
Deploying

high-security cryptography

Daniel J. Bernstein

University of Illinois at Chicago

http://cr.yp.to/talks.html

#2012.03.08-2

http://xkcd.com/538/

http://cr.yp.to/talks.html#2012.03.08-2
http://cr.yp.to/talks.html#2012.03.08-2
http://xkcd.com/538/


nacl.cr.yp.to: NaCl (“salt”),

a new cryptographic library.

Core development team:

Tanja Lange (Eindhoven); Peter

Schwabe (Academia Sinica); me.

Acknowledgments:

code contributions from

Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),

Emilia Käsper (Leuven),

Adam Langley (Google),

Bo-Yin Yang (Academia Sinica).

http://nacl.cr.yp.to


The basic question

You’re a programmer.

Your program will send data

through a dangerous link:

� WiFi at hotel, airport,

coffee shop, etc.

� Firewalled corporate network

with thousands of computers.

� Your own hard drive,

communicating to you.

You’re worried about espionage,

corruption, sabotage.

How to protect the data?



Often you’re happy with

PGP, SSH, SSL, etc.

Great!



Often you’re happy with

PGP, SSH, SSL, etc.

Great!

But what do you do

when the existing solutions

aren’t good enough?

Need to program something.



Often you’re happy with

PGP, SSH, SSL, etc.

Great!

But what do you do

when the existing solutions

aren’t good enough?

Need to program something.

Focus of this talk:

using NaCl to deploy

high-security cryptography

in applications that

don’t have cryptography yet.



Case study: Retrieving

http://www.kuleuven.be.

1. Browser ! web server:

GET / HTTP/1.1

Host: www.kuleuven.be

2. Web server ! browser:

HTTP/1.1 200 OK

Date: Wed, 07 Mar 2012

10:23:23 GMT

Server: Apache/1.3.37

(Unix) AuthMySQL/2.20

mod ssl/2.8.28

OpenSSL/0.9.7e

Content-Type: text/html etc.



These network packets

have no security:

no confidentiality,

no integrity, no availability.

Network eavesdropper “Eve”

easily sees and controls

all packets on network.

Espionage: Eve sees data.

Corruption: Eve modifies data.

Sabotage: Eve kills connection

(e.g., forging TCP RST packet).

How do we add security?



Actually, retrieving

http://www.kuleuven.be

has even more steps.

1. Browser ! DNS server:

Where is www.kuleuven.be?

2. DNS server ! browser:

www.kuleuven.be has IP

address 134.58.64.12.

3. Browser ! 134.58.64.12:

GET / HTTP/1.1 etc.

4. 134.58.64.12 ! browser:

HTTP/1.1 200 OK etc.



Actually even more steps:

proxies, redirects, images, etc.

1. Browser ! DNS cache:

Where is www.kuleuven.be?

2. DNS cache ! DNS server:

Where is www.kuleuven.be?

3. DNS server ! DNS cache:

www.kuleuven.be has IP

address 134.58.64.12.

4. DNS cache ! browser:

www.kuleuven.be has IP

address 134.58.64.12.



5. Browser ! 134.58.64.12:

GET / HTTP/1.1 etc.

6. 134.58.64.12 ! browser:

HTTP/1.1 302 Found

Location:

http://www.kuleuven.be

/kuleuven/ etc.

7. Browser ! 134.58.64.12:

GET /kuleuven/ HTTP/1.1 etc.

8. 134.58.64.12 ! browser:

HTTP/1.1 200 OK etc.

+ more servers, more packets : : :



Browser and kuleuven.be

both support SSL.

Encrypts client’s HTTP requests;

encrypts and authenticates

server’s HTTP responses.

My top concern with SSL:

� Wide deployment is painful.

Other concerns:

� Doesn’t even try to stop DoS.

� Limited confidentiality.

� Too many trusted parties.

� Too complex to be secure.



“DNSCrypt”:

New OpenDNS project

using NaCl for easy-to-deploy

confidentiality, integrity,

availability of packets between

browser $ DNS cache.

2011.12: First release—

free DNSCrypt software for Mac.

2012.02: “10’s of 1000’s more

have downloaded DNSCrypt for

Mac and are running it today.”



If Eve forges packet

DNS cache ! browser,

DNSCrypt simply drops it,

waits for correct packet.

Eve can still deny service

by flooding the network—

but floods cost much more,

so Eve has fewer victims.

Clear availability benefit.



Eve still denies service

by forging packets

DNS cache $ DNS server

or browser $ web server.

Fix: Protect those packets too!

“DNSCurve” for DNS server,

“HTTPCurve” for HTTP server.

Have prototypes using NaCl.

Should end up reasonably easy

to deploy confidentiality,

integrity, availability

for every Internet packet.



Why bother encrypting DNS

if Eve sees 134.58.64.12?



Why bother encrypting DNS

if Eve sees 134.58.64.12?

Answer 1: Some DNS names

are secrets, effectively

used for access control.



Why bother encrypting DNS

if Eve sees 134.58.64.12?

Answer 1: Some DNS names

are secrets, effectively

used for access control.

Answer 2: cancer.webmd.com

and fitness.webmd.com

are on the same web server.



Why bother encrypting DNS

if Eve sees 134.58.64.12?

Answer 1: Some DNS names

are secrets, effectively

used for access control.

Answer 2: cancer.webmd.com

and fitness.webmd.com

are on the same web server.

Answer 3: Use Tor.



Why bother encrypting DNS

if Eve sees 134.58.64.12?

Answer 1: Some DNS names

are secrets, effectively

used for access control.

Answer 2: cancer.webmd.com

and fitness.webmd.com

are on the same web server.

Answer 3: Use Tor.

Answer 4: Encryption is

practically free along with

authentication. Making it optional

would be pointless complexity.



Cryptographic library APIs

Alice using a

typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.

Hash encrypted packet.

Read RSA key from wire format.

Use key to sign hash.

Read Bob’s key from wire format.

Use key to encrypt signature etc.

Convert to wire format.

Plus more code:

allocate storage,

handle errors, etc.



Gutmann cryptlib library: “high-

level interface” that “provides

anyone with the ability to add

strong security capabilities to

an application in as little as half

an hour, without needing to

know any of the low-level details

that make the encryption or

authentication work.”

Alice using cryptlib:

Look at the first code segment

in the cryptlib manual

(“the best way to illustrate

what cryptlib can do”).



cryptCreateEnvelope(

&cryptEnvelope,cryptUser,

CRYPT_FORMAT_SMIME);

cryptSetAttributeString(

cryptEnvelope,

CRYPT_ENVINFO_RECIPIENT,

recipientName,recipientNameLength);

cryptPushData(cryptEnvelope,

message,messageSize,

&bytesIn);

cryptFlushData(cryptEnvelope);

cryptPopData(cryptEnvelope,

encryptedMessage,encryptedSize,

&bytesOut);

cryptDestroyEnvelope(cryptEnvelope);



Start with cryptInit.

Also check that each function

returns CRYPT_OK.

(Page 35 of manual:

the wrong code without checks

is included “for clarity”.)

Also loop around

cryptPushData, checking

bytesIn. (Page 53 of manual.)

Data is encrypted

without authentication.

Do more work to add signatures.



Alice using NaCl:

c = crypto_box(m,n,pk,sk)



Alice using NaCl:

c = crypto_box(m,n,pk,sk)

32-byte secret key sk.

32-byte public key pk.

24-byte nonce n.

c is 16 bytes longer than m.

All objects are C++

std::string variables

represented in wire format,

ready for storage/transmission.

If crypto_box runs out of

memory, it raises an exception.



Bob verifying, decrypting:

m=crypto_box_open(c,n,pk,sk)

Initial key generation:

pk = crypto_box_keypair(&sk)



Bob verifying, decrypting:

m=crypto_box_open(c,n,pk,sk)

Initial key generation:

pk = crypto_box_keypair(&sk)

Can instead use signatures

for public messages:

pk = crypto_sign_keypair(&sk)

64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)



More languages

C: released.

Disadvantages: strings are

passed as pointers and lengths;

must check return value

from crypto_*_open.

Advantages: No heap usage.

Controlled stack usage.

Most functions cannot fail.

C++: released.

Python: bindings online

from Sean Lynch (Facebook),

Adam Langley, Jan Mojzis;

have integrated; testing.



To the extent possible,

identical—purely functional—

interface in every language.

Python:

sm = crypto_sign(m,sk)

C++:

sm = crypto_sign(m,sk)

C:

crypto_sign(sm,&smlen,

m,mlen,sk)



Security features

NaCl systematically avoids

all array indices

that depend on secret data.

NaCl systematically avoids

all branch conditions

that depend on secret data.

NaCl does not decrypt

unless message is authenticated.

Verification procedure rejects

all forgeries in constant time.



NaCl has deterministic

crypto_box and crypto_sign.

Randomness only for keypair.

Avoids PS3 signing disaster

and many potential problems.

Also simplifies testing. NaCl uses

automated test battery from

eBACS (ECRYPT Benchmarking

of Cryptographic Systems).

NaCl pays attention to

cryptanalysis and makes

very conservative choices

of cryptographic primitives.



NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.



NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.

Remaining risk:

Users find NaCl too slow )

switch to low-security libraries

or disable crypto entirely.



NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.

Remaining risk:

Users find NaCl too slow )

switch to low-security libraries

or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.

Keeps up with the network.



Speed

NaCl operations per second

for any common packet size,

using AMD Phenom II X6 1100T

CPU, 189e on kieskeurig.be:

� crypto_box: >80000.

� crypto_box_open: >80000.

� crypto_sign_open: >70000.

� crypto_sign: >180000.

Putting this into perspective:

80000 50-byte packets/second

network usage is 32 Mbps

plus per-packet overhead.

http://kieskeurig.be


But wait, it’s even faster!

1. Pure secret-key crypto

for longer packets:

80000 1500-byte packets/second

fill up a 1 Gbps link.

2. Pure secret-key crypto

for many packets

from same public key,

if application splits

c = crypto_box(m,n,pk,sk)

into

k = crypto_box_beforenm(pk,sk)

and then

c = crypto_box_afternm(m,n,k).



3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn’t help much

for forgeries under new keys,

but flooded server can

continue providing fast service

to known keys.)

4. Fast batch verification,

doubling speed of

crypto_sign_open

for valid signatures.

(Not integrated yet.)



News: We’ve just finished initial

NaCl smartphone optimizations.

800 MHz Cortex A8, 1 core,

operations per second:

� crypto_box: 1500.

� crypto_box_open: 1500.

� crypto_sign_open: 1200.

� crypto_sign: 2100.

Secret-key crypto:

2.78 Gbps for authenticator.

1.14 Gbps for cipher.



Cryptographic details

The main work we did:

achieve these speeds

without compromising security.

ECC, not RSA:

much stronger security record.

Curve25519, not NSA/NIST

curves: twist-security et al.

Salsa20, not AES:

much larger security margin.

Poly1305, not HMAC:

information-theoretic security.

EdDSA, not ECDSA:

collision-resilience et al.



Tasks outside NaCl

NaCl key generation

relies completely on OS

as a source of random bytes:

e.g. /dev/urandom.

OS has much better access

to entropy sources than

any individual library does.

Reviewing centralized OS code

is much easier than reviewing

all the randomness-generation

code in libraries that decide

to do the job themselves.



NaCl relies on programmer

to supply a nonce n:

a message number, never reused.

One safe choice of nonce:

24 random bytes from the OS.

Or: 1 for first message,

2 for second message, etc.

Smaller; faster; allows

easy replay detection;

but sometimes a privacy leak.



Protocol integration

Have an unprotected protocol.

Want to apply NaCl.

What to do?

How do DNSCrypt etc. use NaCl?

Easy: Before sending a packet,

feed it to crypto_box.

Transmit pk, n, c.

When a packet arrives,

feed it to crypto_box_open,

and throw it away if it’s bad.



How does client know

that server will tolerate

cryptographic packets?

DNSCrypt answer:

OpenDNS will tolerate

cryptographic packets.

DNSCurve answer:

Look for DNSCurve indicator

in name of the DNS server.

HTTPCurve answer:

Look for DNS alias (CNAME)

to an HTTPCurve indicator.



How does client find

server’s public key?

DNSCrypt answer:

Use DNS TXT lookup to retrieve

signed short-term public key from

server. Check signature under

long-term OpenDNS public key

included with DNSCrypt software.

DNSCurve answer:

Look for DNSCurve public key

in name of the DNS server.

HTTPCurve answer: Similar.


