
Jet list decoding

D. J. Bernstein

University of Illinois at Chicago

Thanks to:

NSF 1018836

NIST 60NANB10D263

No thanks to:

IEEE violating IEEE policies

and forcing authors

to take papers offline; see

cr.yp.to/writing/ieee.html

http://cr.yp.to/writing/ieee.html


Decoding

The �w-error decoding problem

for a linear code C � Fnq :

� Output: c 2 C.

� Input: v 2 Fnq with jv � cj � w.

Note that output is unique if

w < 1
2 minfjcj : c 2 C � f0gg.

Notation:

jvj = #fi : vi 6= 0g
= Hamming weight of v;

e.g. jv � cj = #fi : vi 6= cig
= Hamming distance

from v to c.



Reed–Solomon decoding

Choose integer t � 0,

integer n � t, prime power q � n,

distinct a1; : : : ; an 2 Fq.

Define C � Fnq as the code�
ev f : f 2 Fq[x]; deg f < n� t

	

where ev f = (f(a1); : : : ; f(an)).

minfjcj : c 2 C � f0gg = t + 1.

Exception: 1 if t = n.

1960 Peterson in some cases,

1961 Gorenstein–Zierler in more,

1965 Forney in general:

�bt=2c-error decoding for C

takes time nO(1) if q 2 nO(1).



Big research direction #1:

Decode faster.

1968 Berlekamp:

�bt=2c-error decoding for C

costs O(nt) operations in Fq
plus root-finding in Fq.

Time n2+o(1) for typical t; q.

1976 Justesen,

independently 1977 Sarwate:

Faster algorithm for large n,

n(lgn)2+o(1) instead of O(nt).

Time n1+o(1) for typical t; q.

Extensive literature

on further speedups.



Decoding more codes

Big research direction #2:

Modify C to expand and improve

tradeoffs between q, n, #C, w.

e.g. Replace C � Fnq , q = 2m,

with F2-subfield subcode Fn2 \ C.

#C=qn�t ) #(Fn2\C)�2n�mt.

Any �w-error decoder for C

also works for Fn2 \ C.

Can take Fn2 \ C where C is RS,

but better to twist carefully.

Obtain classical F2 Goppa codes

decoding twice as many errors.

Better for large n: AG codes.



List decoding

Big research direction #3:

Decode more errors for same C.

Maybe output c isn’t unique.

Decoding problem asks for

some c with jv � cj � w.

List-decoding problem asks for

all c with jv � cj � w.

Trivial approach: Brute force.

e.g. guess w � bt=2c errors and

use any �bt=2c-error decoder.

(For list decoding,

use a covering set of guesses.)

Very slow for large w � bt=2c.



Reed–Solomon list decoding

1996 Sudan for smaller w, 1998

Guruswami–Sudan in general:

If w < n�
p
n(n� t� 1) then

�w-error list decoding for C =�
ev f : f 2 Fq[x]; deg f < n� t

	

takes time nO(1) if q 2 nO(1).



Reed–Solomon list decoding

1996 Sudan for smaller w, 1998

Guruswami–Sudan in general:

If w < n�
p
n(n� t� 1) then

�w-error list decoding for C =�
ev f : f 2 Fq[x]; deg f < n� t

	

takes time nO(1) if q 2 nO(1).

2001 Koetter–Vardy:

Assume q = 2m; write n0 = n=2.

If w < n0 �
p
n0(n0 � t� 1) then

�w-error list decoding for Fn2 \ C

takes time nO(1) if q 2 nO(1).

n�
p
n(n�t�1) � t=2 + t2=8n.

n0�
p
n0(n0�t�1) � t=2 + t2=4n.



Guruswami–Sudan cost analysis:

O(n3`6) operations in Fq where

` is an algorithm parameter.

Extensive literature on speedups

and adaptations to more codes.

Critical Howgrave-Graham idea,

with state-of-the-art subroutines:

n1+o(1)k1+o(1)`<3 where

k is another parameter; k < `.

For Howgrave-Graham analysis

see 2010 Cohn–Heninger

(which also adapts to AG etc.),

2011 Bernstein “simplelist”

(combining with Koetter–Vardy).



What are these parameters k; `?

Obviously critical for speed.

Why not take k; ` to be small?

Answer: Decreasing k; ` forces

gap between w and its limit.

Almost all list-decoding methods

have essentially the same gap.



What are these parameters k; `?

Obviously critical for speed.

Why not take k; ` to be small?

Answer: Decreasing k; ` forces

gap between w and its limit.

Almost all list-decoding methods

have essentially the same gap.

But not all!

Much better k; `; w tradeoff in

“rational” list-decoding methods:

2007 Wu “New list decoding”;

2008 Bernstein “goppalist”;

2011 Bernstein “jetlist”.



Jets

The set of 1-jets over R

is the quotient ring R[�]=�2.

Analogous to the set of complex

numbers C = R[i]=(i2 + 1),

but �2 = 0 while i2 = �1.

Multiplication of jets:

(a+ b�)(c+d�) = ac+ (ad+ bc)�.

Typical construction of a jet:

differentiable f : R! R induces

jet f(x + �) = f(x) + f 0(x)�

for each x 2 R.

e.g. sin(x + �) = sinx + (cosx)�.



Recap for late sleepers

50 years ago: Polynomial-time

decoding of �bt=2c errors

in length-n Reed–Solomon code�
ev f : f 2 Fq[x]; deg f < n� t

	
.

Big research directions since then:

3. Decode more errors.

Output might not be unique:

have list of possible codewords.

2. Improve choice of code:

classical Goppa codes, AG, et al.

1. Decode faster.



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z

= (�4; 4)Z + (3; 3)Z.



Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= f(b; 24a + 17b) : a; b 2 Zg.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (�1; 7)Z + (1; 17)Z

= (�1; 7)Z + (3; 3)Z

= (�4; 4)Z + (3; 3)Z.

(�4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (�3;�3).



OO

//

�

�



OO

//

�

�

�



OO

//

�

�

�
�



OO

//

�

�

�
��



OO

//

�
��

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z

= (�1; 8)Z + (3; 1)Z.



Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (�1; 8)Z + (1; 17)Z

= (�1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (�3;�1).



OO

//

� � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � �



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R

= (10; 1110)R + (111; 1)R.



Polynomial lattices

Define R = F2[x],

r0 = (101000)x = x5 + x3 2 R,

r1 = (10011)x = x4 + x + 1 2 R,

L = (0; r0)R + (1; r1)R.

What is the shortest

nonzero vector in L?

L = (0; 101000)R + (1; 10011)R

= (10; 1110)R + (1; 10011)R

= (10; 1110)R + (111; 1)R.

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.



Degree of (q; r) 2 F2[x]� F2[x]

is defined as maxfdeg q; deg rg.

Can use other metrics,

or equivalently rescale L.

e.g. Define L � F2[
p
x]� F2[

p
x]

as (0; r0
p
x)R + (1; r1

p
x)R.

Successive generators for L:

(0; 101000
p
x), degree 5:5.

(1; 10011
p
x), degree 4:5.

(10; 1110
p
x), degree 3:5.

(111; 1
p
x), degree 2.



Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
p
x)R + (1; r1

p
x)R.

Successive generators for L:

(0; 101000
p
x), degree 5:5.

(1; 10111
p
x), degree 4:5.

(10; 110
p
x), degree 2:5.

(1101; 11
p
x), degree 3.



For any r0; r1 2 R = Fq[x]

with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi � bri=ri+1c qi+1.

Then qir1 � ri (mod r0).

Lattice view: Have

(0; r0
p
x)R + (1; r1

p
x)R =

(qi; ri
p
x)R + (qi+1; ri+1

p
x)R.

Can continue until ri+1 = 0.

gcdfr0; r1g = ri= leadcoeff ri.



Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
p
x � (deg r0)=2.

Then deg qj � (deg r0)=2 so

deg(qj ; rj
p
x) � (deg r0)=2.

Shortest nonzero vector.

(qj+�; rj+�
p
x) has degree

deg r0
p
x� deg(qj ; rj

p
x)

for some � 2 f�1; 1g.

Shortest independent vector.



Proof of “shortest”:

Take any (q; r
p
x) in lattice.

(q; r
p
x) = u(qj ; rj

p
x)

+ v(qj+�; rj+�
p
x)

for some u; v 2 R.

qjrj+� � qj+�rj = �r0

so v = �(rqj � qrj)=r0

and u = �(qrj+� � rqj+�)=r0.

If deg(q; r
p
x)

< deg(qj+�; rj+�
p
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+�; rj+�
p
x)

is a multiple of (qj ; rj
p
x).



Classical binary Goppa codes

Parameters determining the code:

integers n � 0, m � 1, t � 0;

distinct a1; : : : ; an 2 F2m ;

monic g 2 F2m [x] of degree t

with g(a1) � � � g(an) 6= 0.

The code: Define Γ � Fn2
as set of (c1; : : : ; cn) with
P

i ci=(x� ai) = 0 in F2m [x]=g.

lg #Γ � n�mt.

minfjcj : c 2 Γ� f0gg � t + 1.

Better bounds in the BCH case

g = xt and in many other cases.



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].

Fact: If jej � t=2

then E=D = rj=qj so

D is monic denominator of rj=qj .



Say we receive v = c + e.

Define D;E 2 F2m [x] by

D =
Q

i:ei 6=0(x� ai) and

E =
P

iDei=(x� ai).

Lift
P

i vi=(x�ai) from F2m [x]=g

to s 2 F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
p
x) in the lattice L =

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x].

Fact: If jej � t=2

then E=D = rj=qj so

D is monic denominator of rj=qj .

ei = 0 if D(ai) 6= 0.

ei = E(ai)=D
0(ai) if D(ai) = 0.



Why does this work?
P

i ei=(x� ai) = E=D and
P

i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.



Why does this work?
P

i ei=(x� ai) = E=D and
P

i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.

(D;E
p
x) is a short vector:

deg(D;E
p
x) � jej � t=2

< t + 1=2� deg(qj ; rj
p
x).



Why does this work?
P

i ei=(x� ai) = E=D and
P

i ci=(x� ai) = 0 in F2m [x]=g

so s = E=D in F2m [x]=g

so (D;E
p
x) 2 L.

(D;E
p
x) is a short vector:

deg(D;E
p
x) � jej � t=2

< t + 1=2� deg(qj ; rj
p
x).

Recall “shortest” proof:

(D;E
p
x) 2 (qj ; rj

p
x)F2m [x],

so E=D = rj=qj . Done!

Euclid decoding: 1975 Sugiyama–

Kasahara–Hirasawa–Namekawa.



List decoding for these codes

What if jej > t=2?

Find shortest nonzero (D0; E0
p
x)

and independent (D1; E1
p
x) in

(0; g
p
x)F2m [x] + (1; s

p
x)F2m [x],

with degrees t=2� �

and t=2 + 1=2 + �

for some � 2 f0; 1=2; 1; 3=2; : : :g.

Know that (D;E
p
x) =

u(D0; E0
p
x) + v(D1; E1

p
x);

v = �(ED0 �DE0)=g 2 F2m [x],

u = �(DE1 � ED1)=g 2 F2m [x],

deg v � jej � t=2� 1=2� �,

degu � jej � t=2 + �.



Critical facts about D:

� D = uD0 + vD1 with known

D0 and D1, bounded u and v.

� D divides known

N =
Q

i(x� ai).



Critical facts about D:

� D = uD0 + vD1 with known

D0 and D1, bounded u and v.

� D divides known

N =
Q

i(x� ai).

Can use these facts to

quickly compute all possible D

for surprisingly large jej.



Critical facts about D:

� D = uD0 + vD1 with known

D0 and D1, bounded u and v.

� D divides known

N =
Q

i(x� ai).

Can use these facts to

quickly compute all possible D

for surprisingly large jej.
This is essentially 2007 Wu.

2008 Bernstein:

combine with Patterson.

1998 Guruswami–Sudan:

same jej limit but much slower.



Algorithm parameters:

“multiplicity” k � 1;

“lattice dimension” ` � k + 1.

Assume gcdfD1; Ng = 1.

Otherwise add

constant multiple of D0 to D1,

extending field if necessary;

see 2008 Bernstein for analysis.

Lift D0=D1 from F2m [x]=N

to S 2 F2m [x] with degS < n.

Then Su + v 2 DF2m [x].

Note that both u and x�v have

degree � bjej � t=2 + �c where

� = bt=2 + �c � bt=2� 1=2� �c.



For k = 1: In F2m(x)[y] define

G0 = N,

G1 = S + x��y,

G2 = (S + x��y)x��y,
...,

G`�1 = (S + x��y)(x��y)`�2.

Substituting y = x�v=u and

multiplying by u`�1 produces

Nu`�1; (Su+v)u`�2; : : : ; Su+v,

all of which are in DF2m [x].

u`�1Q(x�v=u) 2 DF2m [x] for any

Q 2 G0F2m [x] + � � �+G`�1F2m [x].



View all of these polynomials

as coefficient vectors in F2m(x)`.

G0; G1; : : : ; G`�1

have determinant Nx�`(`�1)�=2,

of degree n� `(`� 1)�=2.

Use `-dim lattice-basis reduction

to find short nonzero Q:

degQi � n=`� (`� 1)�=2.

If jej > n=` +

(`� 1) bjej � t=2 + � � �=2c
then degQi(x

�v)iu`�1�i < jej
so degu`�1Q(x�v=u) < jej
so Q(x�v=u) = 0.

Find u; v by finding roots of Q.



For general k: Redefine Gi
to obtain multiples of Dk.

G0 = Nk;

G1 = (S + x��y)Nk�1;

G2 = (S + x��y)2Nk�2;
...

Gk = (S + x��y)k;
...

G`�1 = (S + x��y)k(x��y)`�k�1.

degQi � nk(k+1)=2`�(`�1)�=2.

If kjej > nk(k + 1)=2` +

(`� 1) bjej � t=2 + � � �=2c
then Q(x�v=u) = 0.



e.g. t = 0:1n, w = 0:051n:

smallest parameters are

k = 4, ` = 80.

For comparison,

Guruswami–Sudan require

multiplicity k and

lattice dimension ` to satisfy

nk(k+1)=2`+(`�1)(n� t�1)=2

< k(n� jej).

e.g. t = 0:1n, w = 0:051n:

smallest parameters are

k = 75, ` = 80.



Jet list decoding

Recall D =
Q

i:ei 6=0(x� ai)

and E =
P

iDei=(x� ai).

ei 2 f0; 1g
so E =

P
iD=(x� ai) = D0.

One consequence:

Γ2(g) = Γ2(g2) if g is squarefree.

This doubles t, drastically

increasing # errors decoded.

But Γ2(g2) decoders vary

in effectiveness and efficiency.



1968 Berlekamp decodes

t errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� t + t2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.



1968 Berlekamp decodes

t errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� t + t2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.

2001 Koetter–Vardy:

� t + t2=n errors.

Can “rational” algorithms

correct > t + t2=2n errors?



1968 Berlekamp decodes

t errors for Γ2(g2).

1975 Patterson: same, faster.

1998 Guruswami–Sudan:

� t + t2=2n errors.

2007 Wu: same, faster;

the “rational” speedup.

2008 Bernstein: even faster;

“rational” + Patterson.

2001 Koetter–Vardy:

� t + t2=n errors.

Can “rational” algorithms

correct > t + t2=2n errors?

Yes! Jet list decoding.



Works for arbitrary Γ2(g).

Notation: N;D;E; : : : as before.

D divides N so the jet

D(x + �) = D + �D0 = D + �E

divides N(x + �) = N + �N 0.

(D + �E)(D � �E) divides

(N + �N 0)(D � �E) so

D2 divides N 0D � NE.

(D;E) = u(D0; E0) + v(D1; E1)

so N 0D � NE =

v(N 0D1�NE1)+u(N 0D0�NE0).

Lift (N 0D0�NE0)=(N 0D1�NE1)

from F2m [x]=N2 to S 2 F2m [x].

Then Su + v 2 D2F2m [x].



G0 = (N2)k;

G1 = (S + x��y)(N2)k�1;

G2 = (S + x��y)2(N2)k�2;
...

Gk = (S + x��y)k;
...

G`�1 = (S + x��y)k(x��y)`�k�1.

u`�1Q(x�v=u) 2 D2kF2m [x] if

Q 2 G0F2m [x] + � � �+G`�1F2m [x].

Roots of shortest nonzero Q

include x�v=u

if 2kjej > nk(k + 1)=` +

(`� 1) bjej � t=2 + � � �=2c.



e.g. t = 0:1n, w = 0:051n:

smallest parameters are

k = 1, ` = 26.

e.g. t = 0:1n, w = 0:0521n:

smallest parameters are

k = 4, ` = 80.

Compared to Koetter–Vardy:

same limit on w, but

much smaller k for each w.

Same achieved by 2007 Wu

in one special case, BCH.

Jet list decoding is faster

(thanks to Howgrave-Graham)

and more general.


