
Usable assembly language

for GPUs

D. J. Bernstein

University of Illinois at Chicago

319 ms: rpes/src/cuda

183 ms: rpes/src/qhasm (new)

Measured on behemoth:

1.30GHz GTX 280 �2;

2.83GHz Core 2 Quad Q9550

1974 Knuth:

“There is no doubt that the

‘grail’ of efficiency leads to abuse.

Programmers waste enormous

amounts of time thinking about,

or worrying about, the speed

of noncritical parts of their

programs, and these attempts at

efficiency actually have a strong

negative impact when debugging

and maintenance are considered.

We should forget about small

efficiencies, say about 97% of the

time: premature optimization is

the root of all evil.”

Computer isn’t fast enough.

You’ve measured performance,

identified the lines of software

taking most of the CPU time.

Now what?

Computer isn’t fast enough.

You’ve measured performance,

identified the lines of software

taking most of the CPU time.

Now what?

One traditional answer:

“Find a faster algorithm.”

Computer isn’t fast enough.

You’ve measured performance,

identified the lines of software

taking most of the CPU time.

Now what?

One traditional answer:

“Find a faster algorithm.”

You’ve tried many algorithms.

Tried many software rewrites.

Computer is still too slow.

Now what?

Another traditional answer:

Rewrite critical lines in asm.

Another traditional answer:

Rewrite critical lines in asm.

Disadvantage of this answer:

increase in programming time;

asm is hard to use.

Another traditional answer:

Rewrite critical lines in asm.

Disadvantage of this answer:

increase in programming time;

asm is hard to use.

Advantage of this answer:

full control over CPU!

Programmer can control

details of memory layout,

instruction selection,

instruction scheduling, etc.

Compiler can be quite stupid:

often fails to exploit CPU,

even with programmer’s help.

Yet another answer:

Move critical lines to a GPU.

Most common GPU architectures:

Evergreen, Northern Islands from

AMD; Tesla, Fermi from NVIDIA.

In this talk I’ll focus on

the Tesla GPU architecture.

Tesla GPUs are very easy to find:

GTX 280; GTX 295; AC;

Lincoln; Longhorn; etc.

Yet another answer:

Move critical lines to a GPU.

Most common GPU architectures:

Evergreen, Northern Islands from

AMD; Tesla, Fermi from NVIDIA.

In this talk I’ll focus on

the Tesla GPU architecture.

Tesla GPUs are very easy to find:

GTX 280; GTX 295; AC;

Lincoln; Longhorn; etc.

Yet another answer:

Move critical lines to a GPU.

Most common GPU architectures:

Evergreen, Northern Islands from

AMD; Tesla, Fermi from NVIDIA.

In this talk I’ll focus on

the Tesla GPU architecture.

Tesla GPUs are very easy to find:

GTX 280; GTX 295; AC;

Lincoln; Longhorn; etc.

Advantage of this answer:

GPU can do huge number of

floating-point operations/second.

GPU is tough optimization target.

Highly parallelized, vectorized:

30 cores (“multiprocessors”)

running � 3840 threads;

each instruction is applied

to vector of � 32 floats.

GPU is tough optimization target.

Highly parallelized, vectorized:

30 cores (“multiprocessors”)

running � 3840 threads;

each instruction is applied

to vector of � 32 floats.

Maybe NVIDIA makes up for this

with super-smart compilers

that fully exploit the GPU!

GPU is tough optimization target.

Highly parallelized, vectorized:

30 cores (“multiprocessors”)

running � 3840 threads;

each instruction is applied

to vector of � 32 floats.

Maybe NVIDIA makes up for this

with super-smart compilers

that fully exploit the GPU!

Maybe not.

GPU is tough optimization target.

Highly parallelized, vectorized:

30 cores (“multiprocessors”)

running � 3840 threads;

each instruction is applied

to vector of � 32 floats.

Maybe NVIDIA makes up for this

with super-smart compilers

that fully exploit the GPU!

Maybe not.

Move critical lines to a GPU

and write them in asm?

This is easier said than done.

2010 L.-S. Chien “Hand-tuned

SGEMM on GT200 GPU”:

Successfully gained speed using

van der Laan’s decuda, cudasm

and manually rewriting a small

section of ptxas output.

But this was “tedious” and

hampered by cudasm bugs: “we

must extract minimum region of

binary code needed to be modified

and keep remaining binary code

unchanged : : : it is not a good

idea to write whole assembly

manually and rely on cudasm.”

2010 Bernstein–Chen–Cheng–

Lange–Niederhagen–Schwabe–

Yang “ECC2K-130 on NVIDIA

GPUs”; focusing on GTX 295:

Extensive optimizations in CUDA

for “ECC2K-130” computation:

26 million iterations/second.

Built new assembly language

qhasm-cudasm for Tesla GPUs.

Built 90000-instruction kernel

entirely in assembly language;

later reduced below 10000.

63 million iterations/second

for the same computation.

My talk today: Another

qhasm-cudasm case study.

2010.11 email from Kindratenko:

rpes kernel in particular is

of a very much interest to us

because it is similar to some

of the kernels Alex has

implemented. ... We would be

very much interested in

understanding how this kernel

can be re-implemented in the

nvidia gpu assembly language

that you have developed and

what benefits this would give

us.

1953 Tom Lehrer “Lobachevsky”:

“I am never forget the day I am

given first original paper to write.

It was on

analytic and algebraic topology of

locally Euclidean parameterization

of infinitely differentiable

Riemannian manifold.

Bozhe moi!

This I know from nothing.

What I am going to do.”

Download rpes in parboil1.

Find three implementations

of the same computation:

base, cuda_base, cuda.

Note: no rpes in parboil2;

and TeraChem source isn’t public.

./parboil run rpes cuda

default -S: 319 milliseconds

= 147 ms on one GPU

+ 94 ms on one CPU core

+ 78 ms copying data.

cuda_base: slower.

base: 63075 ms; no GPU.

Read code to understand it.

base has only 600 lines.

CalcOnHost in base:

46-line main computation

inside eight nested loops.

Main computation

loads data, does some arithmetic,

calls a few simple subroutines:

e.g., H_dist2 computes

(x1�x2)2 +(y1�y2)2 +(z1�z2)2.

Also one complicated subroutine,

root1f, 75 lines, computing

erf(
p
x)=
p

4x=� given x.

Sample input used by parboil:

x; y; z coordinates for 30 atoms:

20 H atoms and 10 O atoms.

Each O atom has 17 “primitives”

(�; c) organized into 3 shells.

Same primitives, shells for each O:

3rd shell is always (0:3023; 1);

2nd shell is 8 primitives starting

(11720;�0:000314443412); etc.

H atom: 4 primitives in 2 shells.

Overall input data:

250 vectors (x; y; z; �; c)

organized into 70 shells.

Have 2504 = 3906250000

ways to choose four vectors

v1 = (x1; y1; z1; �1; c1),

v2 = (x2; y2; z2; �2; c2),

v3 = (x3; y3; z3; �3; c3),

v4 = (x4; y4; z4; �4; c4)

out of this input.

46-line main computation uses

< 100 floating-point ops

to compute an “integral”

P (v1; v2; v3; v4)

given a choice of four vectors.

704 = 24010000 choices of

w1 = (x1; y1; z1; shell1),

w2 = (x2; y2; z2; shell2),

w3 = (x3; y3; z3; shell3),

w4 = (x4; y4; z4; shell4).

Define S(w1; w2; w3; w4)

as
P

P (v1; v2; v3; v4).

Output of computation:

704 floats S(w1; w2; w3; w4).

Actually, rpes computes only

70�71�72�73=24 = 1088430 floats

from 187240905 integrals:

apparently there’s a symmetry

between w1; w2; w3; w4.

GPU has 240 32-bit ALUs

(arithmetic-logic units;

mislabelled “cores” by NVIDIA).

Each ALU: one op per cycle;

1:3 � 109 cycles per second.

In cuda’s 319 ms:

GPU can do 10:0 � 1010 ops,

as complicated as multiply-add.

In 146 ms: 4:3 � 1010 ops.

GPU is actually computing

187240905 integrals,

each < 100 ops:

total < 1:9 � 1010 ops.

ALUs are sitting mostly idle!

So I wrote a new rpes

using qhasm-cudasm.

Integrated into parboil1,

put online for you to try:

wget http://cr.yp.to/qhasm/

parboilrpes.tar.gz

tar -xzf parboilrpes.tar.gz

cd parboilrpes

(x=‘pwd‘; cd common/src;

make PARBOIL_ROOT=$x)

./parboil run rpes cuda

default -S

./parboil run rpes qhasm

default

Typical code in cudasm:

add.rn.f32 $r1, $r20, -$r21

mul.rn.f32 $r6, $r1, $r1

add.rn.f32 $r1, $r24, -$r25

mad.rn.f32 $r6, $r1, $r1, $r6

add.rn.f32 $r1, $r28, -$r29

mad.rn.f32 $r6, $r1, $r1, $r6

These instructions work without

any of our cudasm bug fixes.

Same code in C/C++/CUDA:

dx12 = x1 - x2;

dy12 = y1 - y2;

dz12 = z1 - z2;

dist12 = dx12 * dx12

+ dy12 * dy12 + dz12 * dz12;

Compiler selects instructions

(e.g., mad for *+);

schedules instructions;

assigns registers.

Same in qhasm-cudasm:

dx12 = approx x1 - x2

dy12 = approx y1 - y2

dz12 = approx z1 - z2

dist12 = approx dx12 * dx12

approx dist12 += dy12 * dy12

approx dist12 += dz12 * dz12

Each line is an instruction.

Programmer can assign

some or all registers,

but qhasm includes a

state-of-the-art allocator.

CUDA:

w = 31.00627668 * rsqrtf(X);

qhasm-cudasm:

w = approx 1 / sqrt X

w = approx w * 31.00627668

cudasm:

rsqrt.f32 $r7, $r7

mul.rn.f32 $r7, $r7, 0x41f80cdb

Start 7680 threads on GPU:

30 blocks of 256 threads;

i.e., 256 threads on each core.

Split the 1088430 outputs

across these threads:

thread t computes outputs

t, t + 7680, t + 15360, etc.

Start 7680 threads on GPU:

30 blocks of 256 threads;

i.e., 256 threads on each core.

Split the 1088430 outputs

across these threads:

thread t computes outputs

t, t + 7680, t + 15360, etc.

Oops, imbalance: slowest thread

computes 50341 integrals;

average computes < 25000.

GPU is 50% idle!

Start 7680 threads on GPU:

30 blocks of 256 threads;

i.e., 256 threads on each core.

Split the 1088430 outputs

across these threads:

thread t computes outputs

t, t + 7680, t + 15360, etc.

Oops, imbalance: slowest thread

computes 50341 integrals;

average computes < 25000.

GPU is 50% idle!

Easy fix, not implemented yet:

sort shells by # primitives.

Reduces penalty to � 10%.

Each GPU core has SRAM:

16384 32-bit registers

split between threads;

16384 bytes “shared memory”

accessible by all threads.

CPU copies atom data from

CPU DRAM to GPU DRAM.

GPU DRAM is very slow,

so threads begin by copying

atom data to shared memory.

Threads also initialize shared

erfseries[X][i] as
P

j(�1)j
�
j
i

�
(X=16)j�i=j!(2j + 1)

so that

(
p
�=2) erf

p
x + �=

p
x + �

=
P

i erfseries[16x][i]�i.

(Tweak: 2�2:5 scaling.)

i � 7 is adequate

for full float precision.

Maybe even overkill

for the application.

