
Decoding random codes:

asymptotics,

benchmarks,

challenges, and

implementations

D. J. Bernstein

University of Illinois at Chicago

Assume that we’re using

the McEliece cryptosystem

(or Neiderreiter or : : :)

to encrypt a plaintext.

Usual standard for high security:

Choose cryptosystem parameters

so that the attacker

cannot decrypt the ciphertext.

Assume that we’re using

the McEliece cryptosystem

(or Neiderreiter or : : :)

to encrypt a plaintext.

Usual standard for high security:

Choose cryptosystem parameters

so that the attacker

cannot decrypt the ciphertext.

has negligible chance of

distinguishing this ciphertext

from the ciphertext

for another plaintext.

Assume that we’re using

the McEliece cryptosystem

(or Neiderreiter or : : :)

to encrypt a plaintext.

Usual standard for high security:

Choose cryptosystem parameters

so that the attacker

cannot decrypt the ciphertext.

has negligible chance of

distinguishing this ciphertext

from the ciphertext

for another plaintext.

(Maybe better to account for

multi-target; see previous talk.)

Attacker’s success chance

increases with more computation,

eventually reaching � 1.

Public-key cryptography is never

information-theoretically secure!

Attacker’s success chance

increases with more computation,

eventually reaching � 1.

Public-key cryptography is never

information-theoretically secure!

But real-world attackers do not

have unlimited computation.

The usual standard, quantified:

Choose cryptosystem parameters

so that attacker has

success chance at most �

after 2c computations.

These parameters

depend on c and �.

These parameters

depend on c and �.

Some people assume c < 80.

These parameters

depend on c and �.

Some people assume c < 80.

The ECC2K-130 project

will reach 277 computations;

future projects will break 280.

Some people assume c = 128.

These parameters

depend on c and �.

Some people assume c < 80.

The ECC2K-130 project

will reach 277 computations;

future projects will break 280.

Some people assume c = 128.

Some people count #atoms

in universe. Assume c = 384?

These parameters

depend on c and �.

Some people assume c < 80.

The ECC2K-130 project

will reach 277 computations;

future projects will break 280.

Some people assume c = 128.

Some people count #atoms

in universe. Assume c = 384?

Less discussion of �.

Is it okay for attacker

to have 1% success chance?

1/1000? 1/1000000?

How do we handle

this variability in (c; �)?

Strategy 1:

A. Convince big community

to focus on one (c; �),

eliminating the variability.

B. Choose parameters.

How do we handle

this variability in (c; �)?

Strategy 1:

A. Convince big community

to focus on one (c; �),

eliminating the variability.

B. Choose parameters.

Strategy 2—including this talk:

A. Accept the variability.

B. Choose parameters

as functions of (c; �).

How do we handle

this variability in (c; �)?

Strategy 1:

A. Convince big community

to focus on one (c; �),

eliminating the variability.

B. Choose parameters.

Strategy 2—including this talk:

A. Accept the variability.

B. Choose parameters

as functions of (c; �).

1A more complicated than 2A.

How do we handle

this variability in (c; �)?

Strategy 1:

A. Convince big community

to focus on one (c; �),

eliminating the variability.

B. Choose parameters.

Strategy 2—including this talk:

A. Accept the variability.

B. Choose parameters

as functions of (c; �).

1A more complicated than 2A.

2B more complicated than 1B.

Helpful simplification

for code-based cryptography:

All of our best attacks

consist of many iterations.

Each iteration: small cost 2c,

small success probability �.

Separate iterations are

almost exactly independent:

2c
0
�c iterations cost 2c

0

,

have success probability

almost exactly 1� (1� �)2c
0
�c

.

So parameters are really just

functions of 2c= log(1=(1� �)).

Is this simplification correct?

Objection 1: Is 2c
0
�c an integer?

Is this simplification correct?

Objection 1: Is 2c
0
�c an integer?

Response: Use b2c
0
�cc.

Iteration success probability

is so small that

we care only about c0 � c.

Is this simplification correct?

Objection 1: Is 2c
0
�c an integer?

Response: Use b2c
0
�cc.

Iteration success probability

is so small that

we care only about c0 � c.

Objection 2: “Reusing pivots”

makes our best attacks faster

but loses some independence.

Is this simplification correct?

Objection 1: Is 2c
0
�c an integer?

Response: Use b2c
0
�cc.

Iteration success probability

is so small that

we care only about c0 � c.

Objection 2: “Reusing pivots”

makes our best attacks faster

but loses some independence.

Response: Yes, must replace � by

result of Markov-chain analysis.

Is this simplification correct?

Objection 1: Is 2c
0
�c an integer?

Response: Use b2c
0
�cc.

Iteration success probability

is so small that

we care only about c0 � c.

Objection 2: “Reusing pivots”

makes our best attacks faster

but loses some independence.

Response: Yes, must replace � by

result of Markov-chain analysis.

But can still merge (c; �)

into 2c= log(1=(1� �)).

Attacker’s 2c= log(1=(1� �))

depends not only on parameters

but also on attack algorithm.

Maybe attacker has found

a much faster algorithm

than anything we know!

Attacker’s 2c= log(1=(1� �))

depends not only on parameters

but also on attack algorithm.

Maybe attacker has found

a much faster algorithm

than anything we know!

All public-key cryptosystems

share this risk.

Attacker’s 2c= log(1=(1� �))

depends not only on parameters

but also on attack algorithm.

Maybe attacker has found

a much faster algorithm

than anything we know!

All public-key cryptosystems

share this risk.

Responses to this risk:

a huge amount of snake oil,

and one standard approach

that seems to be effective.

The standard approach:

Encourage many smart people

to search for speedups.

Monitor their progress:

big speedup, big speedup,

small speedup, big speedup,

small, small, tiny, big, small, tiny,

small, small, tiny, tiny, small, tiny,

tiny, small, tiny, tiny, tiny, tiny.

Eventually progress stops.

After years, build confidence

that optimal algorithm is known.

The standard approach:

Encourage many smart people

to search for speedups.

Monitor their progress:

big speedup, big speedup,

small speedup, big speedup,

small, small, tiny, big, small, tiny,

small, small, tiny, tiny, small, tiny,

tiny, small, tiny, tiny, tiny, tiny.

Eventually progress stops.

After years, build confidence

that optimal algorithm is known.

: : : or is it?

Consider cost of multiplying two

n-coeff polys in R[x],

where cost means

adds and mults in R.

Fast Fourier transform (Gauss):

(15 + o(1))n lgn.

Consider cost of multiplying two

n-coeff polys in R[x],

where cost means

adds and mults in R.

Fast Fourier transform (Gauss):

(15 + o(1))n lgn.

Huge interest starting 1965.

Split-radix FFT (1968 Yavne):

(12 + o(1))n lgn.

Many descriptions, analyses,

implementations, followups;

12 was believed optimal.

Consider cost of multiplying two

n-coeff polys in R[x],

where cost means

adds and mults in R.

Fast Fourier transform (Gauss):

(15 + o(1))n lgn.

Huge interest starting 1965.

Split-radix FFT (1968 Yavne):

(12 + o(1))n lgn.

Many descriptions, analyses,

implementations, followups;

12 was believed optimal.

Tangent FFT (2004 van Buskirk):

(34=3 + o(1))n lgn.

Consider cost of multiplying two

n-coeff polys in F2[x],

where cost means

adds and mults in F2.

Standard schoolbook method:

2n2 � 2n + 1; e.g., 61 for n = 6.

Consider cost of multiplying two

n-coeff polys in F2[x],

where cost means

adds and mults in F2.

Standard schoolbook method:

2n2 � 2n + 1; e.g., 61 for n = 6.

1963 Karatsuba method:

e.g., 59 for n = 6.

Many descriptions, analyses,

implementations, followups.

Improved for large n, but

was believed optimal for small n.

Consider cost of multiplying two

n-coeff polys in F2[x],

where cost means

adds and mults in F2.

Standard schoolbook method:

2n2 � 2n + 1; e.g., 61 for n = 6.

1963 Karatsuba method:

e.g., 59 for n = 6.

Many descriptions, analyses,

implementations, followups.

Improved for large n, but

was believed optimal for small n.

2000 Bernstein:

e.g., 57 for n = 6.

Consider cost of multiplying two

n-bit integers in Z,

where cost means

NAND gates.

Schoolbook: O(n2).

Consider cost of multiplying two

n-bit integers in Z,

where cost means

NAND gates.

Schoolbook: O(n2).

Intense work after Karatsuba.

1971 Schönhage–Strassen:

O(n lgn lg lgn).

Used in many theorems.

Was believed optimal.

Consider cost of multiplying two

n-bit integers in Z,

where cost means

NAND gates.

Schoolbook: O(n2).

Intense work after Karatsuba.

1971 Schönhage–Strassen:

O(n lgn lg lgn).

Used in many theorems.

Was believed optimal.

2007 Fürer:

non-constant improvement,

almost reaching O(n lgn).

Possible conclusion 1:

We’ll never know the optimal

algorithm for anything interesting.

Possible conclusion 1:

We’ll never know the optimal

algorithm for anything interesting.

Possible conclusion 2:

2004� 1968 = 36;

2000� 1963 = 37;

2007� 1971 = 36.

Possible conclusion 1:

We’ll never know the optimal

algorithm for anything interesting.

Possible conclusion 2:

2004� 1968 = 36;

2000� 1963 = 37;

2007� 1971 = 36.

Algorithms are optimal

if they survive 38 years.

Possible conclusion 1:

We’ll never know the optimal

algorithm for anything interesting.

Possible conclusion 2:

2004� 1968 = 36;

2000� 1963 = 37;

2007� 1971 = 36.

Algorithms are optimal

if they survive 38 years.

Possible conclusion 3:

Should choose parameters

aiming at a slightly larger c

so that speedups on this scale

don’t compromise security.

Can also find examples

of bigger speedups

in well-studied problems, but

these examples are less common.

Reasonable to hope

that the standard approach

(encouraging many smart people

to search for speedups)

finds near-optimal attacks.

Doesn’t eliminate risk,

but historical examples suggest

that the risk is much higher

for cryptosystems that do not

take the standard approach.

Sometimes I see

papers taking steps that

discourage this research:

1. Excessively optimistic

algorithm analyses.

2. Excessively pessimistic

algorithm analyses.

3. Nonsensical machine models.

Why do they do this?

Sometimes I see

papers taking steps that

discourage this research:

1. Excessively optimistic

algorithm analyses.

2. Excessively pessimistic

algorithm analyses.

3. Nonsensical machine models.

Why do they do this?

Napoleon: “N’attribuez jamais à

la malveillance ce qui s’explique

très bien par l’incompétence.”

McEliece public key:

linear map G : Fk2 ,! Fn2 .

McEliece plaintext:

m 2 Fk2 ;

and e 2 Fn2 of weight w.

McEliece ciphertext:

Gm + e 2 Fn2 .

Typical parameter choices:

k = Rn with R = 0:8;

w = (n� k)=dlgne

� (1� R)n=lgn.

Basic information-set decoding,

given G and y 2 Fn2 :

Choose uniform random size-k

subset S � f1; 2; : : : ; ng.

Hope that the composition

Fk2
G�! Fn2 ! FS2 is invertible

(S is an “information set”).

If not invertible, try new S.

Project y from Fn2 to FS2 .

Apply inverse, obtaining m.

Compute e = y � Gm.

If weight of e is not w, try new S.

Idea introduced by 1962 Prange.

Easy to analyze speed of

one iteration (one choice of S):

Gaussian elimination to

invert k� k matrix;

matrix-vector multiplication; etc.

Easy to analyze probability

for almost all choices of G:

0:288 : : : chance of invertibility;�n�k
w

�
=
�n
w

�
chance

that e is 0 on FS2 ;

overall iteration success chance

0:288 : : :
�n�k

w

�
=
�n
w

�
.

1978 McEliece repeats same idea

but has different analysis:

“A more promising attack

is to select k of the n coordinates

randomly in hope that

none of the k are in error : : :

The probability of no error,

however, is about (1� t
n)k,

and the amount of work involved

in solving : : : is about k3.

: : : one expects a work factor

of k3 � (1� t
n)�k.

For n = 1024, k = 524, t = 50

this is about 1019 � 265.”

McEliece probability analysis

was excessively optimistic;

lazy approximations are too small.

1988 Adams–Meijer:

k3
.�

0:288 : : :
�n�k

w

�
=
�n
w

��
� 283.

McEliece probability analysis

was excessively optimistic;

lazy approximations are too small.

1988 Adams–Meijer:

k3
.�

0:288 : : :
�n�k

w

�
=
�n
w

��
� 283.

How can someone publish

an interesting new speedup

from 283 to 273,

if McEliece said 265?

Extra work for authors

to convince reviewers

that McEliece was wrong.

Where’s McEliece’s erratum?

1999 Barg et al.: Huge speedups

from “supercode decoding.”

Cost 2(0:101:::+o(1))n

if n!1, assuming

w=n! W and k=n! 1=2 =

1 + W lgW + (1�W) lg(1�W).

Best previous result:

Cost 2(0:115:::+o(1))n.

1999 Barg et al.: Huge speedups

from “supercode decoding.”

Cost 2(0:101:::+o(1))n

if n!1, assuming

w=n! W and k=n! 1=2 =

1 + W lgW + (1�W) lg(1�W).

Best previous result:

Cost 2(0:115:::+o(1))n.

But 1999 Barg et al. is wrong!

Critical error in “Corollary 12”

kills analysis and conclusions.

Mentioned in Crypto 2011 paper

by Bernstein–Lange–Peters.

2009 Finiasz–Sendrier:

“To evaluate the cost of the

algorithm we will assume that

only the instructions (ISD i)

are significant. : : : It is a valid

assumption as we only want a

lower bound. : : : WFISD � � � �”

2009 Finiasz–Sendrier:

“To evaluate the cost of the

algorithm we will assume that

only the instructions (ISD i)

are significant. : : : It is a valid

assumption as we only want a

lower bound. : : : WFISD � � � �”

No, a lower bound is not enough!

Need to state actual attack cost

to encourage future research.

Lower bound is too optimistic,

discourages future research.

Research is also discouraged by

excessively pessimistic

algorithm analyses.

Real speedups are unrecognized,

unadvertised, abandoned.

Research is also discouraged by

excessively pessimistic

algorithm analyses.

Real speedups are unrecognized,

unadvertised, abandoned.

2011 Bernstein–Lange–Peters

found most important idea in

“ball-collision decoding”

by analyzing supercode decoding.

2009 Finiasz–Sendrier

missed speedup because they had

an overly pessimistic analysis:

lazy approximation
�k+`

p

�
�
�k
p

�
.

Perhaps the biggest drain

on research in this area:

nonsensical machine models.

Perhaps the biggest drain

on research in this area:

nonsensical machine models.

1998 Canteaut–Chabaud:

“We give here an explicit and

computable expression for the

work factor of this algorithm, i.e.,

the average number of elementary

operations it requires.”

How can someone write a

followup paper demonstrating

a smaller “work factor”?

Where is the definition

of “elementary operations”?

Canteaut et al. obviously

aren’t counting memory access,

copies, communication costs.

“Elementary operations”

are fully explained by arithmetic.

Write speedup paper that

counts these “operations”

and doesn’t count memory access.

Canteaut et al. obviously

aren’t counting memory access,

copies, communication costs.

“Elementary operations”

are fully explained by arithmetic.

Write speedup paper that

counts these “operations”

and doesn’t count memory access.

Reviewer: “When the authors

compute the complexity of one

iteration of the algorithm they

neglect (or deliberately forget) the

cost of the join operation between

the sets S and T .”

How do we get out of this mess?

Surely we can cite definitions

from computational complexity?

Typical “RAM” definition?

How do we get out of this mess?

Surely we can cite definitions

from computational complexity?

Typical “RAM” definition?

Nonsensical results: can do

Θ(n2) bit ops in “time” n.

Okay for poly-time theorems,

not for serious optimization.

How do we get out of this mess?

Surely we can cite definitions

from computational complexity?

Typical “RAM” definition?

Nonsensical results: can do

Θ(n2) bit ops in “time” n.

Okay for poly-time theorems,

not for serious optimization.

“Pointer machines”—

much more restrictive?

How do we get out of this mess?

Surely we can cite definitions

from computational complexity?

Typical “RAM” definition?

Nonsensical results: can do

Θ(n2) bit ops in “time” n.

Okay for poly-time theorems,

not for serious optimization.

“Pointer machines”—

much more restrictive?

1980 Schönhage:

Can multiply n-bit integers

in Θ(n) operations

on a pointer machine.

Count # NANDs in a circuit?

Mathematically pleasing.

Not obviously nonsensical.

Count # NANDs in a circuit?

Mathematically pleasing.

Not obviously nonsensical.

Circuits have fixed connections.

Simulate RAM by sorting.

Some work, but reasonably easy.

Count # NANDs in a circuit?

Mathematically pleasing.

Not obviously nonsensical.

Circuits have fixed connections.

Simulate RAM by sorting.

Some work, but reasonably easy.

Still physically unrealizable:

ignores wire delay, wire cost.

Count # NANDs in a circuit?

Mathematically pleasing.

Not obviously nonsensical.

Circuits have fixed connections.

Simulate RAM by sorting.

Some work, but reasonably easy.

Still physically unrealizable:

ignores wire delay, wire cost.

1981 Brent–Kung AT theorem:

n-bit multiplication on

realistic size-n parallel circuit

has to take time n1=2

even without wire delay.

A few suggestions

Want correct analyses

in clear cost metrics.

Brent–Kung: realistic;

not excessively complicated;

suitable for asymptotics.

A few suggestions

Want correct analyses

in clear cost metrics.

Brent–Kung: realistic;

not excessively complicated;

suitable for asymptotics.

NANDs: trades realism

for attractive simplicity;

suitable for asymptotics.

A few suggestions

Want correct analyses

in clear cost metrics.

Brent–Kung: realistic;

not excessively complicated;

suitable for asymptotics.

NANDs: trades realism

for attractive simplicity;

suitable for asymptotics.

Time on CPU X: realistic;

not as easy; not asymptotic;

allows computer verification.

RSA factoring challenges

have encouraged and recognized

progress in integer factorization.

Several new attempts to do this

for post-quantum cryptography.

Mistakes to learn from:

ECC challenges

are too widely spaced;

ECC and RSA solutions

don’t measure time.

2011 Bernstein–Lange–Peters:

new “partly wild” challenges,

reasonably tight spacing;

will keep track of time.

q = 13

m = 3

n = 451

s = 24

t = 2

u = 48

k = 307

w = 25

ciphertext = [11, 9, 12, 11, 10, ..., 1, 11, 3, 5, 2]

recovered_plaintext_using_secret_key = True

pubkeycol144 = [0, 10, 3, 5, 1, ..., 4, 12, 8, 0, 12]

pubkeycol145 = [12, 6, 8, 3, 2, ..., 10, 7, 0, 9, 10]

...

pubkeycol450 = [7, 10, 8, 10, 11, ..., 11, 8, 9, 10, 10]

