
Speeding up characteristic 2:

I. Linear maps

II. The M(n) game

III. Batching

IV. Normal bases

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Part I. Linear maps

Consider computing

h0 = q0;
h1 = q1;
h2 = q2 � (p0 � q0 � r0);

h3 = (p1 � q1 � r1);

h4 = (p2 � q2 � r2)� r0;

h5 = r1;

h6 = r2.

Easy: 8 additions.

Can find these 8 additions

in several papers.

But 8 is not optimal!

“Wasting brain power

is bad for the environment.”

Use existing algorithms

to find addition chains.

Apply, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm finds repeated

q2 � r0; uses 7 additions.

A new algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

If two largest rows

have same first bit,

replace largest row

by its xor with

second-largest row.

Otherwise change largest row

by clearing first bit.

In both cases,

compute result recursively,

and finish with one xor.

A small example:

1011 = x0 + x2 + x3

1111 = x0 + x1 + x2 + x3

0110 = x1 + x2

0101 = x1 + x3

Replace largest row

by its xor with

second-largest row.

Recursively compute

1011 = x0 + x2 + x3

0100 = x1
0110 = x1 + x2

0101 = x1 + x3

plus 1 xor

of first output

into second output.

Recursively compute

0011
0100

0110

0101

plus 1 input load, 2 xors.

Recursively compute

0011

0100

0011
0101

plus 1 input load, 3 xors.

Recursively compute

0011

0100

0011

0001
plus 1 input load, 4 xors.

Recursively compute

0011

0000
0011

0001

plus 2 input loads, 4 xors.

Note: this was just a copy.

Recursively compute

0000
0000

0011

0001

plus 2 input loads, 4 xors.

Recursively compute

0000

0000

0001
0001

plus 3 input loads, 5 xors.

Recursively compute

0000

0000

0000
0001

plus 3 input loads, 5 xors.

Recursively compute

0000

0000

0000

0000
plus 4 input loads, 5 xors.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n+ 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n+ 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n+ 1 regs.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n+ 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Our original example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Our original example:

000100000

000010000

000101100
010010010

001001101

000000010

000000001

plus 1 xor, 1 input load.

Our original example:

000100000

000010000

000101100

000010010
001001101

000000010

000000001

plus 2 xors, 2 input loads.

Our original example:

000100000

000010000

000101100

000010010

000001101
000000010

000000001

plus 3 xors, 3 input loads.

Our original example:

000100000

000010000

000001100
000010010

000001101

000000010

000000001

plus 4 xors, 3 input loads.

Our original example:

000000000
000010000

000001100

000010010

000001101

000000010

000000001

plus 4 xors, 4 input loads.

Our original example:

000000000

000010000

000001100

000000010
000001101

000000010

000000001

plus 5 xors, 4 input loads.

Our original example:

000000000

000000000
000001100

000000010

000001101

000000010

000000001

plus 5 xors, 5 input loads.

Our original example:

000000000

000000000

000001100

000000010

000000001
000000010

000000001

plus 6 xors, 5 input loads.

Our original example:

000000000

000000000

000000100
000000010

000000001

000000010

000000001

plus 7 xors, 6 input loads.

Our original example:

000000000

000000000

000000000
000000010

000000001

000000010

000000001

plus 7 xors, 7 input loads.

Our original example:

000000000

000000000

000000000

000000000
000000001

000000010

000000001

plus 7 xors, 7 input loads.

Our original example:

000000000

000000000

000000000

000000000

000000001

000000000
000000001

plus 7 xors, 8 input loads.

Our original example:

000000000

000000000

000000000

000000000

000000000
000000000

000000001

plus 7 xors, 8 input loads.

Our original example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Part II. The M(n) game

Define M(n)

as the minimum number of

bit operations (ands, xors)

needed to multiply

n-bit polys f; g 2 F2[x]

(in standard representation).

e.g. M(2) � 5:

to compute

h0 + h1x + h2x2 =

(f0 + f1x)(g0 + g1x)

can compute h0 = f0g0,

h1 = f0g1 + f1g0, h2 = f1g1

with 4 ands, 1 xor.

Schoolbook multiplication:

M(n) � Θ(n2).

1963 Karatsuba:

M(n) � Θ(nlg 3).

1963 Toom:

M(n) � n2Θ(
p

lgn).

1971 Schönhage–Strassen:

M(n) � Θ(n lgn lg lgn).

2007 Fürer

improves lg lgn for integers

but doesn’t help mod 2.

What does this tell us

about M(131) or M(251)?

Absolutely nothing!

Reanalyze algorithms

to see exact complexity.

Rethink algorithm design

to find constant-factor

(and sub-constant-factor)

speedups that are not

visible in the asymptotics.

Schoolbook recursion:

M(n+ 1) � M(n) + 4n.

Hence M(n) � 2n2 � 2n+ 1.

Karatsuba recursion

as commonly stated:

M(2n) � 3M(n) + 8n� 4.

e.g. Karatsuba for n = 1:

f = f0 + f1x,

g = g0 + g1x,

h0 = f0g0,

h2 = f1g1,

h1 = (f0 + f1)(g0 + g1)� h0 � h2

) fg = h0 + h1x + h2x2.

Karatsuba for n = 2:

f = f0 + f1x+ f2x2 + f3x3,

g = g0 + g1x+ g2x2 + g3x3,

H0 = (f0 + f1x)(g0 + g1x),

H2 = (f2 + f3x)(g2 + g3x),

H1 = (f0 + f2 + (f1 + f3)x) �
(g0 + g2 + (g1 + g3)x)

�H0 �H2

) fg = H0 +H1x2 +H2x4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

cost 4.

Three size-2 mults producing

H0 = q0 + q1x+ q2x2;

H2 = r0 + r1x + r2x2;

H0 +H1 +H2 = p0 + p1x+ p2x2.

Final linear reconstruction:

H1 = (p0 � q0 � r0) +

(p1 � q1 � r1)x +

(p2 � q2 � r2)x2,

cost 6;

fg = H0 +H1x2 +H2x4,

cost 2.

Let’s look more closely

at the reconstruction:

fg = h0 + h1x + � � �+ h6x6 with

h0 = q0;
h1 = q1;
h2 = q2 + (p0 � q0 � r0);

h3 = (p1 � q1 � r1);

h4 = (p2 � q2 � r2) + r0;

h5 = r1;

h6 = r2.

Let’s look more closely

at the reconstruction:

fg = h0 + h1x + � � �+ h6x6 with

h0 = q0;
h1 = q1;
h2 = q2 + (p0 � q0 � r0);

h3 = (p1 � q1 � r1);

h4 = (p2 � q2 � r2) + r0;

h5 = r1;

h6 = r2.

We’ve seen this before!

Reduce 6 + 2 = 8 ops to 7 ops

by reusing q2 � r0.

2000 Bernstein:

M(2n) � 3M(n) + 7n� 3.

2009 Bernstein:

new bounds on M(n)

from further improvements

to Karatsuba, Toom, etc.

binary.cr.yp.to/m.html

Typically 20% smaller than

2003 Rodŕıguez-Henŕıquez–Koç,

2005 Chang–Kim–Park–Lim,

2006 Weimerskirch–Paar,

2006 von zur Gathen–Shokrollahi,

2007 Peter–Langendörfer.

So far have focused on

M(n) for small n,

but different techniques

are better for large n.

I’m now exploring impact

of 2008 Gao–Mateer.

For F2 � Fq � k:
1988 Wang–Zhu, 1989 Cantor

diagonalize k[t]=(tq + t) using

� 0:5q lg q mults in k,
� 0:5q(lg q)lg 3 adds in k.
2008 Gao–Mateer use

� 0:5q lg q mults,

� 0:25q lg q lg lg q adds.

“Who cares?”

Conventional wisdom:

Detailed M(n) analysis

has very little relevance

to software speed.

We multiply f by g
by looking up 4 bits of f
in a size-16 table of

precomputed multiples of g;
looking up next 4 bits; etc.

One table lookup replaces

many bit operations!

Might use Karatsuba etc.,

but only for large n.

Part III. Batching

Classic F
�p index calculus

needs to check smoothness

of many positive integers < p.
Smooth integer: integer

with no prime divisors > y.

Typical: (log y)2 2
(1=2 + o(1)) log p log log p.
Many: typically y2+o(1),

of which y1+o(1) are smooth.

(Modern index calculus, NFS:

smaller integers; smaller y.)

How to check smoothness?

Old answers: Trial division,

time y1+o(1); rho, time y1=2+o(1),

assuming standard conjectures.

Better answer: ECM etc.

Time yo(1); specifically

exp
p

(2 + o(1)) log y log log y,

assuming standard conjectures.

Much better answer

(in standard RAM model):

Known batch algorithms

test smoothness of many

integers simultaneously.

Time per input: (log y)O(1)

= expO(log log y).

General pattern:

Algorithm designer optimizes

algorithm for one input.

But algorithm is then applied

to many inputs! Oops.

Often much better speed

from batch algorithms

optimized for many inputs.

e.g. Batch ECDL:
p

speedup.

Batch NFS: smaller exponent.

Can find many more examples.

Surprising recent example:

Batching can save time

in multiplication!

Largest speedups: F2[x].

Consequence: New speed record

for public-key cryptography.

37895 scalar mults/second

on a 3.2GHz Phenom II X4 for

a secure elliptic curve/F2251 .

http://binary.cr.yp.to

Surprising recent example:

Batching can save time

in multiplication!

Largest speedups: F2[x].

Consequence: New speed record

for public-key cryptography.

37895 scalar mults/second

on a 3.2GHz Phenom II X4 for

a secure elliptic curve/F2251 .

http://binary.cr.yp.to

Note: No subfields were exploited

in the creation of this record.

Simplest batching technique:

“bitslicing.”

Transpose 128 polynomials

f0; f1; : : : ; f127 2 F2[x],

each having d coefficients,

into d vectors

F0; F1; : : : ; Fd�1 2 F
128
2 ,

where Fi[j] = fj [i].
Vector operation F1 � F33

adds bit 1 of fj
to bit 33 of fj
for each i in parallel.

Bitslicing disadvantages:

Table lookups are expensive.

e.g. tab[fj mod 16].

Conditional branches

are expensive.

128� volume of data;

harder to avoid

load/store bottlenecks.

Transposition costs

roughly 1 cycle per byte;

frequent transposition is bad.

Bitslicing advantages:

Free bit extraction,

bit shuffling, etc.

No word-size penalty.

e.g. 128 additions of

d-bit polynomials

cost d vector xors

instead of 128 dd=128e.
Huge speedup for small d.
) Productive synergy

with M(n) techniques.

Elliptic-curve addition

P +Q traditionally uses

conditional branches:

Q = P? Q = �P? etc.

2006 Bernstein: cheaply avoid

conditional branches in

P 7! nP if 2 6= 0.

2007 Bernstein–Lange,

using Edwards curves:

arbitrary group ops if 2 6= 0.

2008 Bernstein–Lange–

Rezaeian Farashahi,

“binary Edwards curves”:

arbitrary group ops if 2 = 0.

Part IV. Normal bases

Current ECRYPT project,

spearheaded by Tanja Lange:

break Certicom’s ECC2K-130.

i.e., compute discrete log

of a challenge point

on y2 + xy = x3 + 1 over F2131 .

Carefully selected iteration

function for Pollard rho

involves 5 mults,

21 squarings, 7 adds,

occasional inversions,

and one computation of

weight in normal basis.

F2131 has type-2

normal basis � + ��1,

�2 + ��2, �4 + ��4,

: : : , �2130
+ ��2130

where

� is primitive 263rd root of 1.

Weight is sum of coefficients.

Squaring is rotation.

Multi-squaring is rotation.

Inversion by Fermat

uses many multi-squarings.

But fast ECDL software

uses polynomial basis: e.g.,

basis 1; x; x2; : : : ; x130 of

F2[x]=(x131 + x13 + x2 + x+ 1).

Many obvious disadvantages:

more expensive squaring,

multi-squaring, inversion;

must convert to normal basis

(e.g., with xor-largest)

before computing weight.

But huge speedup in the 5 mults:

polynomial multiplication

uses Karatsuba etc.;

reduction is very fast.

How slow is normal-basis mult?

Type-1 normal basis of F2n ,

where 2 has order n mod n+ 1,

is a permutation of

�; �2; : : : ; �n
in F2[�]=(�n+1 � 1).

M(n) operations to multiply,

obtaining coefficients of

�2; �3; : : : ; �2n.

2n� 1 operations to reduce

�2; �3; : : : ; �2n
to �; �2; : : : ; �n.

Alternative: M(n+ 1) + n
for redundant 1; �; : : : ; �n.

Type-2 normal basis of F2n ,

where 2 has order n mod 2n+ 1,

is a permutation of

� + ��1, �2 + ��2,

�3 + ��3, : : : , �n + ��n
in F2[�]=(�2n+1 � 1).

2000 Gao–von zur Gathen–

Panario–Shoup:

2M(n) + O(n) operations

to multiply on this basis.

Polynomial basis of F2n
is about twice as fast.

2007 von zur Gathen–

Shokrollahi–Shokrollahi:

M(n) + O(n lgn) operations

to multiply on this basis.

2009 Bernstein:

improved variant of algorithm

sets Core 2 speed records

for the ECC2K-130 attack.

2009 Schwabe:

also Cell speed records.

2009 Bernstein–Lange:

mix normal bases

with polynomial bases

and speed up reduction.

vzG–S–S in a nutshell:

Write Nj = �j + ��j
and Pj = (� + ��1)j .
If

f0 + f1P1 + f2P2 + f3P3 =

g0 + g1N1 + g2N2 + g3N3 and

f4 + f5P1 + f6P2 + f7P3 =

g4 + g5N1 + g6N2 + g7N3

then

f0 + f1P1 + f2P2 + f3P3 +

f4P4 + f5P5 + f6P6 + f7P7 =

g0 + (g1 + g7)N1 +

(g2 + g6)N2 + (g3 + g5)N3 +

g4N4 + g5N5 + g6N6 + g7N7.

Proof: e.g.,

(� + ��1)4(�3 + ��3)

= �7 + ��7 + �1 + ��1

so P4N3 = N7 + N1. Q.E.D.

So size-8 conversion

from 1; P1; P2; : : : ; P7

to 1; N1; N2; : : : ; N7

can be done with

two size-4 conversions

and three additions.

Apply same idea recursively:

size-n conversion uses

� 1 + 0:5n(lgn� 2) additions.

Inverse has same cost.

To multiply f; g on basis

N1; N2; : : : ; Nn:

Convert to 1; P1; : : : ; Pn;

cost � 0:5n lgn, twice.

Polynomial product; M(n+ 1).

Convert 1; P1; : : : ; P2n
to 1; N1; : : : ; N2n;

cost � n lgn.

Eliminate Nn+1; : : : ; N2n
using N2n+1�j = Nj ; cost n.

Eliminate 1 using

1 + N1 + � � �+ Nn = 0; cost n.

Some new improvements:

1. For 1; P1; : : : ; Pn:

coefficient of 1 is 0.

Cost M(n) instead of M(n+ 1).

2. For 1; P1; : : : ; P2n:

coefficients of 1; P1 are 0.

Reduces cost by n+ 1.

3. If mults share input,

reuse input conversion.

Reduces cost by � 0:5n lgn.

4. If output is an input,

use different reduction strategy

to skip a first-half conversion.

Reduces cost by � 0:5n lgn.

Can represent field element

using basis P1; : : : ; Pn
for fast multiplication;

or basis N1; : : : ; Nn
for fast multi-squarings;

or both.

Can vary this choice

across field-element variables.

Can also vary over time.

Approximate costs:

P ! N: 0:5n lgn.

N ! P : 0:5n lgn.

P � P ! N: M(n) + n lgn.

P � P ! P : M(n) + n lgn.

N2j ! N: 0.

