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Warning: Complexity estimates
in this talk are approximate;
small factors are suppressed.



What is the fastest algorithm
that, given s, finds
collision in  +— MD5(s, z)?

i.e. finds (z,z') with  # z’
and MD5(s, z) = MD5(s, z')?

Now have a very fast algorithm,
eading to many attacks.
MD?5 is thoroughly broken.
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Surprised by the collisions?
Fact: By 1996, a few years
after the introduction of MD5,
Preneel, Dobbertin, et al. were

calling for MD5 to be scrapped.



What is the fastest algorithm

that, given s, finds
collision in  — SHA-256(s, z)?

SHA-256 is an NSA design.
Seems much better than MD5,
but confidence isn't high.

Ongoing SHA-3 competition
will lead to much higher
public confidence in SHA-3.

But should SHA-3 produce
256-bit output? 512-bit output?
How do quantum computers
affect the answer?



Guessing a collision

For any classical circuit H
producing b-bit output:

Generate random
(b + 1)-bit strings z, '

Chance > 1/2°*1 that

(z,z') is a collision in H,
i.e., ¢ # ' and H(z) = H(Z').
Otherwise try again.

Good chance of success
within 2° evaluations of H.



1996 Grover, 1997 Grover:

Take classical circuit F
using f bit operations
to produce 1-bit output
from b-bit input.

Explicit construction of
quantum circuit G(F)

using 2b/2f qubit operations
to compute a root of F
with high probability

if £ has a unique root.



1996 Boyer—Brassard—Hgyer—
Tapp, generalizing Grover:
2(b_“')/2f qubit operations
to find some root of F

with high probability

if there are &~ 2% roots.

Can easily use for collisions:
Given classical circuit H
using h bit operations,
define F(z,z’) as 0

iff (z,z') is a collision in H.

Obtain some collision

with high probability
using 2b/2p, qubit operations.



Table lookups

Another classical approach:

Generate many random inputs
T1,T2,...,T)N,; .8 M = 26/2

Compute and sort M pairs

(H(z1),z1), (H(x2),x2), ...,
(H(zp), ) in lex order.

Generate many random inputs
Y1, Y2, .-, Yn; €8 N = 26/2
After generating y;,

check for H(y;) in sorted list.



Same effect as searching
all MN pairs (z;, y;).

For M = N = 20/2

good chance of success.
Only 2b/2 evaluations of H.

Define F(y) as 0O iff
there 1s a collision among

(z1,9). (z2.9), - (M, Y).
This algorithm is finding

root of F by classical search.

1998 Brassard—Hgyer—Tapp:
Instead use quantum search;
e.g., 2b/3p qubit operations
if M = 2b/3,



2003 Grover—Rudolph,

"How significant are the known
collision and element distinctness
quantum algorithms?"

Brassard—Hgyer—Tapp algorithm
uses = 20/3 qubits!

With such a huge machine,

can simply run 2b/3
parallel quantum searches

for collisions (z, z').

High probability of success
within time 20/3h.



What if our quantum circuit
has only 2b/5 qubits?

Again Grover—Rudolph,
mindless parallelism:

high probability of success
within time 220/,

Grover—Rudolph advantage:
no need for communication
across the parallel searches.

Brassard—Hgyer—Tapp
needs huge RAM lookups

using quantum indices.
How expensive is this?



Realistic model of computation
developed thirty years ago:

A circuit Is a 2-dimensional
mesh of small parallel gates.
Have fast communication
between neighboring gates.
Try to optimize time T

as function of area A.

See, e.g., 1981 Brent—Kung
for definition of model and
proof that optimal circuits

for length-N convolution
have A= N and T = N1/2,



Can model quantum circuits

in the same way to understand
speedups from parallelism,
slowdowns from communication.

Have a 2-dimensional mesh

of small parallel quantum gates.
Try to optimize time T

as function of area A.

(Warning: Model is optimistic
about quantum computation.
Assumes that quantum-computer
scalability problems are

solved without poly slowdowns.)



e.g. area 2b/5.

Have 20/10  26/10 mesh

of small quantum gates

all operating in parallel.

Size-2b/5 table lookup
using quantum index
can be handled in time 20/10

Brassard—Hgyer—Tapp
takes total time 20/2.
Grover—Rudolph is faster
(despite having more “queries” ):
total time 220/5



Parallel tables

Generate z1, o, .. ., T\
Compute

H(z1), H(z>), ..., H(z ).
Generate y1, y2, .. ., Y.
Compute

H(y1), H(y2). - -, H(ym).

Sort all hash outputs

to easily find collisions.
Repeat 2°/M? times;
high probability of success.



Mesh-sorting algorithms
(e.g., 1987 Schimmler)

sort these hash outputs
in time M1/2 on
classical circuit of area M.

Computation of hash outputs
takes time h;
negligible it M is large.

Total time 20 /M3/2.

e.g. area 2b/5  time 276/10



Now Grover-ize this algorithm.

Define F(z1,....ZMm, Y1,---,YM)
as 0 iff

some (z;,y;) is a collision in H.

Original algorithm used
mesh-sorting circuit for F

of size M taking time M1/2.
Convert circuit into

quantum mesh-sorting circuit
of size M taking time M1/2.



Find root of F using
26/2 /M evaluations of F
on quantum superpositions.

Total time 20/2/Mm1/2

e.g. area 2b/5, time 226/5.
Would beat Grover—Rudolph
In a three-dimensional model

of parallel quantum computation,
or in a nalve parallel mode

without communication delays.



Faster; maybe optimal?

Do better by iterating H.

Choose a (b + 1)-bit string .
Compute b-bit string H(zg);
(b + 1)-bit string 1 = 7(H(xp))

W

b-

nere m Is a padding function;

it string H(z1);

(b + 1)-bit string o = w(H(z1));

b-

bit string H(z7); etc.

Proving time estimates here

needs good 7 randomization,

but experiments show simple 7

working for every interesting H.



After 20/2 steps, expect
to find a “distinguished point™:
a string z;

whose first 6/2 bits are all 0.

Choose another string o,
iterate Iin the same way
until a distinguished point.

2% pairs (%4, Y5),
so expect some collision.

If there is a collision

then the distinguished points
are the same. Seeing this
quickly reveals the collision.



More generally, redefine
“distinguished point” as
having 6/2 — [lg M| bits 0.

Build M parallel iterating units
from M ditferent strings.
Expect time 28/2 /M

to find M distinguished points.

Good chance of collision.
Easily find collision by

sorting distinguished points.



Summary:
area M, conj. time 2%/2 /M.
e.g. area 2b/5 conj. time 23b/10

Analogous quantum circuit:
area M, conj. time 2%/2/M.
e.g. area 2b/5 conj. time 23b/10
Quantum-search speedup

matches iteration speedup!

Compare to Grover—Rudolph:
area 2°/° time 220/5

Or Brassard—Hgyer—Tapp:
area 2b/5, time 26/2.



Concretely: b = 500.

Brassard—Hgyer—Tapp, quantum:
area 2100 time 2290

Grover—Rudolph, quantum:
area 2100, time 2200

lteration, quantum or classical:

2100 2150_

area , conj. time

T = 2b/2/A is optimal
for generic classical algorithms.

Conjecture: also for quantum.



Naive free-communication model:

Brassard—Hgyer—Tapp, quantum:
area 2100 time 2200,

Grover—Rudolph, quantum:
area 2100, time 2200

Parallel tables (new), quantum:
area 2100, time 2190,

lteration, quantum or classical:
area 2100, conj. time 2150



Important notes:

1. Optimal quantum computers
seem to be classical computers!
Clear quantum impact upon
factorization, preimages, et al.
but not upon collisions.
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2. This algorithm isn’'t new.
M = 1: 1975 Pollard.
General case: famous

1994 van Oorschot—Wiener
paper, four years before
1998 Brassard—Hgyer—Tapp.



