
Cost analysis of hash collisions:

will quantum computers

make SHARCS obsolete?

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498



Quantum vs. SHARCS

Exactly how expensive is it to

break RSA-1024, ECC-160, etc.?

Many papers on the topic.

Widespread interest today.



Quantum vs. SHARCS

Exactly how expensive is it to

break RSA-1024, ECC-160, etc.?

Many papers on the topic.

Widespread interest today.

But quantum computing says:

“All your circuit designs

will soon be obsolete!

Our quantum computers

will break RSA and ECC

in polynomial time.”



Exactly how expensive is it

to invert a hash function,

find a cipher key, etc.?

2b “operations” for b-bit key;

how expensive is an “operation”?

Many papers on the topic.

Widespread interest today.



Exactly how expensive is it

to invert a hash function,

find a cipher key, etc.?

2b “operations” for b-bit key;

how expensive is an “operation”?

Many papers on the topic.

Widespread interest today.

But quantum computing says:

“All your circuit designs

will soon be obsolete!

Our quantum computers

will find a b-bit key

in time only 2b=2.”



Exactly how expensive is it

to find collisions

in a hash function?

2b=2 “operations” for b-bit hash;

how expensive is an “operation”?

Many papers on the topic.

Widespread interest today.



Exactly how expensive is it

to find collisions

in a hash function?

2b=2 “operations” for b-bit hash;

how expensive is an “operation”?

Many papers on the topic.

Widespread interest today.

But quantum computing says:

“All your circuit designs

will soon be obsolete!

Our quantum computers

will find a b-bit collision

in time only 2b=3.”



Main point of my paper:

All known quantum algorithms

are fundamentally slower than

traditional collision circuits,

despite optimistic assumptions

re quantum-computer speed.



Main point of my paper:

All known quantum algorithms

are fundamentally slower than

traditional collision circuits,

despite optimistic assumptions

re quantum-computer speed.

Extra point of this talk:

Optimization experience for

ASICs/FPGAs/other meshes

will be even more valuable

in a quantum-computing world.

“Quantum SHARCS”?



Two quantum algorithms

1994 Shor:

Fast quantum period-finding.

Gives polynomial-time

quantum solution to DLP.

1996 Grover, 1997 Grover:

Fast quantum search.

Practically all quantum algorithms

are Shor/Grover applications.

See 2003 Shor, “Why haven’t

more quantum algorithms been

found?”; 2004 Shor.



Grover explicitly constructs

a quantum circuit Gr(F )

to find a root of F ,

assuming root is unique.

“Only
p
N steps.”

N = 2b if F maps

b-bit input to 1-bit output.

Success probability � 1=2.

Can use fewer steps but

probability degrades quadratically.



F : any computable function.

Can specify F by a

classical combinatorial circuit:

a directed acyclic graph

of NAND computations

from b input bits

to 1 output bit.



F : any computable function.

Can specify F by a

classical combinatorial circuit:

a directed acyclic graph

of NAND computations

from b input bits

to 1 output bit.

Without serious overhead

(and maybe reducing power!)

can replace NAND gates by

reversible “Toffoli gates”

r; s; t 7! r; s; t� rs.
Obtain x; t 7! x; F (x)� t.



The basic quantum conversion:

replace each Toffoli gate

by a quantum Toffoli gate.

Resulting quantum circuit

computes x; t 7! x; F (x)� t
where x is a quantum

superposition of b-bit inputs.



The basic quantum conversion:

replace each Toffoli gate

by a quantum Toffoli gate.

Resulting quantum circuit

computes x; t 7! x; F (x)� t
where x is a quantum

superposition of b-bit inputs.

Grover builds a superposition

of all possible strings x;

applies this circuit;

applies an easy quantum flip

to build a new result x;

repeats Θ(2b=2) times.



What if F has more roots?

1996 Boyer–Brassard–Høyer–

Tapp, generalizing Grover:

“time in O(
p
N=t)”

if there are t roots.



What if F has more roots?

1996 Boyer–Brassard–Høyer–

Tapp, generalizing Grover:

“time in O(
p
N=t)”

if there are t roots.

Don’t need generalization.

Can simply apply Grover

to x 7! F (R(x)) where

x has � b� lg t bits,

R is random affine map.



What if F has more roots?

1996 Boyer–Brassard–Høyer–

Tapp, generalizing Grover:

“time in O(
p
N=t)”

if there are t roots.

Don’t need generalization.

Can simply apply Grover

to x 7! F (R(x)) where

x has � b� lg t bits,

R is random affine map.

Unknown t? Simply guess.

: : : but BBHT is more

streamlined.



Grover space and time

Don’t have to unroll F
into a combinatorial circuit.

Take any circuit of area A
(using reversible gates!)

that reads x; t at the top,

ends with x; F (x)� t at the top,

where x is a b-bit string.

Convert gates to quantum gates.

Obtain quantum circuit

that reads x; t at the top,

ends with x; F (x)� t at the top,

where x is a quantum

superposition of b-bit strings.



Don’t unroll Grover iterations.

Need some extra space

for quantum flip etc.,

but total Grover circuit size

will be essentially A.



Don’t unroll Grover iterations.

Need some extra space

for quantum flip etc.,

but total Grover circuit size

will be essentially A.

“Aren’t quantum gates

much larger than classical gates?”

— Yes. Constants matter!

But this talk makes

best-case assumption

that the overhead

doesn’t grow with A.



“Time in O(
p
N)”

fails to account for F time.

Assume that original circuit

computes F in time T .

Each Grover iteration

takes time essentially T .

Total time essentially T
p
N.



“Time in O(
p
N)”

fails to account for F time.

Assume that original circuit

computes F in time T .

Each Grover iteration

takes time essentially T .

Total time essentially T
p
N.

“Aren’t quantum gates much

slower than classical gates?”

— Yes, but again assume

no (A; T )-dependent penalty.



“Can quantum gates

operate with just as much

parallelism as original gates?”

— Best-case assumption: Yes.

Example: RAM lookup x 7! A[x]

is actually computing

A[0](x = 0) + A[1](x = 1) + � � �;
n terms if A has size n.

The basic quantum conversion

produces Ω(n) quantum gates

: : : which, presumably,

can all operate in parallel.

Realistic mesh/speed of light

) wire delay ) time Ω(
pn).



Guessing a collision

Consider a hash function

H : F
b+1
2 ! F

b
2.

Define F : F
b+1
2 � F

b+1
2 ! F2

as follows: F (x; y) =

0 if x 6= y and H(x) = H(y);
1 if x = y or H(x) 6= H(y).
A collision in H is,

by definition, a root of F .

Easiest way to find collision:

search randomly for root of F .



Assume circuit of area A
computes H in time T .

Then circuit of area � A
computes F in time � T .

(“You mean 2A?” — Roughly.)

Collision chance � 1=2b+1 for

a uniform random pair (x; x0).
Trying 2b+1 pairs

takes time � 2bT
on circuit of area � A.

Grover takes time � 2b=2T
on quantum circuit of area � A.



Table lookups

Generate many random inputs

x1; x2; : : : ; xM ; e.g. M = 2b=3.
Compute and sort M pairs

(H(x1); x1), (H(x2); x2), : : : ,
(H(xM); xM) in lex order.

Generate a random input y.
Check for H(y) in sorted list.

Keep trying more y’s
until collision is found.



Collision chance � M=2b
for each y.
Naive free-communication model:

Table lookup takes time � 1.

Total time � (M + 2b=M)(T + 1)

on circuit of area � A+M.

e.g. time � 22b=3T
on circuit of area � A+ 2b=3.
Realistic model:

Table lookup takes time �
p
M.

Total time

� (M + 2b=M)(T +
p
M)

on circuit of area � A+M.



Define F (y) as 0 iff

there is a collision among

(x1; y); (x2; y); : : : ; (xM ; y).
We’re guessing root of F .

1998 Brassard–Høyer–Tapp:

Instead use quantum search;

“time” 2b=3 if M = 2b=3.
Wow, faster than 2b=2!
Many people say this is scary.

ECRYPT Hash Function Website:

“For collision resistance at least

384 bits are needed.”



Let’s look at the actual costs

of 1998 Brassard–Høyer–Tapp.

Naive free-communication model:

Total time � (M+
p

2b=M)(T+1)

on quantum circuit

of area � A+M.

(Realistic model: Slower.

See paper for details.)

e.g. M = 2b=3:
time � 2b=3T ,

area � A+ 2b=3.



2003 Grover–Rudolph,

“How significant are the known

collision and element distinctness

quantum algorithms?”:

With such a huge machine,

can simply run 2b=3
parallel quantum searches

for collisions (x; x0).
High probability of success

within “time” 2b=3.



But these algorithms are

giant steps backwards!

Standard collision circuits,

1994 van Oorschot–Wiener:

time � 2b=4T ,

area � 2b=4A.

This is much faster than

1998 Brassard–Høyer–Tapp,

on a much smaller circuit.

My paper presents newer, faster

quantum collision algorithms,

but I conjecture optimality

for the standard circuits.


