
Post-quantum cryptanalysis

D. J. Bernstein

University of Illinois at Chicago

Cryptographic speed

What is the fastest

public-key encryption system?

Or public-key signature system?

Cryptographic speed

What is the fastest

public-key encryption system?

Or public-key signature system?

RSA-1024 is quite fast.

Cryptographic speed

What is the fastest

public-key encryption system?

Or public-key signature system?

RSA-1024 is quite fast.

RSA-512 is faster.

Cryptographic speed

What is the fastest

public-key encryption system?

Or public-key signature system?

RSA-1024 is quite fast.

RSA-512 is faster.

RSA-256 is even faster.

Cryptographic speed

What is the fastest

public-key encryption system?

Or public-key signature system?

RSA-1024 is quite fast.

RSA-512 is faster.

RSA-256 is even faster.

This question is stupid.

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

(Plausible-sounding definition:

breaking costs � 2b.)

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

(Plausible-sounding definition:

breaking with probability 1

costs � 2b.)

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

(Plausible-sounding definition:

for each � > 0,

breaking with probability � �

costs � 2b�.)

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

(Plausible-sounding definition:

for each � > 2�b=2,

breaking with probability � �

costs � 2b�.)

Cryptographic speed

What is the fastest

public-key encryption system

with security level � 2b?

How to evaluate candidates:

Encryption systems

Analyze
attack algorithms

��
Systems with security � 2b

Analyze
encryption algorithms

��
Fastest systems with security � 2b

Two pre-quantum examples

RSA (with small exponent,

reasonable padding, etc.):

Factoring n costs 2(lg n)1=3+o(1)

by the number-field sieve.

Conjecture: this is the

optimal attack against RSA.

Key size: Can take lgn 2 b3+o(1)

ensuring 2(lg n)1=3+o(1)
� 2b.

Encryption: Fast exp

costs (lgn)1+o(1) bit operations.

Summary: RSA costs b3+o(1).

ECC (with strong curve/Fq,

reasonable padding, etc.):

ECDL costs 2(1=2+o(1)) lg q

by Pollard’s rho method.

Conjecture: this is the

optimal attack against ECC.

Can take lg q 2 (2 + o(1))b.

Encryption: Fast scalar mult

costs (lg q)2+o(1) = b2+o(1).

Summary: ECC costs b2+o(1).

Asymptotically faster than RSA:

i.e., more security for same cost.

Bonus: also b2+o(1) decryption.

These analyses are quite crude.

To really understand costs

need much more precise

analysis and optimization

of attack algorithms

and encryption algorithms.

e.g. R-algebraic complexity

of size-n DFT over C,

when n is a power of 2:

n1+o(1): Gauss FFT.

These analyses are quite crude.

To really understand costs

need much more precise

analysis and optimization

of attack algorithms

and encryption algorithms.

e.g. R-algebraic complexity

of size-n DFT over C,

when n is a power of 2:

n1+o(1): Gauss FFT.

O(n lgn): Gauss FFT.

These analyses are quite crude.

To really understand costs

need much more precise

analysis and optimization

of attack algorithms

and encryption algorithms.

e.g. R-algebraic complexity

of size-n DFT over C,

when n is a power of 2:

n1+o(1): Gauss FFT.

O(n lgn): Gauss FFT.

(5 + o(1))n lgn: Gauss FFT.

These analyses are quite crude.

To really understand costs

need much more precise

analysis and optimization

of attack algorithms

and encryption algorithms.

e.g. R-algebraic complexity

of size-n DFT over C,

when n is a power of 2:

n1+o(1): Gauss FFT.

O(n lgn): Gauss FFT.

(5 + o(1))n lgn: Gauss FFT.

(4 + o(1))n lgn: split-radix FFT.

These analyses are quite crude.

To really understand costs

need much more precise

analysis and optimization

of attack algorithms

and encryption algorithms.

e.g. R-algebraic complexity

of size-n DFT over C,

when n is a power of 2:

n1+o(1): Gauss FFT.

O(n lgn): Gauss FFT.

(5 + o(1))n lgn: Gauss FFT.

(4 + o(1))n lgn: split-radix FFT.

(34=9 + o(1))n lgn: tangent FFT.

Cryptanalysis is slowly moving to

a realistic model of computation.

A circuit is a 2-dimensional

mesh of small parallel gates.

Have fast communication

between neighboring gates.

Try to optimize time T

as function of area A.

See, e.g., classic area-time

theorem from 1981 Brent–Kung.

Warning: Naive student model—

a=x[i] costs 1, like a=b+c

—gives wildly unrealistic

algorithm-scalability conclusions.

“Maybe there’s a better attack

breaking your ‘secure’ systems.

Maybe security costs far more!”

This is a familiar risk.

This is why the community

puts tremendous effort

into cryptanalysis:

analyzing and optimizing

attack algorithms.

Results of cryptanalysis:

Some systems are killed.

Some systems need larger keys

but still have competitive cost.

Some systems inspire confidence.

Post-quantum cryptography

Assume that attacker

has a large quantum computer,

making qubit operations

as cheap as bit operations.

(Yes, that’s too extreme.

Tweak for more plausibility:

maybe 2b=b3 qubit operations

are similar to 2b bit operations.)

Consequence of this assumption:

Attacker has old algorithm arsenal

(ECM, ISD, LLL, XL, F4, F5, : : :)

plus Grover and Shor.

Conventional wisdom:

Factoring n costs (lgn)2+o(1)

by Shor (in naive model),

so RSA is dead.

Similarly DSA and ECDSA.

Conventional wisdom:

Factoring n costs (lgn)2+o(1)

by Shor (in naive model),

so RSA is dead.

Similarly DSA and ECDSA.

More careful RSA evaluation:

Can take lgn 2 2(1=2+o(1))b

ensuring (lgn)2+o(1) � 2b.

Can reduce RSA encryption,

decryption, key generation

to 2(1=2+o(1))b bit ops,

far below attacker’s cost.

Conventional wisdom:

Factoring n costs (lgn)2+o(1)

by Shor (in naive model),

so RSA is dead.

Similarly DSA and ECDSA.

More careful RSA evaluation:

Can take lgn 2 2(1=2+o(1))b

ensuring (lgn)2+o(1) � 2b.

Can reduce RSA encryption,

decryption, key generation

to 2(1=2+o(1))b bit ops,

far below attacker’s cost.

: : : but other systems are better!

Here are some leading candidates.

Hash-based signatures.

Example: 1979 Merkle hash trees.

Code-based encryption.

Example: 1978 McEliece

hidden Goppa codes.

Lattice-based encryption.

Example: 1998 “NTRU.”

Multivariate-quadratic-

equations signatures.

Example: 1996 Patarin “HFEv�”

public-key signature system.

Secret-key cryptography.

Example: 1998 Daemen–Rijmen

“Rijndael” cipher, aka “AES.”

A hash-based signature system

Standardize a 256-bit

hash function H.

Signer’s public key: 512 strings

y1[0]; y1[1]; : : : ; y256[0]; y256[1],

each 256 bits.

Total: 131072 bits.

Signature of a message m:

256-bit strings r; x1; : : : ; x256

such that the bits (h1; : : : ; h256)

of H(r;m) satisfy

y1[h1] = H(x1), : : : ,

y256[h256] = H(x256).

Signer’s secret key:

512 independent uniform

random 256-bit strings

x1[0]; x1[1]; : : : ; x256[0]; x256[1].

Signer computes

y1[0]; y1[1]; : : : ; y256[0]; y256[1]

as H(x1[0]); H(x1[1]); : : : ;

H(x256[0]); H(x256[1]).

To sign m:

generate uniform random r;

H(r;m) = (h1; : : : ; h256);

reveal (r; x1[h1]; : : : ; x256[h256]);

discard remaining x values;

refuse to sign more messages.

This is the “Lamport–Diffie

one-time signature system.”

How to sign

more than one message?

Easy answer: “Chaining.”

Signer expands m to include

a newly generated public key

that will sign next message.

More advanced answers

(Merkle et al.)

scale logarithmically with the

number of messages signed.

Grover finds x1[0] from y1[0]

using � 2128 qubit ops.

Maybe H has some structure

allowing faster inversion : : :

but most functions don’t

seem to have such structures.

“SHA-3 competition”:

2008: 191 cryptographers

submitted 64 proposals for H.

Ongoing: Extensive public review.

2011 status: 5 finalists.

2012: SHA-3 is standardized.

Chaum–van Heijst–Pfitzmann,

1991: H(a; b) = 4a9b mod p.

Simple, beautiful, structured.

Allows “provable security”:

e.g., H collisions imply

computing a discrete logarithm,

when p is chosen sensibly.

Chaum–van Heijst–Pfitzmann,

1991: H(a; b) = 4a9b mod p.

Simple, beautiful, structured.

Allows “provable security”:

e.g., H collisions imply

computing a discrete logarithm,

when p is chosen sensibly.

But very bad cryptography.

Horrible security for its speed.

Far worse security record than

“unstructured” H designs.

Chaum–van Heijst–Pfitzmann,

1991: H(a; b) = 4a9b mod p.

Simple, beautiful, structured.

Allows “provable security”:

e.g., H collisions imply

computing a discrete logarithm,

when p is chosen sensibly.

But very bad cryptography.

Horrible security for its speed.

Far worse security record than

“unstructured” H designs.

Some newer efforts to sacrifice

security for provability: VSH;

2007 Moore–Russell–Vazirani.

An MQ signature system

Signer’s public key:

polynomials P1; : : : ; P300

2 F2[w1; : : : ; w600].

Extra requirements

on each of these polynomials:

degree � 2, no squares;

i.e., linear combination of

1; w1; : : : ; w600;

w1w2; w1w3; : : : ; w599w600.

Overall 54090300 bits.

Signature of m:

a 300-bit string r and

values w1; : : : ; w600 2 F2

such that H(r;m) =

(P1(w1; : : : ; w600); : : : ;

P300(w1; : : : ; w600)).

Only 900 bits!

Verifying a signature uses

one evaluation of H and

millions of bit operations

to evaluate P1; : : : ; P300.

Main challenge for attacker:

find bits w1; : : : ; w600

producing specified outputs

(P1(w1; : : : ; w600); : : : ;

P300(w1; : : : ; w600)).

Random guess: on average,

only 2�300 chance of success.

“XL” etc.: fewer operations,

but still not a threat.

Signer generates public key

with secret “HFEv�” structure.

Standardize a degree-450

irreducible polynomial ' 2 F2[t].

Define L = F2[t]='.

Critical step in signing:

finding roots of a

secret polynomial in L[x]

of degree at most 300.

Secret polynomial is chosen with

all nonzero exponents of the form

2i + 2j or 2i. (So degree � 288.)

If x0; x1; : : : ; x449 2 F2 and

x = x0 + x1t+ � � �+ x449t
449 then

x2 = x0 + x1t
2 + � � �+ x449t

898,

x4 = x0 + x1t
4 + � � �+ x449t

1796,

etc.

In general, x2i+2j

is a quadratic polynomial

in the variables x0; : : : ; x449.

Signer’s secret key:

invertible 600� 600 matrix S;

300� 450 matrix T of rank 300;

Q 2 L[x; v1; v2; : : : ; v150].

Each term in Q

has one of the forms

`x2i+2j with ` 2 L, 2i < 2j ,

2i + 2j � 300;

`x2ivj with ` 2 L, 2i � 300;

`vivj ;

`x2i ;

`vj ;

`.

To compute public key:

Compute S(w1; : : : ; w600) =

(x0; : : : ; x449; v1; : : : ; v150).

In L[w1; : : : ; w600]

compute x =
P

xit
i

and y = Q(x; v1; v2; : : : ; v150)

modulo w2
1�w1; : : : ; w

2
600�w600.

Write y = y0 + � � �+ y449t
449

with yi 2 F2[w1; : : : ; w600].

Compute (P1; : : : ; P300) =

T (y0; y1; : : : ; y449).

Sign by working backwards.

Given values (P1; : : : ; P300), invert

T to obtain values (y0; : : : ; y449).

2150 choices; randomize.

Choose (v1; : : : ; v150) randomly.

Substitute into Q(x; v1; : : : ; v150)

to obtain Q(x) 2 L[x].

Solve Q(x) = y for x 2 L.

If several roots, randomize.

If no roots, start over.

Invert S to obtain signature.

This is an “HFEv�” example.

“HFE”: “Hidden Field Equation”

Q(x) = y.

“�”: publish only 300 equations

instead of 450.

“v”: “vinegar” variables

v1; : : : ; v150.

State-of-the-art attack

breaks a simplified system with

0 vinegar variables, 1 term in Q.

Can build MQ systems

in many other ways.

A code-based encryption system

Receiver’s public key:

1800� 3600 bit matrix K.

Messages suitable for encryption:

3600-bit strings of “weight 150”;

i.e., 3600-bit strings

with exactly 150 nonzero bits.

Encryption of m

is 1800-bit string Km.

Attacker, by linear algebra,

can easily work backwards

from Km to some v

such that Kv = Km.

Huge number of choices of v.

Finding weight-150 choice

(“syndrome-decoding K”)

seems extremely difficult

for most choices of K.

Basic information-set decoding:

Choose set of 1800 columns

on which K is invertible.

Work backwards to v

supported in those 1800 columns.

Hope that v = m, i.e., that m is

supported in those 1800 columns.

2009 Bernstein:

Trivially apply Grover here.

iterations drops to square root.

But some ISD improvements

now become counterproductive.

New guess: “Some” includes

2011 May–Meurer–Thomae.

Receiver secretly generates

a random Goppa code Γ and

a random permutation P .

Computes public key K as

random parity-check matrix

for permuted Goppa code ΓP .

Detecting this structure

seems even more difficult than

syndrome-decoding random K.

Knowing Γ and P allows

receiver to decode 150 errors.

My current reading of

2011 Dinh–Moore–Russell:

Using Shor for Γ; ΓP 7! P

is very slow (for most Γ)

thanks to group structure.

These cryptosystems thus

“resist the natural analog of

Shor’s quantum attack.”

This gives “the first rigorous

results on the security of the

McEliece-type cryptosystems in

the face of quantum adversaries,

strengthening their candidacy for

post-quantum cryptography.”

I find this quite puzzling.

1. I don’t see how Γ; ΓP 7! P

relates to attacking McEliece.

The attacker isn’t given Γ.

I find this quite puzzling.

1. I don’t see how Γ; ΓP 7! P

relates to attacking McEliece.

The attacker isn’t given Γ.

2. Broken variants of McEliece

have the same group structure.

Are they strong candidates too?

I find this quite puzzling.

1. I don’t see how Γ; ΓP 7! P

relates to attacking McEliece.

The attacker isn’t given Γ.

2. Broken variants of McEliece

have the same group structure.

Are they strong candidates too?

3. The Γ; ΓP 7! P problem

is not hard. For almost all Γ,

1999 Sendrier computes

Γ; ΓP 7! P in polynomial time.

I find this quite puzzling.

1. I don’t see how Γ; ΓP 7! P

relates to attacking McEliece.

The attacker isn’t given Γ.

2. Broken variants of McEliece

have the same group structure.

Are they strong candidates too?

3. The Γ; ΓP 7! P problem

is not hard. For almost all Γ,

1999 Sendrier computes

Γ; ΓP 7! P in polynomial time.

There are many interesting

non-quantum algorithms.

How to make progress

1. Learn the target landscape.

2. Learn the existing attacks.

Add them into your toolbox.

3. Look for faster attacks.

e.g. FXL/“hybrid GB” has

an outer search; apply Grover!

4. Analyze algorithms precisely.

Otherwise you miss

most algorithm speedups.

Bernstein: “Introduction to

post-quantum cryptography.”

Hallgren, Vollmer:

“Quantum computing.”

Buchmann, Dahmen, Szydlo:

“Hash-based digital signature

schemes.”

Overbeck, Sendrier:

“Code-based cryptography.”

Micciancio, Regev:

“Lattice-based cryptography.”

Ding, Yang: “Multivariate

public key cryptography.”

http://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/hashbasedcrypto.pdf
http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/hashbasedcrypto.pdf
http://www.cs.tau.ac.il/~odedr/papers/pqc.pdf

Latest updates:

pqcrypto.org:

introduction and bibliography.

PQCrypto conference series:

PQCrypto 2006 in Leuven.

PQCrypto 2008 in Cincinnati.

PQCrypto 2010 in Darmstadt.

PQCrypto 2011 soon in Taipei.

Hotel deadline: 30 September.

http://pqcrypto.org

