
Software benchmarking

of SHA-3 candidates

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven



Selecting cryptographic primitives

NIST’s final AES report, 2001:

“Security was the most important

factor in the evaluation : : :
Rijndael appears to offer an

adequate security margin. : : :
Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?



Selecting cryptographic primitives

NIST’s final AES report, 2001:

“Security was the most important

factor in the evaluation : : :
Rijndael appears to offer an

adequate security margin. : : :
Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?

Maybe hardware efficiency?

Or side-channel security?

Or something else?



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”

Great! Why didn’t Serpent win?



Aha: Software speed!



Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :
Serpent provides consistently

low-end performance.”



Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged

Rijndael to be the best overall

algorithm for the AES. Rijndael

appears to be consistently a very

good performer in both hardware

and software [and offers good

key agility, low memory, easy

defense, fast defense, flexibility,

parallelism].”



2007 NIST SHA-3 call: “The

security provided by an algorithm

is the most important factor

in the evaluation.”



2007 NIST SHA-3 call: “The

security provided by an algorithm

is the most important factor

in the evaluation.”

2011.02 NIST report:

“BLAKE : : : high security

margin : : :
NIST feels that future results are

less likely to dramatically narrow

Grøstl’s security margin than that

of the other candidates. : : :
JH : : : solid security margin : : :
Keccak : : : high security

margin : : :
Skein : : : high security margin”



Will this factor alone

decide the winner?



Will this factor alone

decide the winner?

Will further security analysis

kill 4 out of 5 SHA-3 candidates?



Will this factor alone

decide the winner?

Will further security analysis

kill 4 out of 5 SHA-3 candidates?

Perhaps, but probably not!

Presumably decision will depend

partially on speed in software,

speed in hardware, speed of

implementations with various

side-channel defenses, etc.



Will this factor alone

decide the winner?

Will further security analysis

kill 4 out of 5 SHA-3 candidates?

Perhaps, but probably not!

Presumably decision will depend

partially on speed in software,

speed in hardware, speed of

implementations with various

side-channel defenses, etc.

Remaining speed differences

seem larger than

remaining security differences.



Speed variability

Main question in this talk:

“How fast is hash software?”

Answer varies from

one hash function to another.

Perhaps this variability

is important to hash users.

Perhaps this variability will be

important in the SHA-3 selection.



Answer depends on

hash-function parameters.

On a 3200MHz AMD

Phenom II X6 1090T (100fa0),

for the same input size,

changing from 256-bit output

to 512-bit output makes

BLAKE � 1:55� faster;

SHA-2 � 1:31� faster;

Skein � 1:01� faster;

JH neither faster nor slower;

Grøstl � 1:48� slower;

Keccak � 1:86� slower.

(2010.12 data, before tweaks.)



Answer depends on

#cores used for hashing.

2.4GHz Intel Core 2 Duo E4600

(6fd) has 2 CPU cores

operating in parallel.

2.4GHz Intel Core 2 Quad Q6600

(6fb) has 4 CPU cores

operating in parallel.

Hash twice as many

messages per second!

Standard way to

reduce this dependence:

measure hash time on 1 core.



Warning: Single-core speed

is sometimes better than

speed of 4 cores

handling 4 messages in parallel.

Multiple active cores

can conflict in DRAM access etc.

Warning: Single-core speed�4
is usually better than

speed of 4 cores cooperating

to handle 1 long message.

Warning: These issues

(and more issues coming up)

have different effects

on different hash functions.



Back to the main question:

How fast is hash software?

Answer depends on CPU.

In one second, single-core

533MHz PowerPC G4 (7410)

computes SHA-256 hashes of

5985 4096-byte messages.

In one second, single core of

1800MHz PowerPC G5 (970)

computes SHA-256 hashes of

20729 4096-byte messages.



Standard way to reduce this

dependence: count cycles; i.e.,

divide #seconds by clock speed.

533MHz PowerPC G4 (7410):

86835 cycles to hash a 4096-byte

message with SHA-256.

1800MHz PowerPC G5 (970):

89047 cycles to hash a 4096-byte

message with SHA-256.

Note: Most CPUs have built-in

cycle counters; “RDTSC” etc.

Cycles are also a natural unit

for serious programmers.



Warning: Different CPUs

do different amounts of

computation in a cycle.

Warning: Different CPUs

with different speeds

can have the same name.

Warning: Some CPU operations

(e.g. DRAM access) do not

scale linearly with clock speed.

Warning: A CPU in

64-bit mode is often faster

(but sometimes slower!) than

the same CPU in 32-bit mode.



4096-byte SHA-256 timings:

64421 cycles: amd64 architecture

(64-bit), 2833MHz Intel Core 2

Quad Q9550 (10677).

64923 cycles: x86 architecture

(32-bit), 2833MHz Intel Core 2

Quad Q9550 (10677).

88304 cycles: ppc32, 533MHz

Motorola PowerPC G4 (7410).

94464 cycles: armeabi, 800MHz

Freescale i.MX515 (Cortex A8).

197572 cycles: armeabi, 400MHz

TI OMAP 2420.



4096-byte SHA-512 timings:

44200 cycles: amd64 architecture

(64-bit), 2833MHz Intel Core 2

Quad Q9550 (10677).

77682 cycles: x86 architecture

(32-bit), 2833MHz Intel Core 2

Quad Q9550 (10677).

228864 cycles: ppc32, 533MHz

Motorola PowerPC G4 (7410).

390400 cycles: armeabi, 800MHz

Freescale i.MX515 (Cortex A8).

500038 cycles: armeabi, 400MHz

TI OMAP 2420.



How fast is hash software?

Answer depends on message

length: hashing long message

takes more time than

hashing short message.

SHA-512 timings on 3200MHz

AMD Phenom II X4 955 (100f42):

48166 cycles for 4096 bytes.

24917 cycles for 2048 bytes.

15584 cycles for 1024 bytes.

13304 cycles for 512 bytes.



Standard way to

reduce this dependence:

divide cycles by message length.

Warning: Still have dependence.

SHA-512 on the same Phenom:

11.76 cycles/byte for 4096 bytes.

12.17 cycles/byte for 2048 bytes.

12.99 cycles/byte for 1024 bytes.

14.63 cycles/byte for 512 bytes.

17.86 cycles/byte for 256 bytes.

24.47 cycles/byte for 128 bytes.

28.03 cycles/byte for 112 bytes.

15.23 cycles/byte for 111 bytes.

25.81 cycles/byte for 64 bytes.



SHA-512 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



SHA-256 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



Hamsi cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



ECHO-256 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



Cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



How fast is hash software?

Answer depends on

implementation.

SHA-512: OpenSSL 0.9.8k

is 1:31� faster than a simple

reference implementation on a

typical Core 2 (for 1536 bytes).

Grøstl-256: The “core2duo”

implementation is 3:75� faster

than the “opt32” implementation

and 1:48� faster than the

“sphlib” implementation.



A user who cares about speed

won’t use a slow reference

implementation. He’ll use the

fastest implementation available.

Slowness of unused software has

no impact on user’s final speed.

The ultimate goal of benchmark

reports is to accurately predict

the speed that the user will see.

) Report speed of

the fastest implementation.



How fast is hash software?

Answer depends on compiler

and on compiler options.

Skein-512, Atom N280, 1536

bytes, -fomit-frame-pointer:

177110 cycles: opt with gcc -O2



How fast is hash software?

Answer depends on compiler

and on compiler options.

Skein-512, Atom N280, 1536

bytes, -fomit-frame-pointer:

177110 cycles: opt with gcc -O2

176290 cycles: opt with gcc -O3



How fast is hash software?

Answer depends on compiler

and on compiler options.

Skein-512, Atom N280, 1536

bytes, -fomit-frame-pointer:

177110 cycles: opt with gcc -O2

176290 cycles: opt with gcc -O3

168580 cycles: opt with gcc -

funroll-loops -march=i386

-O3



How fast is hash software?

Answer depends on compiler

and on compiler options.

Skein-512, Atom N280, 1536

bytes, -fomit-frame-pointer:

177110 cycles: opt with gcc -O2

176290 cycles: opt with gcc -O3

168580 cycles: opt with gcc -

funroll-loops -march=i386

-O3

156470 cycles: opt with gcc -O



How fast is hash software?

Answer depends on compiler

and on compiler options.

Skein-512, Atom N280, 1536

bytes, -fomit-frame-pointer:

177110 cycles: opt with gcc -O2

176290 cycles: opt with gcc -O3

168580 cycles: opt with gcc -

funroll-loops -march=i386

-O3

156470 cycles: opt with gcc -O

101460 cycles: xmm



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”



“Okay, 36.6 cycles/byte

for SANDstorm-256

on my 64-bit machine.

NIST says I have to beat SHA-2.

How fast is SHA-2?”



“Okay, 36.6 cycles/byte

for SANDstorm-256

on my 64-bit machine.

NIST says I have to beat SHA-2.

How fast is SHA-2?”

Traditional answer:

“I’ve written a SHA-256

implementation too.

Let’s see : : : 39.1 cycles/byte.

SANDstorm is faster!

This is a fair comparison, because

I wrote both implementations,

and put similar effort into both,

and measured both of them

with my own timing tool.”



Reality: This SHA-256 software

is embarrassingly slow.

SHA-256 users actually see

much better performance.

To the SANDstorm designer:

You think that SANDstorm can

be made faster too? Prove it!

There’s nothing “unfair” about

comparing best available code.

If SANDstorm can’t run quickly:

comparing lazy implementations

makes SANDstorm look better

than it actually is. Do we want to

reward slow functions? Stupid!



Every dark-ages implementor

builds his own timing tool.

Reports output as “Results”

in an implementation paper.

Summary:

Cryptographic implementor

is the benchmark implementor,

the benchmark operator, and

the competition’s misimplementor.



Every dark-ages implementor

builds his own timing tool.

Reports output as “Results”

in an implementation paper.

Summary:

Cryptographic implementor

is the benchmark implementor,

the benchmark operator, and

the competition’s misimplementor.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.



Moving out of the dark ages

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of 42 cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière developed new API,

wrote new benchmarking toolkit:

� Many more compiler options.

� Improvements in toolkit speed.

� Published toolkit )
implementation speedups;

>60 benchmark machines.

� Support for C and assembly:

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).



New toolkit (Bernstein, Lange):

� New simplified API,

co-developed with NaCl API.

Reduced implementation cost;

increased benefit.

� Improvements in robustness

and comprehensiveness.

e.g. many message lengths.

e.g. medians and quartiles.

� More feedback to implementors.

e.g. table showing impact of

1615 C compiler options,

945 C++ compiler options;

reports show any test failures,

compiler error messages, etc.



More operations

Secret-key operations

measured in eBASH, eBASC:

� Hash functions.

� Stream ciphers.

Plan to measure more operations:

� Authenticators.

� One-time authenticators.

� Authenticated encryption.

Plan to extend precomputation.



More communication costs

Cryptographic software competes

with other networking tools

for instruction-cache space.

Current benchmarks

don’t see this.

Plan to systematically measure

varying levels of cache contention.

Also plan to measure

costs of many active keys etc.

Also plan to measure

performance of batch operations.



More parallelism

Current benchmarks are

limited to single-core

computations.

Good for high-throughput servers

that have many concurrent tasks

and that keep all CPU cores

busy with separate tasks.

But some applications need

minimum latency for one task.

Multiple cores save time.

Plan to measure this.

(Multiple machines can

save time too; lower priority.)



More security

“Stop using 160-bit hashes!”

: : : Users can easily find

speed of 256-bit hash software,

512-bit hash software, etc.



More security

“Stop using 160-bit hashes!”

: : : Users can easily find

speed of 256-bit hash software,

512-bit hash software, etc.

“Stop side-channel attacks!”

: : : Can users find speed of

constant-time hash software?

Plan to separately report

speed of software

declared to be constant time.

(Maybe computer-verified?)



More automation

Implementor finishes software.

Easily sends in for benchmarking.

Software is manually

included in benchmark toolkit.

Toolkit is run manually.

Manual steps add latency:

often weeks or months.

Plan to have machines

automatically run new software

in resource-limited sandbox.

Much lower latency.

Fast feedback to implementor.



eBASH ! public

eBASH has collected

574 implementations of

91 hash functions in 34 families.

http://bench.cr.yp.to

/results-hash.html shows

measurements on 93 machines;

138 machine-ABI combinations.

Even more: XBX for AVR etc.

Each implementation is

recompiled many times

with various compiler options

to identify best working option

for implementation, machine.



Online tables: medians, quartiles

of cycles/byte to hash

8-byte message,

64-byte message,

576-byte message,

1536-byte message,

4096-byte message,

(extrapolated) long message.

Actually have much more data.

e.g. Reports show best options.

e.g. Graphs show medians for

0-byte message, 1-byte message,

2-byte message, 3-byte message,

4-byte message, 5-byte message,

: : :, 2048-byte message.



Implementor ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64



Implementor ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64

Define hash function in hash.c,

e.g. wrapping existing NIST API:

#include "crypto_hash.h"

#include "SHA3api_ref.h"

int crypto_hash(

unsigned char *out,

const unsigned char *in,

unsigned long long inlen)

{ Hash(crypto_hash_BYTES*8

,in,inlen*8,out);

return 0; }



Send to the mailing list

the URL of a tar.gz

with one directory

crypto_hash/yourhash/ref

containing hash.c etc.

Measurements magically appear!

Much easier than trying

to do your own benchmarks.

More details and options:

http://bench.cr.yp.to

/call-hash.html

Same API works for XBX:

http://xbx.das-labor.org


