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Memories of graduate school

Early 1990s, Berkeley:

Hendrik Lenstra teaches

a rather strange course

on algebraic number theory.

His central objects of study:

orders in number fields.

Primes, class groups, etc.

Normal textbooks and courses

focus on maximal orders,

i.e., orders without singularities:

“Have a non-maximal Z[x]=f?

Yikes! Blow it up!”



Edwards curves

2007 Edwards:

Every elliptic curve over Q

is birationally equivalent to

x2 + y2 = a2(1 + x2y2)

for some a 2 Q� f0;�1;�ig.
x2 + y2 = a2(1 + x2y2) has

neutral element (0; a), addition

(x1; y1) + (x2; y2) = (x3; y3) with

x3 =
x1y2 + y1x2

a(1 + x1x2y1y2)
,

y3 =
y1y2 � x1x2

a(1� x1x2y1y2)
.



2007 Bernstein–Lange:

Over a non-binary finite field k,

x2 + y2 = 
2(1 + dx2y2)

covers more elliptic curves.

Here 
; d 2 k� with d
4 6= 1.

x3 =
x1y2 + y1x2


 (1 + dx1x2y1y2)
,

y3 =
y1y2 � x1x2


 (1� dx1x2y1y2)
.

Can always take 
 = 1. Then

10M + 1S + 1D for addition,

3M + 4S for doubling.

Latest news, comparisons:

hyperelliptic.org/EFD



Completeness

2007 Bernstein–Lange:

If d is not a square in k then

f(x; y) 2 k� k :

x2 + y2 = 
2(1 + dx2y2)g
is a commutative group

under this addition law.

The denominators


 (1 + dx1x2y1y2),


 (1� dx1x2y1y2)

are never zero.

No exceptional cases!



Compare to Weierstrass form

y2 = x3 + a4x + a6.

Standard explicit formulas

for Weierstrass addition

have several different cases:

“chord”; “tangent”;

vertical chord; etc.

Conventional wisdom:

Beyond genus 0,

explicit formulas for

multiplication in class group

always need case distinctions.
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1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.

Edwards addition formula has

exceptional cases for E(k)

: : : but not for E(k).

We do computations in E(k).



Completeness eases

implementations, avoids

some cryptographic problems.

What about elliptic curves

without points of order 4?

What about elliptic curves

over binary fields?

Continuing project (B.–L.):

For every elliptic curve E,

find complete addition law for E
with best possible speeds.

Complete laws are useful

even if slower than Edwards!



Some Newton polygons

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�� J

J

J

J

J

J

J

Short Weierstrass
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Jacobi quartic
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Hessian
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Edwards

1893 Baker: genus is generically

number of interior points.

2000 Poonen–Rodriguez-Villegas

classified genus-1 polygons.



How to generalize Edwards?

Design decision: want

quadratic in x and in y.

Design decision: want

x$ y symmetry.

d00

d10

d20

d10

d11

d21

d20

d21

d22

Curve shape d00 + d10(x + y) +

d11xy + d20(x2 + y2) +

d21xy(x + y) + d22x2y2 = 0.



Suppose that d22 = 0:

d00

d10

d20

d10

d11

d21

d20

d21

�

Genus 1 ) (1; 1) is an

interior point ) d21 6= 0.

Homogenize:

d00Z3 + d10(X + Y )Z2 +

d11XY Z + d20(X2 + Y 2)Z +

d21XY (X + Y ) = 0.



Points at 1 are (X : Y : 0)

with d21XY (X + Y ) = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0), (1 : �1 : 0).

Study (1 : 0 : 0) by setting

y = Y=X, z = Z=X
in homogeneous curve equation:

d00z3 + d10(1 + y)z2 +

d11yz + d20(1 + y2)z +

d21y(1 + y) = 0.

Nonzero coefficient of y
so (1 : 0 : 0) is nonsingular.

Addition law cannot be complete

(unless k is tiny).



So we require d22 6= 0.

Points at 1 are (X : Y : 0)

with d22X2Y 2 = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0).

Study (1 : 0 : 0) again:

d00z4 + d10(1 + y)z3 +

d11yz2 + d20(1 + y2)z2 +

d21y(1 + y)z + d22y2 = 0.

Coefficients of 1; y; z are 0

so (1 : 0 : 0) is singular.



Put y = uz, divide by z2

to blow up singularity:

d00z2 + d10(1 + uz)z +

d11uz + d20(1 + u2z2) +

d21u(1 + uz) + d22u2 = 0.

Substitute z = 0 to find

points above singularity:

d20 + d21u + d22u2 = 0.

We require the quadratic

d20 + d21u + d22u2

to be irreducible in k.

Special case: complete Edwards,

1� du2 irreducible in k.



In particular d20 6= 0:

d00

d10

d20

d10

d11

d21

d20

d21

d22

Design decision: Explore

a deviation from Edwards.

Choose neutral element (0; 0).

d00 = 0; d10 6= 0.

Can vary neutral element.

Warning: bad choice can produce

surprisingly expensive negation.



Now have a Newton polygon

for generalized Edwards curves:

�

d10

d20

d10

d11

d21

d20

d21

d22
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By scaling x; y
and scaling curve equation

can limit d10; d11; d20; d21; d22

to three degrees of freedom.



2008 B.–L.–Rezaeian Farashahi:

complete addition law for

“binary Edwards curves”

d1(x + y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast,

especially if d1 = d2.



2008 B.–L.–Rezaeian Farashahi:

complete addition law for

“binary Edwards curves”

d1(x + y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast,

especially if d1 = d2.

2009 B.–L.:

complete addition law for

another specialization

covering all the “NIST curves”

over non-binary fields.



Consider, e.g., the curve

x2 + y2 = x + y + txy + dx2y2

with d = �1 and

t =
78751018041117252545420999954767176464538545060814630202841395651175859201799

over Fp where p = 2256 � 2224 +

2192 + 296 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-256” curve

v2 = u3 � 3u + a6 where

a6 =
41058363725152142129326129780047268409114441015993725554835256314039467401291.



An addition law for

x2 + y2 = x + y + txy + dx2y2,

complete if d is not a square:

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.



Note on computing addition laws:

An easy Magma script uses

Riemann–Roch to find addition

law given a curve shape.

Are those laws nice? No!

Find lower-degree laws by

Monagan–Pearce algorithm,

ISSAC 2006; or by evaluation at

random points on random curves.

Are those laws complete? No!

But always seems easy to

find complete addition laws

among low-degree laws where

denominator constant term 6= 0.



Birational equivalence from

x2 + y2 = x+ y + txy + dx2y2 to

v2 � (t + 2)uv + dv =

u3� (t+2)u2�du+(t+2)d
i.e. v2 � (t + 2)uv + dv =

(u2 � d)(u� (t + 2)):

u = (dxy + t + 2)=(x + y);

v =
((t + 2)2 � d)x

(t + 2)xy + x + y .

Assuming t + 2 square, d not:

only exceptional point is

(0; 0), mapping to 1.

Inverse: x = v=(u2 � d);
y = ((t + 2)u� v � d)=(u2 � d).



Completeness

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.

Can denominators be 0?



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.



Only if d is a square!

Theorem: Assume that

k is a field with 2 6= 0;

d; t; x1; y1; x2; y2 2 k;

d is not a square in k;

27d 6= (2� t)3;
x2

1 +y2
1 = x1 +y1 +tx1y1 +dx2

1y2
1 ;

x2
2 +y2

2 = x2 +y2 +tx2y2 +dx2
2y2

2 .

Then 1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) 6= 0.

By x$ y symmetry

also 1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2) 6= 0.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.
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Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.



Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.
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2 = 0
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Proof: Suppose that

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2) = 0.

Note that x1 6= 0.

Use curve equation2 to see that

(1� dx1x2y2)
2 = dx2

1(x2 � y2)
2.

By hypothesis d is non-square

so x2
1(x2 � y2)

2 = 0

and (1� dx1x2y2)
2 = 0.

Hence x2 = y2 and 1 = dx1x2y2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.



Curve equation1 times 1=x2
1:

1 + y2
1=x2

1 =

1=x1 + y1(1=x2
1 + t=x1) + dy2

1 .

Substitute 1=x1 = dx2
2:

1 + d2y2
1x4

2 =

dx2
2 + dy1(dx4

2 + x2
2t) + dy2

1 .

Substitute 2x2
2 = 2x2 + tx2

2 + dx4
2:

(1� dy1x2
2)

2 = d(x2 � y1)
2.

Thus x2 = y1 and 1 = dy1x2
2.

Hence 1 = dx3
2.

Now 2x2
2 = 2x2 + tx2

2 + x2

so 3 = (2�t)x2 so 27d = (2�t)3.
Contradiction.



What’s next?

Make the mathematicians happy:

Prove that all curves

are covered; should be easy

using Weil and rational param.

Make the computer happy:

Find faster complete laws.

Latest news, B.–Kohel–L.:

Have complete addition law

for twisted Hessian curves

ax3 + y3 + 1 = 3dxy
when a is non-cube.

Close in speed to Edwards

and covers different curves.


