Faster rho for elliptic curves

D. J. Bernstein
University of lllinois at Chicago



“Breaking ECC2K-130",
joint work by many authors:

ECDL attack in progress against
Koblitz curve over F,131

using many CPUs, GPUs, FPGA:s.

Vertically integrated stack

of new techniques for optimizing
choice of rho iteration function,
computation of iteration function,

underlying binary-field arithmetic.
Also new improvements In

rho communication volume.



“Breaking ECC2K-130",
joint work by many authors:

ECDL attack in progress against
Koblitz curve over F,131

using many CPUs, GPUs, FPGA:s.

Vertically integrated stack

of new techniques for optimizing
choice of rho iteration function,
computation of iteration function,
underlying binary-field arithmetic.
Also new improvements In

rho communication volume.

But I'm actually going to
talk about something else.



Previous ECDL attack:

2009.07 Bos—Kaihara-
Kleinjung—Lenstra—Montgomery
“PlayStation 3 computing

breaks 299 barrier:
112-bit prime ECDLP solved”.

Successful ECDL computation

for a standard curve over Fy
where p = (2128 — 3)/(11 - 6949).



Previous ECDL attack:

2009.07 Bos—Kaihara-
Kleinjung—Lenstra—Montgomery
“PlayStation 3 computing

breaks 299 barrier:
112-bit prime ECDLP solved”.

Successful ECDL computation

for a standard curve over Fy
where p = (2128 — 3)/(11 - 6949).

“We did not use

the common negation map
since It requires branching

and results in code that runs
slower in a SIMD environment.”



2009.07 Bos—Kaihara—Kleinjung—
Lenstra—Montgomery “On the
security of 1024-bit RSA and 160-
bit elliptic curve cryptography™:

Group order g = p;

expectec number of iterations”

IS \/ ~ 8.4 -10%0"; “we

do not use the negation map’;
"456 clock cycles per iteration
per SPU"; “24-bit distinguishing
property’ = 260 gigabytes’ .

“The overall calculation
can be expected to take
approximately 60 PS3 years.”



2009.09 Bos—Kaihara-
Montgomery “Pollard rho

on the PlayStation 3":

“Our software implementation is
optimized for the SPE ... the
computational overhead for
[the negation map], due to the

conditional branches required to
check for fruitless cycles [13],
results (in our implementation

on this architecture) in an overall
performance degradation.”

“[13]" is 2000 Gallant—Lambert—
Vanstone.



2010.07 Bos—Kleinjung—Lenstra
“On the use of the negation map

in the Pollard rho method":

“If the Pollard rho method is
parallelized in SIMD fashion,

it Is a challenge to achieve any
speedup at all. ... Dealing with
cycles entails administrative
overhead and branching, which
cause a non-negligible slowdown

when running multiple walks In

SIMD-parallel fashion. . ..
[This] is a major obstacle
to the negation map

in SIMD environments.”



2010 Bernstein—Lange—Schwabe,
first announcement today:

Our software solves

random ECDL on the same curve

(with no precomputation)
in 35.6 PS3 years on average.

For comparison:
Bos—Kaihara—Kleinjung—Lenstra—
Montgomery code

uses 65 PS3 years on average.



2010 Bernstein—Lange—Schwabe,
first announcement today:

Our software solves

random ECDL on the same curve

(with no precomputation)
in 35.6 PS3 years on average.

For comparison:
Bos—Kaihara—Kleinjung—Lenstra—
Montgomery code

uses 65 PS3 years on average.
Computation used 158000 kWh
(if PS3 ran at only 300W),
wasting >70000 kWh,
unnecessarily generating >10000
kilograms of carbon dioxide.



Several levels of speedups,
starting with fast arithmetic
and continuing up through rho.

Most important speedup:
We use the negation map.



Several levels of speedups,
starting with fast arithmetic
and continuing up through rho.

Most important speedup:
We use the negation map.

Extra cost in each iteration:
extract bit of “s”
(normalized y, needed anyway);

expand bit into mask;

use mask to conditionally

replace (s,y) by (—s, —y).
5.5 SPU cycles (~ 1.5% of total).

No conditional branches.




Bos—Kleinjung—Lenstra say
that “on average more elliptic
curve group operations are
required per step of each walk.
This Is unavoidable” etc.

Specifically: If the precomputed
adding-walk table has r points,
need 1 extra doubling to escape
a cycle after &~ 2r additions.

And more: “cycle reduction” etc.

Bos—Kleinjung—Lenstra say
that the benefit of large r

Is “wiped out by
cache inefficiencies.”



There's really no problem herel

We use r = 2048.
1/2r = 1/4096; negligible.

Recall: » has 112 bits.
28 bytes for table entry (z,y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small z, y;
very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,
overlapping loads with arithmetic.
No “cache inefficiencies.”



What about fruitless cycles?

We
We

run

run 45 iterations.
then save s;
2 slightly slower i1terations

tracking minimum (s, z,v);
then double tracked (z, y)
if new s equals saved s.

Credits: 1999 GLV, 1999 DGM.

(Occasionally replace 2 by 12

to ¢

etect 4-cycles, 6-cycles.

Suc
too
but

n cycles are almost
rare to worry about,
detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.
.but this is infrequent.

Lose 0.6% of all iterations.

Tracking minimum isn't free,
but most iterations skip it!

Same for final s comparison.
Still no conditional branches.

Overall cost ~ 1.3%.

Doubling occurs for only

~ 1/4096 of all iterations.

We use SIMD quite lazily here;
overall cost ~ 0.6%.

Can reduce this cost further.



To confirm iteration effectiveness
we have run many experiments
ony?=x3-3z+09

over the same Fy,

using smaller-order P.

Matched DL cost predictions.

Final conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.
Impact on number of iterations
is almost exactly /2.

Overall benefit is

extremely close to /2.



