
Elliptic-curve cryptography

D. J. Bernstein

University of Illinois at Chicago

January 2010 news:

An academic team announces

successful RSA-768 factorization.

Used � 2 years of computation

on � 1000 CPU cores.

“Factoring a 1024-bit RSA

modulus would be about a

thousand times harder.”

January 2010 news:

An academic team announces

successful RSA-768 factorization.

Used � 2 years of computation

on � 1000 CPU cores.

“Factoring a 1024-bit RSA

modulus would be about a

thousand times harder.”

Many users of 1024-bit RSA:

https://www.abnamro.nl,

the root DNSSEC trial, etc.

2009 Kolkman et al.: “It is

estimated that most zones can

safely use 1024-bit keys for at

least the next ten years.”

1000 cores in perspective:

My laptop has 2 cores.

1000 cores in perspective:

My laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

1000 cores in perspective:

My laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

1000 cores in perspective:

My laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

I have an account on the

TACC Ranger supercomputer,

which has 62976 cores.

1000 cores in perspective:

My laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

I have an account on the

TACC Ranger supercomputer,

which has 62976 cores.

The Conficker/Downadup

criminal-controlled botnet

has � 10 000 000 cores.

2003 Shamir et al.:

An attacker building ASICs

for $10 million can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2003 Shamir et al.:

An attacker building ASICs

for $10 million can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2007 NIST: Same.

2003 Shamir et al.:

An attacker building ASICs

for $10 million can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2007 NIST: Same.

Another big reason to worry:

Attackers with more money

can use batch algorithms

that save time in breaking

many keys together.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

2048-bit key: 1024-bit primes;

� 21014 possible primes.

Still below modern standards!

Attacks: � 2112 calculations.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

2048-bit key: 1024-bit primes;

� 21014 possible primes.

Still below modern standards!

Attacks: � 2112 calculations.

3072-bit key: 1536-bit primes;

� 21526 possible primes.

Attacks: � 2128 calculations.

These attacks use a simple idea:

“combining congruences.”

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve;

1982, quadratic sieve;

1990, number-field sieve.

Also many smaller improvements.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.

1977: RSA is introduced.

1985: Miller proposes switching

from RSA to elliptic curves.

Explains several obstacles

to congruence-combination

attacks on elliptic curves.

Subsequent ECC history:

Negligible security losses.

Subsequent RSA history:

Continued security losses

from improved algorithms

for combining congruences.

Major loss in 1990 (NFS);

many smaller losses since then.

256-bit ECC keys match

security of 3072-bit RSA keys.

When properly implemented,

256-bit ECC is much faster

than 3072-bit RSA for

almost all real-world applications.

ANSI, IEEE, NIST issued

ECC standards ten years ago.

US government “Suite B”

now prohibits RSA, requires ECC.

For much more information see

the Handbook of Elliptic and

Hyperelliptic Curve Cryptography:

www.hyperelliptic.org/HEHCC

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

Examples of points on this curve:

(0; 1) = “12:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Clock addition

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Standard addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

3

�
3

5
; 4

5

�
=

�
117

125
; �44

125

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

3

�
3

5
; 4

5

�
=

�
117

125
; �44

125

�
.

4

�
3

5
; 4

5

�
=

�
336

625
; �527

625

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

3

�
3

5
; 4

5

�
=

�
117

125
; �44

125

�
.

4

�
3

5
; 4

5

�
=

�
336

625
; �527

625

�
.

(x1; y1) + (0; 1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

3

�
3

5
; 4

5

�
=

�
117

125
; �44

125

�
.

4

�
3

5
; 4

5

�
=

�
336

625
; �527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)
= (�1=2;�

p
3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
; 4

5

�
=

�
24

25
; 7

25

�
.

3

�
3

5
; 4

5

�
=

�
117

125
; �44

125

�
.

4

�
3

5
; 4

5

�
=

�
336

625
; �527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

One way to remember

the clock addition law:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1 P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;
cos�1 cos�2 � sin�1 sin�2).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.

Larger example: Clock(F1000003).

Examples of clock addition:

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).

With 30 additions I computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p
and some (X; Y) 2 Clock(Fp).
Follow standard security criteria.

Alice chooses big secret a.
Computes her public key a(X; Y).

Bob chooses big secret b.
Computes his public key b(X; Y).

Alice computes a(b(X; Y)).

Bob computes b(a(X; Y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&LLLLLL

Bob’s
public key
b(X; Y)

xxrrrrrr

fAlice;Bobg’s
shared secret
ab(X; Y)

=
fBob;Aliceg’s
shared secret
ba(X; Y)

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&LLLLLL

Bob’s
public key
b(X; Y)

xxrrrrrr

fAlice;Bobg’s
shared secret
ab(X; Y)

=
fBob;Aliceg’s
shared secret
ba(X; Y)

Warning: Clocks aren’t elliptic!

Can attack clock cryptography

by combining congruences.

To match RSA-3072 security

need p � 21536.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)��

�
�
�

P2 = (x2; y2)�fffff

P3 = (x3; y3)
�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

“Hey, there were divisions

in the elliptic addition law!

What if the denominators are 0?”

Answer: They aren’t!

Can replace �30 by

anything that isn’t a square.

The denominators will never be 0.

“Hey, there were divisions

in the elliptic addition law!

What if the denominators are 0?”

Answer: They aren’t!

Can replace �30 by

anything that isn’t a square.

The denominators will never be 0.

A typical high-security

elliptic curve, “Curve25519”:

replace R by F2255�19;

replace �30 by 1� 1
121666 .

Using ECC sensibly

Typical starting point:

Client knows secret key a
and server’s public key b(X; Y).

Client computes (and caches)

shared secret ab(X; Y).

Client has packet for server.

Generates unique nonce.

Uses shared secret to encrypt

and authenticate packet.

Total packet overhead:

24 bytes for nonce,

16 bytes for authenticator,

32 bytes for client’s public key.

Server receives packet,

sees client’s public key a(X; Y).

Server computes (and caches)

shared secret ab(X; Y).

Server uses shared secret

to verify authenticator

and decrypt packet.

Client and server encrypt,

authenticate, verify, and decrypt

all subsequent packets

in the same way,

using the same shared secret.

Easy-to-use packet protection:

crypto_box from

nacl.cace-project.eu.

High-security curve (Curve25519).

High-security implementation

(e.g., no secret array indices).

Extensive code validation.

Very high speed:

Server can compute shared secrets

for 1000000 new clients

in 40 seconds of computation

on a Core 2 Quad.

