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Conventional wisdom:

Grover’s algorithm

forces 2� key size.

e.g. Want security 2128?

128-bit AES key seems safe

before quantum computers;

but need 256-bit AES key

to resist Grover’s algorithm.

e.g. Want security 2256?

256-bit AES key seems safe

(despite “related-key” silliness)

before quantum computers;

but need new 512-bit cipher

to resist Grover’s algorithm.



Breaking a good b-bit cipher

takes 2b bit operations

but 2b=2 qubit operations.



Breaking a good b-bit cipher

takes 2b bit operations

but 2b=2 qubit operations.

Correction: Have to multiply 2b

by cost of cipher evaluation;

and have to multiply 2b=2

by more, namely cost of

quantum cipher evaluation.

Plausible scaling hypotheses )
Correction changes comparison

by various constant factors

and logarithmic factors.

Key-size ratio < 2;

but ratio ! 2 as b!1.



Many problems analogous to

finding b-bit cipher key.

For 2b security of

finding a hash preimage:

Before quantum computers,

need a good (1 + o(1))b-bit hash.

After quantum computers,

need a good (2 + o(1))b-bit hash.

Ratio:
(2 + o(1))b

(1 + o(1))b
= 2 + o(1).
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But there are many problems

where the conventional wisdom

seems to be wrong!

Ratio c + o(1) with c < 2.



For 2b security of

finding a hash collision:

Before quantum computers,

need a good (2 + o(1))b-bit hash.

Common belief, based on

1998 Brassard–Høyer–Tapp:

After quantum computers,

need a good (3 + o(1))b-bit hash.

Size ratio 1:5 + o(1).



For 2b security of

finding a hash collision:

Before quantum computers,

need a good (2 + o(1))b-bit hash.

Common belief, based on

1998 Brassard–Høyer–Tapp:

After quantum computers,

need a good (3 + o(1))b-bit hash.

Size ratio 1:5 + o(1).

2009 Bernstein: Actually,

a good (2 + o(1))b-bit hash

stops all known attacks,

including Brassard–Høyer–Tapp.

Size ratio 1 + o(1).



Size ratio 1 + o(1)

can often be proven:

e.g., Grover’s algorithm

obviously has no effect

on the key size needed for the

1974 Gilbert–MacWilliams–Sloane

authentication system.

Can also find cases where

1 + o(1) is conjectured.

2009 Overbeck–Sendrier:

“Grover’s algorithm is not able

[to] give a significant speed-up

for the existing attacks” against

the McEliece cryptosystem.



Information-set decoding

McEliece public key:

linear map G : Fk2 ,! Fn2 .

McEliece plaintext:

m 2 Fk2 ; and e 2 Fn2 of weight t.

McEliece ciphertext:

Gm + e 2 Fn2 .

Typical parameter choices:

k = Rn with R = 0:8;

t = (n� k)=dlgne
� (1� R)n=lgn.



Basic information-set decoding,

given G and y 2 Fn2 :

Choose uniform random size-k

subset S � f1; 2; : : : ; ng.

Hope that the composition

Fk2
G�! Fn2 ! FS2 is invertible

(S is an “information set”).

If not invertible, try new S.

Project y from Fn2 to FS2 .

Apply inverse, obtaining m.

Compute e = y � Gm.

If weight of e is not t, try new S.



For typical G and y = Gm + e:

Pr[S finds m and e]

� 0:29
�n�t

k

�
=
�n
k

�
2 1=c(1+o(1))n=lgn.

Here c = 1=(1� R)1�R � 1:38;

o(1) ! 0 as n!1.

Total time c(1+o(1))n=lgn.

Advanced information-set

decoding has many speedups.

2009 Bernstein–Lange–Peters–

van Tilborg: these save n>const,

but still total time c(1+o(1))n=lgn.



Previous Grover decoding

1998 Barg–Zhou: Grover’s

algorithm can decode any

length-n code C, linear or not,

“on a quantum computer of

circuit size O(njCj1=2) in time

O(njCj1=2), which is essentially

optimal following a result in [1997

Bennett et al.].”
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Previous Grover decoding

1998 Barg–Zhou: Grover’s

algorithm can decode any

length-n code C, linear or not,

“on a quantum computer of

circuit size O(njCj1=2) in time

O(njCj1=2), which is essentially

optimal following a result in [1997

Bennett et al.].”

Much slower than

information-set decoding.

2009 Overbeck–Sendrier: Begin

with “the simplifying assumption

that by Grover’s algorithm we are



able to search a set of size N in

O(
p
N) operations on a quantum

computer with at least log2(N)

QuBits.”

Cannot search for sets S: “this

would either require an iterative

application of Grover’s algorithm

(which is not possible) or a

memory of size of the whole

search space, as the search

function in the second step

depends on the first step.

This would clearly ruin the

‘divide-and-conquer’ strategy

and is thus not possible either.”



Grover’s root-finding method

1996 Grover “A fast quantum

mechanical algorithm for

database search” is not actually

a database-search algorithm.

Input to Grover’s transformation:

circuit that computes

a function f : Fb2 ! F2.

Output: quantum circuit that

(if possible) computes x 2 Fb2
such that f(x) = 0.

The transformation is

explicit and efficient.



Simplest version—adequate

when f has small, fast circuit:

circuit for f

) combinatorial circuit for f

) reversible circuit for f

) quantum circuit for f

) quantum circuit for f

plus quantum rotation etc.

) root-finding quantum circuit.

Root-finding circuit is small

and uses �
p

2b=r fast iterations

if f has r roots.

(1996 Grover for r = 1; 1996

Boyer–Brassard–Høyer–Tapp)



Quantum information-set decoding

Choose big b and Fb2 � fSg,

close to uniformly distributed.

Define f : Fb2 ! F2 as follows:

Compute corresponding S.

Return 1 if the composition

Fk2
G�! Fn2 ! FS2 is not invertible.

Project y from Fn2 to FS2 .

Apply inverse, obtaining m.

Compute e = y � Gm.

Return 1 if weight is not t.

Return 0.



Compute this function f

using a combinatorial circuit

containing nO(1) bit operations.

Basic information-set decoding

searches randomly for a root of f .

c(1+o(1))n=lgn evaluations of f ,

each taking time nO(1).

Basic quantum information-set

decoding: Apply Grover.

Root-finding circuit

uses c(1=2+o(1))n=lgn

quantum evaluations of f ,

each taking time nO(1);

and has size nO(1).



Consequence for McEliece users:

Before quantum computers,

need n 2 (1 + o(1))(b= lg c) lg b

for security 2b. Key size�
R(1� R)

(lg c)2
+ o(1)

�
b2(lg b)2.

After quantum computers,

need n 2 (2 + o(1))(b= lg c) lg b

for security 2b. Key size�
4R(1� R)

(lg c)2
+ o(1)

�
b2(lg b)2.

Ratio 4 + o(1).


