
Faster rho for elliptic curves

D. J. Bernstein

University of Illinois at Chicago



“Breaking ECC2K-130”,

joint work by many authors:

ECDL attack in progress against

Koblitz curve over F2131

using many CPUs, GPUs, FPGAs.

Vertically integrated stack

of new techniques for optimizing

choice of rho iteration function,

computation of iteration function,

underlying binary-field arithmetic.

Also new improvements in

rho communication volume.



“Breaking ECC2K-130”,

joint work by many authors:

ECDL attack in progress against

Koblitz curve over F2131

using many CPUs, GPUs, FPGAs.

Vertically integrated stack

of new techniques for optimizing

choice of rho iteration function,

computation of iteration function,

underlying binary-field arithmetic.

Also new improvements in

rho communication volume.

But I’m actually going to

talk about something else.



Previous ECDL attack:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Successful ECDL computation

for a standard curve over Fp
where p = (2128 � 3)=(11 � 6949).



Previous ECDL attack:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Successful ECDL computation

for a standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

“We did not use

the common negation map

since it requires branching

and results in code that runs

slower in a SIMD environment.”



2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery “On the

security of 1024-bit RSA and 160-

bit elliptic curve cryptography”:

Group order q � p;

“expected number of iterations”

is “
q

��q

2 � 8:4 � 1016”; “we

do not use the negation map”;

“456 clock cycles per iteration

per SPU”; “24-bit distinguishing

property” ) “260 gigabytes”.

“The overall calculation

can be expected to take

approximately 60 PS3 years.”



2009.09 Bos–Kaihara–

Montgomery “Pollard rho

on the PlayStation 3”:

“Our software implementation is

optimized for the SPE : : : the

computational overhead for

[the negation map], due to the

conditional branches required to

check for fruitless cycles [13],

results (in our implementation

on this architecture) in an overall

performance degradation.”

“[13]” is 2000 Gallant–Lambert–

Vanstone.



2010.07 Bos–Kleinjung–Lenstra

“On the use of the negation map

in the Pollard rho method”:

“If the Pollard rho method is

parallelized in SIMD fashion,

it is a challenge to achieve any

speedup at all. : : : Dealing with

cycles entails administrative

overhead and branching, which

cause a non-negligible slowdown

when running multiple walks in

SIMD-parallel fashion. : : :

[This] is a major obstacle

to the negation map

in SIMD environments.”



2010 Bernstein–Lange–Schwabe,

first announcement today:

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery code

uses 65 PS3 years on average.



2010 Bernstein–Lange–Schwabe,

first announcement today:

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery code

uses 65 PS3 years on average.

Computation used 158000 kWh

(if PS3 ran at only 300W),

wasting >70000 kWh,

unnecessarily generating >10000

kilograms of carbon dioxide.



Several levels of speedups,

starting with fast arithmetic

and continuing up through rho.

Most important speedup:

We use the negation map.



Several levels of speedups,

starting with fast arithmetic

and continuing up through rho.

Most important speedup:

We use the negation map.

Extra cost in each iteration:

extract bit of “s”

(normalized y, needed anyway);

expand bit into mask;

use mask to conditionally

replace (s; y) by (�s;�y).

5.5 SPU cycles (� 1:5% of total).

No conditional branches.



Bos–Kleinjung–Lenstra say

that “on average more elliptic

curve group operations are

required per step of each walk.

This is unavoidable” etc.

Specifically: If the precomputed

adding-walk table has r points,

need 1 extra doubling to escape

a cycle after � 2r additions.

And more: “cycle reduction” etc.

Bos–Kleinjung–Lenstra say

that the benefit of large r

is “wiped out by

cache inefficiencies.”



There’s really no problem here!

We use r = 2048.

1=2r = 1=4096; negligible.

Recall: p has 112 bits.

28 bytes for table entry (x; y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small x; y;

very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,

overlapping loads with arithmetic.

No “cache inefficiencies.”



What about fruitless cycles?

We run 45 iterations.

We then save s;

run 2 slightly slower iterations

tracking minimum (s; x; y);

then double tracked (x; y)

if new s equals saved s.

Credits: 1999 GLV, 1999 DGM.

(Occasionally replace 2 by 12

to detect 4-cycles, 6-cycles.

Such cycles are almost

too rare to worry about,

but detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.

: : : but this is infrequent.

Lose � 0.6% of all iterations.

Tracking minimum isn’t free,

but most iterations skip it!

Same for final s comparison.

Still no conditional branches.

Overall cost � 1:3%.

Doubling occurs for only

� 1=4096 of all iterations.

We use SIMD quite lazily here;

overall cost � 0:6%.

Can reduce this cost further.



To confirm iteration effectiveness

we have run many experiments

on y2 = x3 � 3x + 9

over the same Fp,

using smaller-order P .

Matched DL cost predictions.

Final conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.

Impact on number of iterations

is almost exactly
p

2.

Overall benefit is

extremely close to
p

2.


