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Conventional wisdom:
Grover's algorithm
forces 2x key size.

e.g. Want security 21287

128-bit AES key seems safe
before quantum computers;

but need 256-bit AES key
to resist Grover's algorithm.

e.g. Want security 22°07
256-bit AES key seems safe
(despite “related-key"” silliness)
pefore quantum computers;

out need new 512-bit cipher
to resist Grover's algorithm.



Breaking a good b6-bit cipher
takes 2° bit operations
but 20/2 qubit operations.



Breaking a good b6-bit cipher
takes 2° bit operations
but 20/2 qubit operations.

Correction: Have to multiply 2°
by cost of cipher evaluation;
and have to multiply 2b/2

by more, namely cost of
quantum cipher evaluation.

Plausible scaling hypotheses =
Correction changes comparison
by various constant factors

and logarithmic factors.
Key-size ratio < 2;

but ratio — 2 as b — 0.



Many problems analogous to
finding b-bit cipher key.

For 2° security of

finding a hash preimage:
Before quantum computers,
need a good (1 + o(1))b-bit hash.
After quantum computers,
need a good (2 + o(1))b-bit hash.

(2 +0(1))b
(1+o(1))b

Ratio:

=2+ 0o(1).
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For 2° security of

finding a hash preimage:
Before quantum computers,
need a good (1 + o(1))b-bit hash.
After quantum computers,
need a good (2 + o(1))b-bit hash.

(2 +0(1))b
(1+o(1))b

But there are many problems

Ratio:

=2+ 0o(1).

where the conventional wisdom
seems to be wrong!
Ratio ¢ + o(1) with ¢ < 2.



For 2° security of
finding a hash collision:

Before quantum computers,
need a good (2 + o(1))b-bit hash.

Common belief, based on
1998 Brassard—Hgyer—Tapp:
After quantum computers,
need a good (3 + o(1))b-bit hash.
Size ratio 1.5 + o(1).



For 2° security of
finding a hash collision:

Before quantum computers,
need a good (2 + o(1))b-bit hash.

Common belief, based on
1998 Brassard—Hgyer—Tapp:
After quantum computers,
need a good (3 + o(1))b-bit hash.
Size ratio 1.5 + o(1).

2009 Bernstein: Actually,
a good (2 + o(1))b6-bit hash
stops all known attacks,

including Brassard—Hgyer—Tapp.
Size ratio 1 + o(1).



Size ratio 1 + o(1)

can often be proven:

e.g., Grover's algorithm
obviously has no effect

on the key size needed for the

1974 Gilbert—MacWilliams—Sloane
authentication system.

Can also find cases where
1 + o(1) is conjectured.

2009 Overbeck—Sendrier:
“Grover’s algorithm is not able

to] give a significant speed-up

for the existing attacks” against
the McEliece cryptosystem.



Information-set decoding

McEliece public key:
linear map G : Fg — F7.

McEliece plaintext:
m € F/§; and e € F} of weight ¢.

McEliece ciphertext:
Gm +ec€ F}.

Typical parameter choices:
k = Rn with R = 0.8:;

t=(n—k)/llgn|
~ (1 — R)n/lgn.



Basic information-set decoding,
given G and y € F%:

Choose uniform random size-£
subset S C {1,2,...,n}.

Hope that the composition
F&¥ -5 FD' — F3 is invertible
(S is an “information set”).
If not invertible, try new S.

Project y from F7 to Fg.

Apply inverse, obtaining m.
Compute e =y — Gm.

If weight of e is not ¢, try new S.



For typical G and y = Gm + e:
Pr|S finds m and e]

~029(":)/ (i)

c1/c

o(l))n/lgn_

Here c =1/(1 - R)!=F ~ 1.38;

o(l) —
Total ti

Advanc

0 asn — oo.

me cl1+o(1))n/lgn

ed information-set

decoding has many speedups.

2009 Bernstein—Lange—Peters—

van T

horg: these save n~cO"St

but sti

total time c(1to(1))n/lgn



Previous Grover decoding

1998 Barg—Zhou: Grover's
algorithm can decode any
length-n code C, linear or not,
“on a quantum computer of
circuit size O(n|C|/2) in time
O(n|C|}?), which is essentially
optimal following a result in [1997
Bennett et al.].”
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Much slower than
information-set decoding.



Previous Grover decoding

1998 Barg—Zhou: Grover's
algorithm can decode any
length-n code C, linear or not,
“on a quantum computer of
circuit size O(n|C|/2) in time
O(n|C|}?), which is essentially
optimal following a result in [1997
Bennett et al.].”

Much slower than
information-set decoding.

2009 Overbeck—Sendrier: Begin
with “the simplifying assumption
that by Grover's algorithm we are



able to search a set of size /V in
O(+v/ ) operations on a quantum

computer with at least log,(/V)
QuBits.”

Cannot search for sets S: “this
would either require an iterative
application of Grover's algorithm
(which is not possible) or a
memory of size of the whole
search space, as the search
function in the second step
depends on the first step.

This would clearly ruin the

‘divide-and-conquer’ strategy
and is thus not possible either.”



Grover's root-finding method

1996 Grover “A fast quantum
mechanical algorithm for
database search” Is not actually
a database-search algorithm.

Input to Grover's transformation:
circuit that computes
a function f : Fg — Fo.

Output: quantum circuit that
(if possible) computes z € F
such that f(z) = 0.

The transformation is
explicit and efficient.



Simplest version—adequate
when f has small, fast circuit:

circuit for f

= combinatorial circuit for f
= reversible circuit for f

= quantum circuit for f

= quantum circuit for f
plus quantum rotation etc.
= root-finding quantum circuit.

Root-finding circuit is small

and uses &2 1/2°/7 fast iterations
if f has r roots.

(1996 Grover for r = 1; 1996
Boyer—Brassard—Hgyer—Tapp)



Quantum information-set decoding

Choose big b and F§ — {S},
close to uniformly distributed.

Define f : F5 — F; as follows:

Compute corresponding S.

Return 1 if the composition

Fg G, F — F25 IS not invertible.
Project y from F7 to Fg.

Apply inverse, obtaining m.
Compute e =y — Gm.

Return 1 if weight is not ¢.
Return 0.



Compute this function f
using a combinatorial circuit
containing n91) pit operations.

Basic information-set decoding

searches randomly for a root of f.

c(1+o(1))n/lgn eyaluations of f,

each taking time nO(1)

Basic quantum information-set
decoding: Apply Grover.
Root-finding circuit

Jses o(1/2+0(1))n/Ign

quantum evaluations of f,

each taking time nO(1).

and has size n2(1).



Consequence for McEliece users:

Before quantum computers,
need n € (14 o(1))(b/1gc)lgb
for security 2°. Key size

R(1 - R) . > 2
(g o) e

After quantum computers,
need n € (2+0(1))(6/lgc)lgb
for security 20 Key size

AR(L—R) .\ 201 )12
( lgar (1))5 (Igb)?.

Ratio 4 + o(1).




