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Main point of my paper:

All known quantum algorithms

are fundamentally slower than

traditional collision circuits,

despite optimistic assumptions

re quantum-computer speed.

Extra point of this talk:

Optimization experience for

ASICs/FPGAs/other meshes

will be even more valuable

in a quantum-computing world.

“Quantum SHARCS”?



Two quantum algorithms

1994 Shor:

Fast quantum period-finding.

Gives polynomial-time

quantum solution to DLP.

1996 Grover, 1997 Grover:

Fast quantum search.

Practically all quantum algorithms

are Shor/Grover applications.

See 2003 Shor, “Why haven’t

more quantum algorithms been

found?”; 2004 Shor.



Grover explicitly constructs

a quantum circuit Gr(F )

to find a root of F ,

assuming root is unique.

“Only
p
N steps.”

N = 2b if F maps

b-bit input to 1-bit output.

Success probability � 1=2.

Can use fewer steps but

probability degrades quadratically.
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Without serious overhead

(and maybe reducing power!)
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The basic quantum conversion:

replace each Toffoli gate

by a quantum Toffoli gate.

Resulting quantum circuit

computes x; t 7! x; F (x)� t
where x is a quantum

superposition of b-bit inputs.

Grover builds a superposition

of all possible strings x;

applies this circuit;

applies an easy quantum flip

to build a new result x;

repeats Θ(2b=2) times.
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What if F has more roots?

1996 Boyer–Brassard–Høyer–

Tapp, generalizing Grover:

“time in O(
p
N=t)”

if there are t roots.

Don’t need generalization.

Can simply apply Grover

to x 7! F (R(x)) where

x has � b� lg t bits,

R is random affine map.

Unknown t? Simply guess.

: : : but BBHT is more

streamlined.



Grover space and time

Don’t have to unroll F
into a combinatorial circuit.

Take any circuit of area A
(using reversible gates!)

that reads x; t at the top,

ends with x; F (x)� t at the top,

where x is a b-bit string.

Convert gates to quantum gates.

Obtain quantum circuit

that reads x; t at the top,

ends with x; F (x)� t at the top,

where x is a quantum

superposition of b-bit strings.
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Don’t unroll Grover iterations.

Need some extra space

for quantum flip etc.,

but total Grover circuit size

will be essentially A.

“Aren’t quantum gates

much larger than classical gates?”

— Yes. Constants matter!

But this talk makes

best-case assumption

that the overhead

doesn’t grow with A.
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“Time in O(
p
N)”

fails to account for F time.

Assume that original circuit

computes F in time T .

Each Grover iteration

takes time essentially T .

Total time essentially T
p
N.

“Aren’t quantum gates much

slower than classical gates?”

— Yes, but again assume

no (A; T )-dependent penalty.



“Can quantum gates

operate with just as much

parallelism as original gates?”

— Best-case assumption: Yes.

Example: RAM lookup x 7! A[x]

is actually computing

A[0](x = 0) + A[1](x = 1) + � � �;
n terms if A has size n.

The basic quantum conversion

produces Ω(n) quantum gates

: : : which, presumably,

can all operate in parallel.

Realistic mesh/speed of light

) wire delay ) time Ω(
pn).



Guessing a collision

Consider a hash function

H : F
b+1
2 ! F

b
2.

Define F : F
b+1
2 � F

b+1
2 ! F2

as follows: F (x; y) =

0 if x 6= y and H(x) = H(y);
1 if x = y or H(x) 6= H(y).
A collision in H is,

by definition, a root of F .

Easiest way to find collision:

search randomly for root of F .



Assume circuit of area A
computes H in time T .

Then circuit of area � A
computes F in time � T .

(“You mean 2A?” — Roughly.)

Collision chance � 1=2b+1 for

a uniform random pair (x; x0).
Trying 2b+1 pairs

takes time � 2bT
on circuit of area � A.

Grover takes time � 2b=2T
on quantum circuit of area � A.



Table lookups

Generate many random inputs

x1; x2; : : : ; xM ; e.g. M = 2b=3.
Compute and sort M pairs

(H(x1); x1), (H(x2); x2), : : : ,
(H(xM); xM) in lex order.

Generate a random input y.
Check for H(y) in sorted list.

Keep trying more y’s
until collision is found.



Collision chance � M=2b
for each y.
Naive free-communication model:

Table lookup takes time � 1.

Total time � (M + 2b=M)(T + 1)

on circuit of area � A+M.

e.g. time � 22b=3T
on circuit of area � A+ 2b=3.
Realistic model:

Table lookup takes time �
p
M.

Total time

� (M + 2b=M)(T +
p
M)

on circuit of area � A+M.



Define F (y) as 0 iff

there is a collision among

(x1; y); (x2; y); : : : ; (xM ; y).
We’re guessing root of F .

1998 Brassard–Høyer–Tapp:

Instead use quantum search;

“time” 2b=3 if M = 2b=3.
Wow, faster than 2b=2!
Many people say this is scary.

ECRYPT Hash Function Website:

“For collision resistance at least

384 bits are needed.”



Let’s look at the actual costs

of 1998 Brassard–Høyer–Tapp.

Naive free-communication model:

Total time � (M+
p

2b=M)(T+1)

on quantum circuit

of area � A+M.

(Realistic model: Slower.

See paper for details.)

e.g. M = 2b=3:
time � 2b=3T ,

area � A+ 2b=3.



2003 Grover–Rudolph,

“How significant are the known

collision and element distinctness

quantum algorithms?”:

With such a huge machine,

can simply run 2b=3
parallel quantum searches

for collisions (x; x0).
High probability of success

within “time” 2b=3.



But these algorithms are

giant steps backwards!

Standard collision circuits,

1994 van Oorschot–Wiener:

time � 2b=4T ,

area � 2b=4A.

This is much faster than

1998 Brassard–Høyer–Tapp,

on a much smaller circuit.

My paper presents newer, faster

quantum collision algorithms,

but I conjecture optimality

for the standard circuits.


