum left-right split (0.333...)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo—= [t —2(N2) ¢ L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.



- 8, t = 36634, = =
2,1927, 2535, 3596, 3608,
89, 6385, 7353, 7650, 9413):

't €40,1,..., 7},

ular try t; = 6.

e 12 subsequences of
2,1927, 2535, 3596, 3608)
n 6 modulo 8.

e 6 subsequences of

089, 6385, 7353, 7650, 9413)
n 36634 — 6 modulo 8.

| merge to find

2 + 2535 4 3608 =

5989 — 6385 — 7353 —9413.

Quantum left-right split (0.333...)

Quantur

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J71) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/34+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-c
Say f h:
exactly «

l.e., p F£

Problem

Cost 2"
the set ¢

Comput:

Generali
success
Choose
Comput



0034, ¢ =
35, 3596, 3608,
7353, 7650, 9413):

equences of

35, 3596, 3608)

o 8.

juences of

7353, 7650, 9413)
6 modulo 8.
find

+ 3608 =

35— 7353 —-9413.

Quantum left-right split (0.333..

)

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Quantum walk

Unique-collision-fii
Say f has n-bit in
exactly one collisic

e, p#q, f(p)=
Problem: find this

Cost 2™: Define S
the set of n-bit st
Compute f(S), sc

Generalize to cost
success probability
Choose a set S of

Compute f(S), so



3603,
,9413):

f
3608)

0,9413)

-9413.

Quantum left-right split (0.333...)

Quantum walk

Cost 2n/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute X (J1) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute

Jo = [t —2(J2) € L]

for b C{n/3+1,..., n}.
Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding prok
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,
success probability ~s(r/2™)
Choose a set S of size 7.
Compute f(S), sort.



Quantum left-right split (0.333..

)

Quantum walk

Cost 2'”'/3, imitating
1998 Brassard—Hgyer—Tapp:

For simplicity assume n € 3Z.

Compute 2(Jp) for all
J1 C {1, 2. ..., n/3}
Sort L ={X(J1)}.

Can now efficiently compute
Jo = [t —2(J2) ¢ L]
for b C{n/3+1,..., n}.

Recall: we assign cost 1 to RAM.

Use Grover's method to see
whether this function has a root.

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.



n left-right split (0.333...) Quantum walk Data str
3 imitating Unique-collision-finding problem: the gene‘
assard—Hgyer—Tapp: Say f has n-bit inputs, the set .
exactly one collision {p, q}: the num
licity assume n € 3Z. | Y P45 |
e, p7#q, f(p) = f(q). Very effi
e 2 (J1) for all Problem: find this collision. to D(T)
2,..., n/3;. _
3} Cost 2": Define S as o=
- 12(J1)}- o
the set of n-bit strings. 2003 An
/ efficiently compute Compute f(S), sort. Magniez
—2(Jh) ¢ L] . Create s
Generalize to cost T,
{n/3+1,..., n} ] o (D(S), |
. success probability ~(r/2™):
ve assign cost 1 to RAM. | By a qu
Choose a set S of size 7. |
ver's method to see Compute f(S), sort. find 5 ¢
this function has a root.




t split (0.333...)

18
yer—Tapp:

men € 3Z.
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y compute

cost 1 to RAM.

od to see
1on has a root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(
the generalized co

the set S: the mul
the number of coll

Very efficient to n
to D(T) if T is ar

#S =#T =1, #

2003 Ambainis, sii
Magniez—Nayak—Fk
Create superpositi
(D(S), D(T)) witl
By a quantum wal
find S containing



333 ...

RAM.

root.

Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p #q, f(p) = f(9).

Problem: find this collision.

Cost 2": Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size 7.
Compute f(S), sort.

Data structure D(S) captur
the generalized computation
the set S; the multiset f(S)
the number of collisions in

Very efficient to move from
to D(T) if T is an adjacent

HS =H#HT =71, #£(5NT) =

2003 Ambainis, simplified 2(
Magniez—Nayak—Roland—Sar
Create superposition of stat
(D(S), D(T)) with adjacent
By a quantum walk

find S containing a collision



Quantum walk

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = f(q).

Problem: find this collision.

Cost 2"™: Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost 7,

success probability ~s(r/2™)?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:
#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.



n walk

ollision-finding problem:

s n-bit inputs,
one collision {p, ¢}

q, f(p) = f(9).

- find this collision.

 Define S as
f n-bit strings.
e £(5), sort.

ze to cost 7,
probability ~s(r/2™)?:
3 set S of size r.

e f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the

Start frc
Repeat
Negat

if S
Repes
For

[

For
1

Now hig
that T ¢
Cost r+



ding problem:

puts,

n {p, g}
- £(9)-

- collision.

Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#HS =#T =7r, #(5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

How the quantum

Start from uniforn
Repeat ~0.6 - 2"/
Negate as 71

if S contains

Repeat ~0.7 - 4,
For each T:

Diffuse as

For each S:
Diffuse as

Now high probabil
that 7 contains cc
Cost 7+2"/4/1T. (



em:

Data structure D(S) capturing
the generalized computation:
the set S; the multiset f(95);
the number of collisions in §.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

#S = HT =7, #(SNT)=7r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk worl

Start from uniform superpos
Repeat ~0.6 - 2" /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across a
For each S:

Diffuse ag 7 across a

Now high probability
that 7 contains collision.
Cost r+2"/+/r. Optimize:



Data structure D(S) capturing
the generalized computation:
the set §; the multiset f(95);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS =H#HT =71, #5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T
By a quantum walk

find S containing a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:

Diffuse ag 7 across all S.
For each §S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.
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How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify
(#(5SN
reduce a
Analyze

e.g. n =
0 negati

Pr|
Pr
Pr
Pr
Pr
Pr
Pr

dSS
dSS

dSS

dSS

dSS
dSS

dSS
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Right cc
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a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) acc
(#(5 N {p.q}). #

reduce a to low-di

Analyze evolution

eg.n=15 r =1

0 negations and 0

Pr|

Pr
Pr
Pr
Pr
Pr
Pr

el e e e i e e e

~
~
5

(

&

Right column is si



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /r times:
Negate as 7
if S contains collision.
Repeat 0.7 - /7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(S5 N {p.q}). #(T N1p. g

reduce a to low-dim vector.
Analyze evolution of this ve

e.g. n = 1b, r = 1024, after
0 negations and O diffusions

Pr|class (0, 0)] ~ 0.938;

Prlclass (0, 1)] ~ 0.000; +
Prclass (1,0)] ~ 0.000; +
Prlclass (1,1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr[class (2,1)] ~ 0.000; +
Pr[class (2,2)] ~ 0.001; +

Right column is sign of as 7



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
0 negations and 0 diffusions:

Pr|class (0, 0)] ~ 0.938;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; +
Prlclass (1, 1)] ~ 0.060; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.001; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
1 negation and 46 diffusions:

Pr|class (0, 0)] ~ 0.935;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.057; +
Prlclass (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.008; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
2 negations and 92 diffusions:

Pr|class (0, 0)] ~ 0.918;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.059; +
Prlclass (1,2)] ~ 0.001; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.022; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
3 negations and 138 diffusions:

Pr|class (0, 0)] ~ 0.897;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.058; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.042; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
4 negations and 184 diffusions:

Pr|class (0, 0)] ~ 0.873;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.070; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
5 negations and 230 diffusions:

Pr|class (0, 0)] ~ 0.838;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.003; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.104; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
6 negations and 276 diffusions:

Pr|class (0, 0)] ~ 0.800;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.051; +
Prlclass (1, 2)] ~ 0.006; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.141; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
[ negations and 322 diffusions:

Pr|class (0, 0)] ~ 0.758;

Pr[class (0, 1)] ~ 0.002; +
Pr|class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.047; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.184; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
8 negations and 368 diffusions:

Pr|class (0, 0)] ~ 0.708;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.046; +
Prlclass (1, 2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.234; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
O negations and 414 diffusions:

Pr|class (0, 0)] ~ 0.658;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.042; +
Prlclass (1, 2)] ~ 0.009; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.287; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
10 negations and 460 diffusions:

Pr|class (0, 0)] ~ 0.606;

Pr[class (0, 1)] ~ 0.003; +
Pr|class (1,0)] ~ 0.002; —
Prlclass (1,1)] ~ 0.037; +
Prlclass (1,2)] ~ 0.013; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.338; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
11 negations and 506 diffusions:

Pr|class (0, 0)] ~ 0.547;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.036; +
Prlclass (1,2)] ~ 0.015; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.394; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
12 negations and 552 diffusions:

Pr|class (0, 0)] ~ 0.491;

Prlclass (0, 1)] ~ 0.004; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.032; +
Prlclass (1,2)] ~ 0.014; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.455; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
13 negations and 598 diffusions:

Pr|class (0, 0)] ~ 0.436;

Pr[class (0, 1)] ~ 0.005; +
Pr|class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.026; +
Prlclass (1,2)] ~ 0.017; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.513; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
14 negations and 644 diffusions:

Pr|class (0, 0)] ~ 0.377;

Pr[class (0, 1)] ~ 0.006; +
Prclass (1,0)] ~ 0.004; —
Prlclass (1,1)] ~ 0.025; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.566; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
15 negations and 690 diffusions:

Pr|class (0, 0)] ~ 0.322;

Pr[class (0, 1)] ~ 0.005; +
Prclass (1,0)] ~ 0.004; —
Prclass (1,1)] ~ 0.021; +
Prlclass (1,2)] ~ 0.023; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.623; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
16 negations and 736 diffusions:

Pr|class (0, 0)] ~ 0.270;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.017; +
Prlclass (1,2)] ~ 0.022; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.680; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
17 negations and 782 diffusions:

Pr|class (0, 0)] ~ 0.218;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.005; —
Prlclass (1,1)] ~ 0.015; +
Prlclass (1,2)] ~ 0.024; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.730; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
18 negations and 828 diffusions:

Pr|class (0, 0)] ~ 0.172;

Pr[class (0, 1)] ~ 0.006; +
Pr|class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.011; +
Prlclass (1, 2)] ~ 0.029; +
Pr|class (2,1)] ~ 0.001; +
Prclass (2,2)] ~ 0.775; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.
For each S:

Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
19 negations and 874 diffusions:

Pr|class (0, 0)] ~ 0.131;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.008; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.816; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
20 negations and 920 diffusions:

Pr|class (0, 0)] ~ 0.093;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.007; +
Prlclass (1,2)] ~ 0.027; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.857; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
21 negations and 966 diffusions:

Pr|class (0, 0)] ~ 0.062;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.004; +
Prlclass (1,2)] ~ 0.030; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.890; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
22 negations and 1012 diffusions:

Pr|class (0, 0)] ~ 0.037;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.910; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
23 negations and 1058 diffusions:

Pr|class (0, 0)] ~ 0.017;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.930; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
24 negations and 1104 diffusions:

Pr|class (0, 0)] ~ 0.005;

Pr[class (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.948; +

Right column is sign of ag .



How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2™ /7 times:
Negate as 71
if S contains collision.
Repeat 0.7 - \/7 times:
For each T:
Diffuse ag 7 across all S.

For each §S:
Diffuse ag 7 across all T.

Now high probability
that 7 contains collision.
Cost 742" /+/r. Optimize: 227/3.

Classify (S, T) according to
(#(5 N {p.4}). #(T 0 {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
25 negations and 1150 diffusions:

Pr|class (0, 0)] ~ 0.000;

Pr[class (0, 1)] ~ 0.008; +
Pr|class (1,0)] ~ 0.008; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.031; +
Pr|class (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.952; +

Right column is sign of ag .



How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 26 negations and 1196 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.002; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.008; +
OE)_e;C | T Pr|class (1,0)] ~ 0.008; —
THUSE @51 atross all 1, Prlclass (1,1)] ~ 0.000; —
Now high probability Prlclass (1,2)] ~ 0.035; +
that 7 contains collision. Prlclass (2,1)] ~ 0.002; +
Cost 742" /+/r. Optimize: 22"/3. Prclass (2,2)] ~ 0.945; +
Right column is sign of ag .




How the quantum walk works: Classify (S, T) according to
Start from uniform superposition. (#(5 N 1P, a}). #_(T N1ip.a}))
e reduce a to low-dim vector.
Repeat ~0.6 - 2" /r times: | |
Analyze evolution of this vector.
Negate as 71
if S contains collision. e.g. n = 15, r = 1024, after
Repeat ~0.7 - /7 times: 27 negations and 1242 diffusions:
FOE)_efaFCh I 1S Pr|class (0,0)] ~ 0.011; —
. ! UZG;S'T ALTOSs all > Pr[class (0, 1)] ~ 0.007; +
OE)_e;C | T Pr|class (1,0)] ~ 0.007; —
THUSE @51 atross all 1, Prclass (1,1)] ~ 0.001; —
Now high probability Prlclass (1,2)] ~ 0.034; +
that 7 contains collision. Pr|class (2,1)] ~ 0.003; +
Cost 742" /+/r. Optimize: 22"/3. Prlclass (2,2)] ~ 0.938; +
Right column is sign of ag .




- quantum walk works:

m uniform superposition.
~0.6 - 2 /7 times:

€ asT
~contains collision.

t ~0.7 - /7 times:
each T:
iffuse ag 7 across all S.

each S:
)iffuse ag 7 across all T

h probability
ontains collision.
2"/ /r. Optimize: 227/3

Classify (S, T) according to
(#(5 N {p.q}). #(T N {p. 9}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|

ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034; +
class (
class (

Right column is sign of ag 1.
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walk works:

1 superposition.

r times:

collision.
/r times:

~ across all S.

T~ across all T.

Ity
llision.
Jptimize:

22n/3_

Classify (S, T) according to
(#(5 N {p.4}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034;
Prlclass (2,1)] ~ 0.003;
Prlclass (2, 2)] ~ 0.938;

Right column is sign of ag 1.

Subset-sum walk (

Consider f definec
f(1, /1) = X(J1)

for S C{1,..., n
f(2,h) =t —X(.
for Jp C{n/2+1

Good chance of ui
collision 2(J1) =1

n/2 4+ 1 bits of in
so quantum walk

Easily tweak quan
to handle more co

ignore > (J1) = X
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22n/3_

Classify (S, T) according to
(#(S N {p.q}). #(T N{p.q}));
reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|
Pr|
Pr|
Pr|
Pr|
Pr|

ass (0,0)] ~ 0.011; —
ass (0,1)] ~ 0.007; +
ass (1,0)] ~ 0.007; —
| ~ 0.001; —
ass (1,2)] ~ 0.034; +
ass (2,1)] ~ 0.003; +
ass (2,2)] ~ 0.938; +

O O O O O O O
Q
U
n

AN AN AN AN AN AN /N
L
 —
—

Right column is sign of ag 1.

Subset-sum walk (0.333...)

—-—

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)r).
n/2 4+ 1 bits of input,

so quantum walk costs on/3

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.



Classify (S, T) according to
(#(5 N {p.4}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n = 1b, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr|class (1,0)] ~ 0.007; —
Prclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

Subset-sum walk (0.333...)

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2, ) =t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).
n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.



(S, T) according to
{p.q3), #(T N 1p. q}));

, to low-dim vector.
evolution of this vector.

15, r = 1024, after
rions and 1242 diffusions:

(0,0)] ~ 0.011;
(0,1)] ~ 0.007;
(1,0)] ~ 0.007;
(1,1)] ~ 0.001;
(1,2)] ~ 0.034;
(2,1)] ~ 0.003;
(2,2)] ~ 0.938;

lumn is sign of ag 7.

Subset-sum walk (0.333...)

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Generali

Choose
(Origina
s the sp

Comput:
for each

Similarly
subsets
Comput
for each
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(T N {p. q}));

m vector.
of this vector.

024, after

1242 diffusions:
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Subset-sum walk (0.333...)

Generalized modul

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2, )=t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3,

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r v
(Original moduli a
Is the special case

Take set 511, #5-
J11 € 511 = J11 ¢
(Original algorithn
of all J11 CA{1,..
Compute X (J11) 1
for each J11 € 511

Similarly take a se
subsets of {n/4 +
Compute t; — (-
for each J1o € 515



“tor.
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Subset-sum walk (0.333...)

Generalized moduli

Consider f defined by
f(1,J41) = X(4)

for J1 C{1,..., n/2};
f(2,h2) =t = 1(h)

for h C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3.

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r with M ~
(Original moduli algorithm
Is the special case r = on/4

Take set S11, #5511 = r, wh
J11 € S11=> J11 CA1,..., ?
(Original algorithm: 577 is t
of all J11 C{1,..., n/4}.)
Compute X (J11) mod M
for each Ji1 € Sq1.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/
Compute t; — X(J12) mod /
for each J1p € 57».



Subset-sum walk (0.333...)

Generalized moduli

Consider f defined by
f(1, 1) = 2(4h)

for S C{1,..., n/2};
f(2, )=t —2(h)

for b C{n/2+1,..., n}.

Good chance of unique
collision (/1) =t — X(J)o).

n/2 4+ 1 bits of input,

so quantum walk costs on/3,

Easily tweak quantum walk
to handle more collisions,

ignore X (J1) = X(J7), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5511 = r, where

of all J11 CH{1,..., n/4}.)
Compute >(J11) mod M
for each J11 € 511.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».
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Generalized moduli

- £ defined by
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ance of unique
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bits of input,
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veak quantum walk
e more collisions,

(J1) = X(J7), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 C{1,..., n/4}.)
Compute >(J11) mod M
for each J11 € 511.

Similarly take a set S1p of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1o.

Find all
> (J11)
e, 2(J
where Jj
Comput
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Assumin
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0.333...)

Generalized moduli

ique

E— 2 ().

Dut,

~osts 2"/3.

-um walk

lisions,
a7
Jq1), etc.

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5511 = r, where

of all J11 CH{1,..., n/4}.)
Compute X (J11) mod M
for each J11 € 511.

Similarly take a set S17 of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».

Find all collisions

2 (J11) =t1 — 2 (.
e, 2(J1) =t
where J1 = J11 U
Compute each (.

Similarly $S71, S99
list of Jp with X (.
= each t — X ()

Find collisions (.-

Success probabilit

at finding any par
2(J)=1t, X(J1) =

Assuming typical «
cost 7, since M ~



Generalized moduli

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 C{1,..., n/4}.)
Compute >(J11) mod M
for each Ji1 € Sq1.

Similarly take a set S1p of r
subsets of {n/4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1o.

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with X(Jh) =1t — 1
= each t — X ().

Find collisions > (/1) =t —

Success probability r#/2"
at finding any particular J w
X(J)=1t, X(J1))=t1 (mo

Assuming typical distributiol
cost 7, since M ~ r.



Generalized moduli

Choose M, t1, r with M ~ r.
(Original moduli algorithm
is the special case r = 27/4))

Take set S11, #5171 = r, where

of all J11 CH{1,..., n/4}.)
Compute >(J11) mod M
for each Ji1 € S11.

Similarly take a set S17 of r
subsets of {n/4+4+1,..., n/2}.
Compute t; — 2(J12) mod M
for each J1o € S1».

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with
>(J)=t, X(J1)=¢t1 (mod M).

Assuming typical distribution:
cost 7, since M ~ r.
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M, t1, r with M ~ r.
| moduli algorithm
ecial case r = 27/4))

511, #511 = r, where

J11 € S511.

' take a set Syp of 7

Jip € S51».

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with X(h) =t — 1
= each t — X ().

Find collisions >(J1) =t — (/).

Success probability r# /2"
at finding any particular J with

Y(J)=t T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.
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vith M ~ r.
lgorithm
— 2'"'/4.)

1 = T, Where
n: S11 is the set

nod M

t S1p of r

/12) mod M

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with

Y(J)=t¢ T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli |

Capture execution
generalized modul
as data structure
D(S11, 512, 521, S
Easy to move
from S;; to adjace

Convert into quan
cost 7 + /7212
20.272, for r ~ 20.271

Use “amplitude ar
to search for corre
Total cost 2937
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1 /4}.

he set

Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J; = J11 U Jq1o.
Compute each X (J1).

Similarly 521, S99 =
list of Jo with () =t — 1
= each t — X ().

Find collisions >(J1) =t — (/).

Success probability r# /2"
at finding any particular J with

Y(J)=t T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithn
as data structure

D(S11. 512, 521, 522).

Easy to move

from 5;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"2 /72,
2021 for ¢ ay 20-270

Use “amplitude amplificatio
to search for correct %7.
Total cost 29-3".



Find all collisions

> (J11) = t1 — X(J12),

e, 2(J1) =t1 (mod M)
where J1 = J11 U J1o.
Compute each X (/7).

Similarly 521, S99 =
list of Jo with () =t —
= each t — X ().

Find collisions >(J1) =t — X(J).

Success probability r#/2"
at finding any particular J with

Y(J)=t¢ T(J)=t; (mod M)

Assuming typical distribution:
cost 7, since M ~ r.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 /72,
20-21 for ¢ g 20-270

Use “amplitude amplification”
to search for correct %7.
Total cost 29-37.



collisions

=11 — X (J12),

'1) — tl (mod M)
= J11 U J12.

e each X(J1).

501, S0 =
 with 2(h) =t — ¢
t—2(Jh).

lisions 2(J1) =t — X(J2).

probability 7% /2"
g any particular J with

t, 2(J1)=t1 (mod M).

g typical distribution:
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Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from 5;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 72,
2021 for ¢ ay 20-270

Use “amplitude amplification”

to search for correct %7.
Total cost 29-3".
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=
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Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 /72,
20-27 for ¢ g 20-270

Use “amplitude amplification”

to search for correct %7.

Total cost 2937
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Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S511, 512, 521, 522).

Easy to move

from $;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"/2 72,
2021 for ¢ ay 20-270

Use “amplitude amplification”

to search for correct %7.

Total cost 2037

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with “representations’ Idea
2010 Howgrave-Graham—Jot
Subset-sum exponent 0.241
new record.

ower-level improvement:
Ambainis uses ad-hoc
“combination of a hash tabl
and a skip list” to ensure
history-independence.

We use radix trees.

Much easier, presumably fas



Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm
as data structure

D(S11. 512, 521, 522).

Easy to move

from S;; to adjacent T;;.

Convert into quantum walk:
cost 7 + /r2"2 /72,
20-21 for ¢ g 20-270

Use “amplitude amplification”

to search for correct %7.
Total cost 2037

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk

with “representations” idea of
2010 Howgrave-Graham—Joux.
Subset-sum exponent 0.241 . . .;
new record.

Lower-level improvement:
Ambainis uses ad-hoc
“combination of a hash table
and a skip list” to ensure
history-independence.

We use radix trees.

Much easier, presumably faster.



