Jet list decoding

D. J. Bernstein
University of lllinois at Chicago

Thanks to:
NSF 1018836
NIST 60NANB10D263

No thanks to:

IEEE violating IEEE policies

and forcing authors

to take papers offline; see
cr.yp.to/writing/ieee.html


http://cr.yp.to/writing/ieee.html

Decoding

The <w-error decoding problem
for a linear code C C F/:

e Qutput: c € C.

e Input: v € F{ with [v —¢| <w.

Note that output is unique if
w < smin{|c| : c € C — {0}}.

Notation:

v| = 7t v # 0}

= Hamming weight of v;

e.g. |v—c|l=#{1:v; #ci}

— Hamming distance

from v to c.



Reed—Solomon decoding

Choose integer t > 0,
Integer n > t, prime power g > n,
distinct aq, ..., an € Fq.

Define € C Fp as the code
{evf:f€F,z],degf <n —t}
where ev f = (f(a1), ..., flan)).

min{|c| : c€ C —{0}} =t + 1.
Exception: oo if t = n.

1960 Peterson in some cases,
1961 Gorenstein—Zierler in more,
1965 Forney in general:

<|t/2]-error decoding for C

O(1) O(1)

takes time n fgen



Big research direction #1:
Decode faster.

1968 Berlekamp:
<|t/2]-error decoding for C
costs O(nt) operations in F,
plus root-finding in Fy.
Time n2to(1) for typical ¢, q.

1976 Justesen,

independently 1977 Sarwate:
Faster algorithm for large n,
n(lgn)?t°) instead of O(nt).
Time nlto() for typical ¢, g.

Extensive literature
on further speedups.



Decoding more codes

Big research direction #£2:
Modify C to expand and improve
tradeoffs between q, n, #C, w.

e.g. Replace C C Fy, ¢ =2™,
with Fy-subfield subcode F5 N C.
#C=q""" = #(F3NC)>2""m,
Any <w-error decoder for C

also works for F N C.

Can take F} N C where C is RS,
but better to twist carefully.
Obtain classical F» Goppa codes
decoding twice as many errors.

Better for large n: AG codes.



List decoding

Big research direction #3:
Decode more errors for same C.

Maybe output ¢ isn't unique.
Decoding problem asks for
some ¢ with |v — ¢| < w.
List-decoding problem asks for
all ¢ with |[v —¢| < w.

Trivial approach: Brute force.
e.g. guess w — |t/2] errors and
use any < |t/2|-error decoder.
(For list decoding,

use a covering set of guesses.)
Very slow for large w — [t/2].



Reed—Solomon list decoding

1996 Sudan for smaller w, 1998
Guruswami—Sudan in general:
If w <n—+/n(n—1t—1) then
<w-error list decoding for C =
{evf:fE€Fyz] degf <n—t}
takes time n91) if g € nO1).




Reed—Solomon list decoding

1996 Sudan for smaller w, 1998
Guruswami—Sudan in general:
If w <n—+/n(n—1t—1) then
<w-error list decoding for C =
{evf:fE€Fyz] degf <n—t}
takes time n91) if g € nO1).

2001 Koetter—Vardy:
Assume g = 2™; write n' = n/2.
If w <n' —+/n/(n' —t—1) then

<w-error list decoding for F; N C
01) if g € n00),

n—/n(n—t-1)~t/2 +t*/8n.
n' —/n'(n/—t—1) ~ t/24+t%/4n.

takes time n




Guruswami—Sudan cost analysis:
O(n3£°) operations in F, where
£ is an algorithm parameter.

Extensive literature on speedups

and adaptations to more codes.

Critical Howgrave-Graham idea,
with state-of-the-art subroutines:
n1+0(1)/~cl+0(1)ﬁ<3 where

k is another parameter; k£ < £.

For Howgrave-Graham analysis
see 2010 Cohn—Heninger

(which also adapts to AG etc.),
2011 Bernstein “simplelist”
(combining with Koetter—Vardy).



What are these parameters £, £7
Obviously critical for speed.
Why not take £, £ to be small?

Answer: Decreasing k, £ forces
gap between w and its limit.
Almost all list-decoding methods
have essentially the same gap.



What are these parameters £, £7
Obviously critical for speed.
Why not take £, £ to be small?

Answer: Decreasing k, £ forces
gap between w and its limit.
Almost all list-decoding methods
have essentially the same gap.

But not alll

Much better £, £, w tradeoff in
“rational” list-decoding methods:
2007 Wu “New list decoding’;
2008 Bernstein “goppalist”;
2011 Bernstein “jetlist™.



Jets

The set of 1-jets over R
is the quotient ring R[e]/e?.

Analogous to the set of complex
numbers C = R[3]/(3° + 1),
but €% = 0 while 42 = —1.

Multiplication of jets:
(a+ be)(c+ de) = ac+ (ad+ be)e.

Typical construction of a jet:
differentiable f : R — R induces

jet f(z + €) = f(z) + f'(2)e
for each z € R.
e.g. sin(z + ¢) =sinx + (cos z)e.



Recap for late sleepers

50 years ago: Polynomial-time
decoding of < |t/2]| errors

in length-n Reed—Solomon code
{evf:fE€Fyz] degf <n—t}

Big research directions since then:

3. Decode more errors.
Output might not be unique:
have list of possible codewords.

2. Improve choice of code:
classical Goppa codes, AG, et al.

1. Decode faster.



| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?



| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z



| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
— (-1, 7)Z + (1,17)Z



| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
= (—1,7)Z+ (1,17)Z
=(—1,7)Z+ (3,3)Z



| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest

nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (=1,7)Z + (1,17)Z
— (~1,7)Z+ (3,3)Z
— (—4,8)Z + (3,3)Z




| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest

nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (=1,7)Z + (1,17)Z
— (~1,7)Z+ (3,3)Z
— (—4,8)Z + (3,3)Z

(—4,4), (3, 3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).


















Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?



Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z



Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
— (-1,8)Z + (1,17)Z



Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (—-1,8)Z+ (1,17)Z
=(—1,8)Z+ (3,1)Z.



Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (—-1,8)Z+ (1,17)Z
=(—1,8)Z+ (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3,-1).






Polynomial lattices

Define R = F»[z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?



Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R



Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

[ = (0,101000)R + (1,10011)R
— (10, 1110)R + (1, 10011)R



Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R
= (10, 1110)R + (1, 10011)R
— (10, 1110)R + (111, 1)R.




Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R
= (10, 1110)R + (1, 10011)R
— (10, 1110)R + (111, 1)R.

(111, 1): shortest nonzero vector.
(10,1110): shortest
independent vector.



Degree of (q,7) € Folz] x F>[z]
is defined as max{deg q,degr}.

Can use other metrics,
or equivalently rescale L.

e.g. Define L C Fy[\/z] x Fo[+/z]
as (0, r0v/Z)R + (1, r1/Z)R.

Successive generators for L:
(0,101000+/z), degree 5.5.
(1,10011+/z), degree 4.5.
(10,1110+4/z), degree 3.5.
(111, 1\/z), degree 2.



Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, 1 = 10111,

L = (0,79v/Z)R + (1,71V/Z)R.

Successive generators for L:
(0,101000+/z), degree 5.5.
(1,101114/z), degree 4.5.
(10, 1104/z), degree 2.5.
(1101, 114/z), degree 3.



For any ro, 71 € R = Fy|z]
with degrg > degry:

Euclid/Stevin computation:
Define ro = rg mod 71,
r3 = r1 mod 7o, etc.

Extended: g9 = 0; q1 = 1;
gi+2 = q; — [ri/Ti+1] gi+1.
Then g;71 =1r; (mod 7g).

| attice view: Have

(0, 70v/Z)R + (1, 71/Z)R =
(95, 7ivVZ)R + (¢it1, Ti+1VE)R.

Can continue until ;.1 = 0.
gcd{rg, r1} = r;/ leadcoeff r;.



Reducing lattice basis for L
is a "half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
degg;11 + degr; = degry.

Say 7 is minimal with
degr;+/z < (degrg)/2.
Then degq; < (degrg)/2 so

deg(q;,rj+/z) < (degro)/2.
Shortest nonzero vector.

(95 75+¢/E) has degree
deg ro\/z — deg(q;, 75/)
for some € € {—1, 1}.
Shortest independent vector.



Proof of “shortest’ :

Take any (g, r+/z) in lattice.

(9. 7/z) = u(gj, rj/T)
+ U(qj1e, Tj+e\/5)
for some u,v € R.

qiTj+e — 45+ — LTTQ
SO U = __('rqj — q'rj)/'ro
and u = £(g7j1¢ — 79j4¢)/70-

If deg(q, r/)
< deg(gj+e. Tj+eV/T)
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (¢j.t¢, 7j1+ev/T)
is a multiple of (g, 7;\/).



Classical binary Goppa codes

Parameters determining the code:
integersn >0, m >1,%t > 0;
distinct ag, ..., an € Fom;
monic g € Fom|z] of degree ¢
with g(a1)---g(an) # 0.

The code: Define ' C F}

as set of (cy,..., Cn) with
2_ici/(z —ai)=0in Fom|z]/g.
lg #I > n — mt.

min{lc| :cel —{0}} >t + 1.
Better bounds in the BCH case
g = z! and in many other cases.



Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').



Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift ) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < t.

Find shortest nonzero

(g5, 75/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].



Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift ) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < t.

Find shortest nonzero

(g5, 75/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].

Fact: If |e| <t/2
then E/D =1r;/q; so
D is monic denominator of 7;/q;.



Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift ) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < t.

Find shortest nonzero

(g5, 75/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].

Fact: If |e| <t/2
then E/D =1r;/q; so
D is monic denominator of 7;/q;.

e; =0 if D(a;) # 0.
e; = E(a;)/D'(a;) if D(a;) = 0.



Why does this work?

> .ei/(x—a;) =E/D anc

> s¢/(x—a;) =0in Fom
so s =E/D in Fom|z]/g
so (D, E\/z) € L.

z|/g



Why does this work?

> ;ei/(z—ai)=E/D anc
> ;¢i/(z—a;) =0in Fom[z]/g
sos=E/D in Fom|z]/g

so (D, E\/z) € L.

(D, E/z) is a short vector:
deg(D, E/z) < |e] < /2
<t+1/2 —deg(q;.7;4/x).




Why does this work?

> ;ei/(z—ai)=E/D anc
> ;¢i/(z—a;) =0in Fom[z]/g
sos=E/D in Fom|z]/g

so (D, E\/z) € L.

(D, E/z) is a short vector:
deg(D, E/z) < |e] < /2
<t+1/2 —deg(q;.7;4/x).

Recall “shortest” proof:

(D, Ev/z) € (95, 7j/z)Fom|z],
so E/D =r;/q;. Donel

Euclid decoding: 1975 Sugiyama-—
Kasahara—Hirasawa—Namekawa.



List

decoding for these codes

What if |e| > t/27

Find shortest nonzero (Dg, Eg\/z)

and

independent (D1, E1+/z) in

(0, gvz)Fom[z] + (1, s/z)Fom|[z],
with degrees t/2 — ¢

dNnd

t/2+1/246

for some § € {0,1/2,1,3/2,...}.

Know that (D, E+v/z) =
u(Do, Eov/z) + v(D1, E1v/Z);

U = ::(EDO — DEo)/g e Fom SB,
= ::(DE1 — ED1)/g e Fom :B,
degv < |e| —t/2—-1/2 -,
degu < |le| —t/2+ 0.

I~




Critical facts about D:
o D =uDg+vDy wit

Do anc

o D divic

D1, bounded
es known

N=]||.(z—a;)

n known

% and v.



Critical facts about D:
o D =uDgy+ vD1 with known

Do and D1, bounded u« and v.

e [ divides known
N=]||.(z—a;)

Can use these facts to
quickly compute all possible D
for surprisingly large |e|.



Critical facts about D:
o D =uDgy+ vD1 with known

Do and D1, bounded u« and v.

e [ divides known
N=]||.(z—a;)

Can use these facts to
quickly compute all possible D
for surprisingly large |e|.

This Is essentially 2007 Wau.

2008 Bernstein:
combine with Patterson.

1998 Guruswami—Sudan:
same |e| limit but much slower.



Algorithm parameters:
“multiplicity” k£ > 1;
“lattice dimension” £ > k + 1.

Assume gcd{D1, N} = 1.
Otherwise add

constant multiple of Dy to D1,
extending field if necessary;
see 2008 Bernstein for analysis.

Lift Do/D1 from Fom|z]|/N
to S € Fom|z] with deg § < n.
Then Su +v € DFym|z].

Note that both w and z%v have
degree < ||e| —t/2 + 0| where
0=|t/2+0| —[t/2—-1/2—9].




For £k = 1: In Fom(z)|y] define
Go =N,

Gi1 =5+ $_9y,

Gy = (S +z %)z Y%,

Ge-1=(S+z %) (z )2

Substituting y = a;e'v/u and
multiplying by u*~1 produces

Nut—1 (Su+v)ut=2, ..., Su+w,
all of which are in DFym|[z].

u*1Q(z%v/u) € DFym|[z] for any
Q € GoFom[z]|+- -+ Gy_1Fom|z].



View all of these polynomials

as coefficient vectors in Fom ().

have determinant Nz —¢(¢-1)¢/2
of degree n — (£ — 1)8/2.

Use £-dim lattice-basis reduction
to find short nonzero @:

degQ; <n/l—(L—1)8/2.

If le| > n/L+
(£—1)|le]|—t/2+d—06/2]
then deg Q;(z?v)*uf~17% < |e|
so deg u¢1Q(z%v/u) < |

so Q(zv/u) = 0.

Find u, v by finding roots of Q.



For general k£: Redefine G;
to obtain multiples of D¥.
Gog = N¥;

G1 = (5 + $_9‘y)/\/k_1;
Go = (5 + x—é’y)2Nk—2;

Gp = (S +z7%)*;

Ge1= (S +a fy)i(afy)* T
deg Q; < nk(k+1)/24—(£—1)6/2.

If kle| > nk(k+1)/24 +
(£—1)|le|—t/2+d—0/2
then Q(z?v/u) = 0.



e.g. t=0.1n, w = 0.051n:
smallest parameters are
k=4, {=80.

For comparison,
Guruswami—Sudan require
multiplicity £ and

lattice dimension £ to satisfy
nk(k+1)/2{+({—-1)(n—t—1)/2
< k(n — |e]).

e.g. t =0.1n, w = 0.051n:
smallest parameters are
k=175, {=80.



Jet list decoding

Recall D = ];.. 20(z — a;)
and £ =) , De;/(z — a;).

e; € {0,1}
so E=Y ,D/(z—a;)=D"

One consequence:
[2(g) = I2(g?) if g is squarefree.
This doubles ¢, drastically

increasing # errors decoded.

But M5(¢?) decoders vary
in effectiveness and efficiency.



1968 Berlekamp decodes

t errors for I'2(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:

~ t 4 t2/2n errors.

2007 Wu: same, faster;

the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.



1968 Berlekamp decodes

t errors for I'2(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:

~ t 4 t2/2n errors.

2007 Wu: same, faster;

the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.

2001 Koetter—Vardy:

~ t 4t /n errors.

Can “rational” algorithms
correct > t + t%/2n errors?



1968 Berlekamp decodes

t errors for I'2(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:

~ t 4 t2/2n errors.

2007 Wu: same, faster;

the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.

2001 Koetter—Vardy:

~ t 4t /n errors.

Can “rational” algorithms
correct > t + t%/2n errors?
Yes! Jet list decoding.



Works for arbitrary I'2(g).
Notation: N, D, E, ... as before.

D divides N so the jet
D(z+¢)=D+eD' =D +¢E
divides N(z +¢) = N + eN'.

(D + €¢E)(D — €E) divides
(N + eN")(D — €E) so
D? divides N'D — NE.

(D, E) = u(Do, Eo) + v(D1, E1)
so N'D — NE =
v(N’Dl—NE1)+u(N’DO—NE0).

Lift (/VIDO — /VEo)/(/V/Dl — /VEl)
from Fom[z]/N? to S € Fom|z].
Then Su +v € D°Fom|[z].




Geo1 = (S +z %)z )1

u=1Q(z%v/u) € D*Fom[z] if
Q € GoFom|z|+---+Gy_1Fom|z].

Roots of shortest nonzero @
include zfv/u

if 2kle| > nk(k+ 1)/ +
(£—1)|le|—t/2+0—8/2].



e.g. t=0.1n, w = 0.051n:
smallest parameters are
k=1, {=26.

e.g. t =0.1In, w = 0.0521n:
smallest parameters are
k=4, {=80.

Compared to Koetter—Vardy:
same limit on w, but

much smaller k£ for each w.

Same achieved by 2007 Wu
in one special case, BCH.

Jet list decoding is faster
(thanks to Howgrave-Graham)
and more general.



