
Software speed for

secret-key cryptography

D. J. Bernstein

University of Illinois at Chicago



Inadequate speed often

stops cryptographic deployment

: : : or compromises security.

Speed plays a critical role in

selection and standardization

of primitives, platforms,

tools, and implementations.

Two interacting goals:

� “Benchmarking”:

Measure speed that

users see from crypto.

� “Optimization”:

Improve speed that

users see from crypto.



Joint work with Tanja Lange:

eBACS (ECRYPT Benchmarking

of Cryptographic Systems).

http://bench.cr.yp.to

Main focus of this talk:

Future of software benchmarking.



Joint work with Tanja Lange:

eBACS (ECRYPT Benchmarking

of Cryptographic Systems).

http://bench.cr.yp.to

Main focus of this talk:

Future of software benchmarking.

What about hardware?

Collaborating with Kris Gaj

and Patrick Schaumont:

“Environment for Fair and

Comprehensive Performance

Evaluation of Cryptographic

Hardware and Software.”



Performance evaluator has to

� implement various designs,

� optimize for various platforms,

� write benchmarking tool,

� collect many measurements.

Too hard? Evaluator cuts corners.



Performance evaluator has to

� implement various designs,

� optimize for various platforms,

� write benchmarking tool,

� collect many measurements.

Too hard? Evaluator cuts corners.

eBACS distributes these tasks:

� J.-P. implements BLAKE.

� Peter, Samuel speed it up.

� Dan writes the tool.

� Søren runs tool on Pentium M.



Performance evaluator has to

� implement various designs,

� optimize for various platforms,

� write benchmarking tool,

� collect many measurements.

Too hard? Evaluator cuts corners.

eBACS distributes these tasks:

� J.-P. implements BLAKE.

� Peter, Samuel speed it up.

� Dan writes the tool.

� Søren runs tool on Pentium M.

eBACS does not distinguish

“benchmarkable” software from

“real” software. Uses a real API!



More operations

Secret-key operations

measured in eBACS today:

� Hash functions.

� Stream ciphers.

Plan to measure more operations:

� Authenticators.

� One-time authenticators.

� Authenticated encryption.

API co-developed with NaCl:

http://nacl.cace-project.eu

Plan to extend precomputation.



More CPUs

Plan to buy a zoo of CPUs

that are not yet covered

by the benchmarks.

Emphasis on low-end CPUs.

Extremely small CPUs need

cross-compilation structure,

separating library ABI from

benchmark-management ABI.

News: Christian Wenzel-Benner

and Jens Gräf have

collected some benchmarks

on an Atmel Atmega1281.



More communication costs

Cryptographic software competes

with other networking tools

for instruction-cache space.

Current benchmarks

don’t see this.

Plan to systematically measure

varying levels of cache contention.

Also plan to measure

costs of many active keys etc.

Also plan to measure

performance of batch operations.



More parallelism

Current benchmarks are

limited to single-core

computations.

Good for high-throughput servers

that have many concurrent tasks

and that keep all CPU cores

busy with separate tasks.

But some applications need

minimum latency for one task.

Multiple cores save time.

Plan to measure this.

(Multiple machines can

save time too; lower priority.)



More security

“Stop using 160-bit hashes!”

: : : Users can easily find

speed of 256-bit hash software,

512-bit hash software, etc.



More security

“Stop using 160-bit hashes!”

: : : Users can easily find

speed of 256-bit hash software,

512-bit hash software, etc.

“Stop side-channel attacks!”

: : : Can users find speed of

constant-time hash software?

Plan to separately report

speed of software

declared to be constant time.

(Maybe CACE-verified?)



More automation

Implementor finishes software.

Easily sends in for benchmarking.

Software is manually

included in benchmark toolkit.

Toolkit is run manually.

Manual steps add latency:

often weeks or months.

Plan to have machines

automatically run new software

in resource-limited sandbox.

Much lower latency.

Fast feedback to implementor.



More tables and graphs

Current results online:

each primitive on Core 2 Duo;

each primitive on Opteron; etc.

http://bench.cr.yp.to

Plan to add transposed results:

BLAKE across machines;

BMW across machines; etc.

Plan to allow dynamic

superposition of results:

e.g., SHA-512 vs. SIMD vs. Skein.


