
High-speed cryptography

and DNSCurve

D. J. Bernstein

University of Illinois at Chicago

Stealing Internet mail: easy!

Given a mail message:

Your mail software

sends a DNS request,

receives a server address,

makes an SMTP connection,

sends the From/To lines,

sends the mail message.

Attackers can easily

see all of these packets

and change the packets.

Forging web pages: easy!

Starting from a URL:

Your browser

sends a DNS request,

receives a server address,

makes an HTTP connection,

sends an HTTP request,

receives a web page.

Attackers can easily

see all of these packets

and change the packets.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Occasionally yes; usually no.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Occasionally yes; usually no.

Problem 1:

Most Internet protocols

do not support cryptography.

Why not? Obvious answer:

Hard for protocol designers

to integrate cryptography.

Some popular Internet protocols

do have cryptographic options.

Important example: HTTPS.

Some popular Internet protocols

do have cryptographic options.

Important example: HTTPS.

Problem 2:

Most implementations

of these protocols

do not support cryptography.

Why not? Obvious answer:

Hard for software authors

to integrate cryptography.

Much easier to implement

the non-cryptographic option.

Some popular implementations

do support cryptography.

Example: Apache.

Some popular implementations

do support cryptography.

Example: Apache.

Problem 3:

Most installations

of these implementations

do not support cryptography.

� 99% of the Apache servers on

the Internet do not enable SSL.

Why not? Obvious answer:

Hard for site administrators

to turn on the cryptography.

Some important installations

do support cryptography.

Example: SourceForge has paid

for an SSL certificate and set

up SSL servers. Try https://

sourceforge.net/account.

Some important installations

do support cryptography.

Example: SourceForge has paid

for an SSL certificate and set

up SSL servers. Try https://

sourceforge.net/account.

Problem 4: Cryptography is

not enabled for most data

at these installations.

Example: Try https://

sourceforge.net/community.

SourceForge redirects

your browser to http://

sourceforge.net/community.

Why does SourceForge actively

turn off cryptographic protection?

Why does SourceForge actively

turn off cryptographic protection?

Obvious answer: Enabling SSL

for more than a small fraction

of SourceForge connections

would massively overload

the SourceForge servers.

SourceForge doesn’t want to pay

for a bunch of extra computers.

Many companies sell

SSL-acceleration hardware,

but that costs money too.

Making progress

Obvious speed questions:

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

SourceForge’s communications?

Can crypto be fast enough

to protect every Internet packet?

And questions beyond speed:

Can universal crypto be

easy to use and administer?

Can universal crypto be

easy to implement in software?

Can universal crypto be

easy to add to protocols?

Can universal crypto be usable?

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

I say: Criminals have been using

encryption for a long time.

Low speed? Hard to use?

They use it anyway.

We cannot stop them.

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

I say: Criminals have been using

encryption for a long time.

Low speed? Hard to use?

They use it anyway.

We cannot stop them.

What we can do is improve

the speed and usability of

cryptography for normal people.

My current mission:

Cryptographically protect

every Internet packet

against espionage,

corruption, and sabotage.

Confidentiality despite espionage:

Spies cannot understand packets.

Integrity despite corruption:

Forged packets are detected.

User does not see wrong data.

Availability despite sabotage:

User does see correct data.

Securing DNS

DNSCurve cryptographically

protects DNS packets

against espionage,

corruption, and sabotage.

DNSCurve is only for DNS,

but same ideas can be

adapted to many other protocols.

Warning: DNSCurve does not

hide packet length, sender, etc.

But it does provide confidentiality

for contents of packets, plus

strong integrity, availability.

Packet from DNSCurve client

to DNSCurve server:

� Here’s my public key.

� Here’s an encrypted DNS query.

Client encrypts, authenticates

using client’s secret key,

server’s public key.

Server verifies, decrypts

using server’s secret key,

client’s public key.

Packet from DNSCurve server

to DNSCurve client:

� Here’s an encrypted response.

Server encrypts, authenticates

using server’s secret key,

client’s public key.

Client verifies, decrypts

using client’s secret key,

server’s public key.

Every packet is authenticated.

Client verifies every packet

immediately upon receipt.

If packet fails verification,

client discards packet

and waits for correct packet.

Attacker can stop correct packet

by flooding the network,

but this consumes many more

attacker resources than

sending a few forged packets.

) Many fewer victims.

How does DNSCurve client

retrieve server’s public key?

Does it send more packets? No!

DNS architecture: DNS client

learns IP address of

.ubuntu.com DNS server

from .com DNS server.

The .com server says:

“The ubuntu.com DNS server

is named ns3

and has IP address 209.6.3.210.”

The name ns3 was selected by

the ubuntu.com administrator

and given to .com.

To announce

his DNSCurve server’s public key,

the ubuntu.com administrator

changes the name ns3 to

an encoding of the public key.

The DNSCurve client

sees the public key, begins

cryptographically protecting

communication with that server.

Cryptography in DNSCurve

Critical cryptographic operations:

Encrypt and authenticate packet

using server’s secret key

and client’s public key.

Verify and decrypt packet

using client’s secret key

and server’s public key.

Need serious security,

not something breakable

today by Storm, NSA, : : :
(and next decade by academics).

Could use public-key encryption

(e.g., 4096-bit RSA encryption)

and public-key signatures

(e.g., 4096-bit RSA signatures).

But why use two separate

public-key operations?

Combined operations are faster.

Why use signatures

that everyone can verify?

Better to use authenticators

verifiable by the recipient.

When client and server

exchange several messages,

why use several separate

public-key operations?

Classic “hybrid” speedup:

Client and server

use public-key operations

to share a secret,

and use secret-key cryptography

to protect many messages.

Elliptic-curve cryptography:

Client has secret key
,
public key Curve(
).
Server has secret key s,
public key Curve(s).
Client, server can cache

shared secret Curve(
s),
use secret-key cryptography

to protect many messages.

Introduced in 1985.

Today’s best attacks

against random elliptic curves

use as much computer power

as 1985’s best attacks.

1990s: ECC security criteria

were standardized by IEEE P1363.

NIST used IEEE P1363 procedure

to create several standard curves,

such as the “P-256” curve.

More recent research recommends

extra criteria to simplify and

acclerate secure implementations.

NIST P-256 flunks those criteria.

The new “Curve25519” curve

passes the IEEE P1363 criteria

and the extra criteria.

DNSCurve uses Curve25519.

So how fast is it?

New public-domain “Networking

and Cryptography library”,

http://nacl.cace-project.eu:

crypto_box encrypts and

authenticates a packet.

Can split crypto_box into

crypto_box_beforenm,

crypto_box_afternm

to cache and reuse shared secret.

crypto_box_open verifies and

decrypts a packet.

Using this software, a low-cost PC

with a 2.4GHz Core 2 Quad CPU

can encrypt and authenticate

50 billion packets/day

to 500 million clients.

Also highly space-efficient:

32 bytes for a public key;

similar overhead per packet.

The total load on .com

is 38 billion packets/day

from 5 million clients.

“Project Titan”:

The .com operators

are spending $100000000

to be ready for a 200Gbps flood.

A worst-case 200Gbps

cryptographic flood

can be handled by a few thousand

PCs running this software.

DNSSEC vs. DNSCurve

DNSSEC was designed

to minimize server load

by precomputing signatures.

“No per-query crypto.”

DNSCurve does per-query crypto

and is clearly fast enough.

(Is DNSSEC actually faster

for servers than DNSCurve?

“NSEC3” needs many

hashes and database lookups.

Huge signature databases

punish the CPU’s cache.)

DNSSEC’s approach

hurts security.

It eliminates encryption,

leaks private DNS databases,

makes DNSSEC vulnerable

to replay attacks,

encourages low-security

cryptographic choices

(640-bit to 1024-bit RSA

for fast signature verification),

and enables amplification.

DNSCurve avoids all this.

Frederico Neves issued a challenge

on Wednesday: Can anyone

actually exploit DNSSEC’s leaks

to find the *.sec3.br names?

By exploiting DNSSEC I’ve now

computed 23 of the 26 names.

Examples: douglas, pegasus,

rafael, security, unbound,

while42, zz--zz.

Thanks to Tanja Lange at

Eindhoven for assistance.

DNSSEC’s approach

hurts programmers and users.

DNSSEC has to generate, store,

and often regenerate signatures,

plus complications: NSEC3 etc.

DNSSEC forces changes in

hundreds of DNS management

tools, DNS servers, etc. that

DNSCurve already protects.

After fifteen years of work,

the DNSSEC software changes

are still very far from done.

That’s why .org’s new

“signatures” are easily breakable.

Christian Grothoff, yesterday:

“Good security is more costly and

harder to understand and deploy

than bad security.”

Not always. Fear of bad

performance often leads to

designs with bad security, bad

implementability, bad usability,

and mediocre performance.

When we instead design

secure, easy-to-use systems,

sometimes they turn out to have

perfectly acceptable performance!

