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Welerstrass coordinates

Fix a field £ with 2 # 0.
Fix a, b € k with 4a3 + 276% # 0.

Well-known fact:

The points of the “elliptic curve”
E:y?=2z3+az+boverk
form a commutative group E(k).

“So the group is {(z,y) € k X k :
y> =123 +az + b}7

Not exactly! It's {(z,y) € k x k :
y> =23 +az+ b6} U {0}



To add (z1,y1), (22, y2) € E(k):

Define 3 = A —x1 — 2o

and y3 = A(z1 — z3) — ¥1
where A = (yo — y1)/(z2 — T1).
Then (z3,y3) € E(k).

Geometric interpretation:

(1, 91), (2, ¥2), (T3, —y3) are
on the curve y2 = 3 + az + b
and on a line:

($31 y3)1 ($31 _y3) are
on a vertical line.

“So that’s the group law?
(1, v1) + (22, ¥2) = (23,93)7"



Not exactly! Definition of A

assumes that xo # 7.
To add (z1,91), (1, y1) € E(k):

Define 23 = A2 — 21 —
and y3 = A(z1 — 23) — y1
where A = (3z% + a)/2y1.
Then (z3,y3) € E(k).

Geometric interpretation:
The curve's tangent line at

(z1,y1) passes through (z3, —vy3).

“So that’s the group law?

One special case for doubling?”



Not exactly! More exceptions:
e.g., y1 could be 0.

Six cases overall: co + 0o = 00;
o0 + (z2,y2) = (2, ¥2);

(:E].! y].) — OO0 = (CU]_, y].);

(z1,v1) + (21, —y1) = 00;

for y1 # 0, (z1,91) + (z1,¥1) =
($31y3) with I3 = >‘2 — T1 — T2,
y3 = Mz1 — z3) — Y1,

= (3:0% + a)/2y1;

for z1 # o, (z1,y1) + (22, ¥2) =
($31y3) with I3 = >‘2 — 1 — T2,
y3 = Mz1 — z3) — Y1,

A= (y2 —y1)/(z2 — z1).




E(k) is a commutative group:

Has neutral element oo, and —:
—00 = o0; —(z,y) = (z, —y).

Commutativity: P+ Q =Q + P.

Associativity:

(P+Q)+ R=P+(Q+R).
Straightforward but tedious:
use a computer-algebra system
to check each possible case.
Or relate each P + @ case

to “ideal-class product.”

Many other proofs,
but can't escape case analysis.



Projective coordinates

Can eliminate some exceptions.

Define (X :Y : Z), for
(X,Y,Z) e kxkxk—{(0,0,0)}
as {(r X, rY,rZ) . r € k—{0}}.

Could split into cases:
(X :Y:Z)=
(X/Z:Y/Z:1)if Z #0;
(X :Y :0)=
(X/Y :1:0)ifY #0;
(X:0:0)=(1:0:0).
But scaling unifies all cases.



Write P%(k) = {(X:Y : Z)}.
Revised definition: E(k) =
{(X:Y:2)eP?k):

Y?Z = X3 +aXZ? 4673}

Could split into cases:

It (X:Y :Z)e E(k) and Z # 0:
(X:Y:Z)=(z:y:1)
where x = X/Z, y=Y/Z.
Note that y° = z3 + az + b.
Corresponds to previous (z, y).

If (X:Y :Z)e E(k) and Z = 0:
X3=0soX=0soY #0
so(X:Y:Z)=(0:1:0).
Corresponds to previous 0.



(X1 Z1)+ (X2 : Y2 1 20)
— ( Zg) where
U:wa—n@

V = X071 — X12>,

W =U2?2{Z5 — V3 —2V2X{ 2>,
X3 = VW,

Y = U(V?X1Zp — W) — V3V, 2o,
71 =V3212,.

“"Ahal No more divisions by 0."

Compare to previous formulas:
T3 = M\ — 11 — T)

and 3 = Az — 23) — 11
where A = (yo — y1)/(z2 — x1).



Oops, still have exceptions!

Formulas give bogus
(X3,Y¥3,23) = (0,0,0)
if (X1:Y1:21)=(0:1:0).

Same problem for doubling.

Formulas produce (0 :1:0) for
(X1 Y7 Zl) -+ (X1 T —Y7: Zl)
ile #Oand Z1 #O

but not if Y7 = 0.

To define complete group law,
use six cases as before.



Jacobian coordinates

"Weighted projective coordinates
using weights 2,3, 1":

Redefine (X : Y : Z) as
{(T‘2X, Y, rZ):r ek — {O}}

Redefine E(k)
using Y2 = X3 + aXZ% +62°

Could again split into cases
for (X :Y : Z) e E(k):

if Z#0then (X:Y :Z)=
(X/Z?:Y/Z3:1);if Z=0
then (X :Y :Z)=(1:1:0).



(X1 Z1) + (X2 : Y2 1 22)
— (X3 Yg Zg) where

Uy = X125, Uy = XoZ2,
S1=V125, So =Y2Z3,
H=U,—Uj, J=5r— 57,
X3 = —H3—2U{H? + J?

Y3 = —S1H3 + J(U1H? — X3),
73 = Z17Z5H.

Streamlined algorithm
uses 12M -+ 4SS where
S is squaring in k£ and
M is general multiplication in k.

(1986 Chudnovsky—Chudnovsky)
11M + 5S. (2001 Bernstein)



Still need all six cases.

Why use Jacobian coordinates?
Answer: Only 3M + 5S

for Jacobian-coordinate doubling
if a = —3 (e.g. NIST curves).

Formulas: If Y1 # 0 then

(X1 Y7 Zl) -+ (X1 Y7 Zl)
= (X3,Y3,Z3) where

T =272 U=Y? V=X,
W=3(X1 —T)(X1+T),

X3 =W? -8V,
Z3=M+21)*-U-T,

Y; = W(4V — X3) — 8U?.



Unitied addition laws

Do addition laws
have to fail for doublings?
Not necessarily!

Example: “Jacobi intersection”
s?+c?2=1as°+d* =1

has 17M addition formula

that works for doublings.

(1986 Chudnovsky—Chudnovsky)

16M. (2001 Liardet—Smart)

Many more “unified formulas.”
But always find exceptions:
points not added by formulas.



“Is this Jacobi intersection
related to y2 = 23 4+ - 7"

Yes: s°+c?=1,as°+d? =1
Is birationally equivalent to
v’ =23+ (2—a)z’ + (1 —a)z.

T = (d—l)(l—a.)/(ca—d F1—a)
y=35s(1—a)a/(ca —d+1—a).
(z,y) — (s,¢c d):

2(1—a)/((y*/z* + a)z);
d=1-2a/(y°/z° +a).



Do we need 6 cases? No!

Can cover E(k) x E(k)
using 3 addition laws.
(1985 H. Lange—Ruppert)

How about just one law
that covers E(k) x E(k)?
One complete addition law?

Bad news: “Theorem 1.
The smallest cardinality of a
complete system of addition laws

on E equals two.”
(1995 Bosma—H. Lenstra)



Edwards curves

2007 Edwards:

Every elliptic curve over Q

Is birationally equivalent to

72 + y2 _ 62(1 + :z:2y2)

for some ¢ € Q — {0, +1, +4}.

z° + y° = c?(1 + z°y?) has
neutral element (0, ¢), addition
(z1,y1) + (22, y2) = (23, y3) with
Iy — T1Y2 + Y1T2

c(l+ z1z0Yy1y2)

Y1Y2 — T1ZT2
Y3 = :
c(1 — z1z2Y192)




2007 Bernstein—Lange:

Over a non-binary finite field £,
z° + y° = (1 + dz’y?)
covers more elliptic curves.
Here ¢, d € k* with dc* # 1.

Iy — T1Y2 + Y1T2 |
c(1+ dz1z2Y1Y2)

P 1\ 7 Rk o N
c(1 — dz1z2Y1Y2)

Can always take ¢ = 1. Then
10M + 1S + 1D for addition,
3M + 48 for doubling.

L atest news, comparisons:

hyperelliptic.org/EFD



Completeness

2007 Bernstein—Lange:

If d is not a square in k then
{(z,y) € k X k:

z° + y° = (1 + dz’y?)}
IS a commutative group
under this addition law.

The denominators

c(1+ dz1z2y192),
c(1 - dz1T2y192)
are never zero.

No exceptional cases!



Recall Bosma—Lenstra theorem:
“The smallest cardinality of a

complete system of addition laws
on E equals two."
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Recall Bosma—Lenstra theorem:
“The smallest cardinality of a

complete system of addition laws
on E equals two.” ... meaning:
Any addition formula

for a Welerstrass curve E

In projective coordinates

must have exceptional cases

in E(k) x E(k), where
k = algebraic closure of k.

Edwards addition formula has

exceptional cases for E(k)
... but not for E(k).

We do computations in E(k).



Cryptographic impact

Advantages for cryptography
of choosing Edwards curves:

Very high speed.

Completeness eases
implementations, avoids
simple side-channel attacks.



Cryptographic impact

Advantages for cryptography
of choosing Edwards curves:

Very high speed.

Completeness eases
implementations, avoids
simple side-channel attacks.

Oops, hardware people
want binary fields!

2008 B.—L.—Rezaeian Farashahi:
binary analogue to Edwards
curves; complete, very fast.



Still one reason for complaint.

Edwards curves always have
point of order 4.

Standard NIST curves

were chosen to have
prime order.
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Still one reason for complaint.

Edwards curves always have
point of order 4.

Standard NIST curves
were chosen to have

prime order.

NIST curves can't take advantage
of Edwards speed and don't have
complete addition formulas.

2009 Bernstein—Lange, this talk:
Have a complete addition law
for all of these curves.



Today's curve shape

Fix a field £ with 2 #~ 0.

Fix t,d € k with d # 0,
d # (t+2)?, 27d # (2 — t)3.

Consider the curve
2’ 4+ y? = T+ y + tzy + dzy?
with neutral element (0, 0).

Warning: We're still studying
choices of curve shapes; we don't
promise that this is the best.

For comparison, Edwards:
2’ + y° =1+ dz’y?
with neutral element (0, 1).



Birational equivalence from
2 + y? =z + y + tzy + dz’y? to
V2 — (t+2)uv + dv =
w3 — (t+2)u® —du+(t+2)d
.e. v° — (t+2)uv +dv =
(u? — d)(u — (£t +2)):
u=(dzy +t+2)/(z+vy)
((t+2)? — d)z
(t+2)zy+z+y
Assuming t + 2 square, d not:

VvV =

only exceptional point is
(0,0), mapping to co.

Inverse: = = v/(u’ — d);
y=(t+2)u—v—d)/(u®—d).



Example: the NIST curves

Consider curve with d = —1 and

+ — 17856058252600544098227759201
0607150561634371623249249461

over Fy, where p = p192 _ 204 _ 1
Note: d is non-square in Fy.

Birationally equivalent to
standard “NIST P-192" curve
v2=u3 —3u+ ag Where

o — 551555460080438177402939151
0 = 47451784769108058161191238065



Consider curve with d = 11 and

69501205617923268463529369764
t = 59653337798320066750209233023
6009670

over F, where p = 2224 _ 2% 4 1.
Note: d is non-square in Fy.

Birationally equivalent to

standard “NIST P-224" curve

v =13 —3u+ ag Where

18956286285500008000408068544
ae — 49392641550463096667932107575-
1234672504



Consider curve with d = —1 and

18751018041117252545420999954
t = T6717646453854506081463020284
1395051175659201799

over Fy, where p = D250 _ 9224
Note: d is non-square in Fy.

Birationally equivalent to

standard “NIST P-256" curve

v? = u3 — 3u + ag where
41058363725152142129326129780
a6 = (04726840911444101599372555483.
h256314039467401291



Consider curve with d = —1 and

65909296304310935634030366769
+ — 31510960716721909626687223623
19596766294020516624080330443
0501907705272975221536249252

over Fy, where p = 384 _ o128 _
2% 4232 1

Note: d is non-square in Fy.

Birationally equivalent to

standard “NIST P-384" curve

v2=u3 —3u+ ag Where
75601935599597056776490116403

g — 69046093056905650361566521420
10730198863924130936066513626°
0764663745107765439761230575



Consider curve with d = 3 and

26255491549159651139291566929
144232222534175004413203271862

+ — 180934673401308833325600776691
21681593296339934213527939123
13871892632212412360900306353
04279675250

over Fp, where p = p L
Note: d is non-square in Fy.

Birationally equivalent to

standard “NIST P-521" curve

v2=u3 —3u+ ag Where
10038490380737342745111123007
66805569936207598951683748994

o — 58630449505311615073501601370
0 = 87375737596232485921322967063
13300438452531501012912142327
483478985084



Today's addition law

1 +xo + (t — 2)z120 +
(z1 —y1)(z2 — y2) +
dzt(zoy1 + 2y2 — Y12)

3= 1 — 2dziToYn —
dz$(zo + y2 + (t — 2)z2y2)
y1+vy2 + (T —2)y1y2 +
(y1 —z1)(y2 — z2) +

s — dyi(yoz1 + y2zo — T122)

1 —2dy1yrT2 —
dy$(y2 + z2 + (t — 2)y2z2)



Exercise: On curve,
If denominators are nonzero.

Exercise: (z,y) 4+ (0,0) = (z,y).
Exercise: (z,y) + (y,z) = (0, 0).

Exercise: Compute projectively
using 26M + 8S + 8D.

... Clearly can be improved;
we re not done optimizing yet.

Exercise: Corresponds to
addition on Welerstrass curve.



Completeness

1 +xo + (t — 2)z120 +
(z1 —y1)(z2 — y2) +
_dzi(zoy1 + T2y — Y1Y2)

3= 1 — 2dziToYn — |
dz$(z2 + y2 + (t — 2)z2y2)
Y1 +y2 + (T —2)y1y2 +
(y1 —z1)(y2 — z2) +

s — dyi(yoz1 + y2zo — T122)

1 —2dy1y0T —
dy$(y2 + z2 + (t — 2)y2z2)

Can denominators be 07



Only if d is a square!

Theorem: Assume that
k is a field with 2 #£ 0;
d,t, T1,Y1, %2, Y2 € k;
d Is not a square In k;

27d # (2 — t)3;
zi+yi = T1+y1+tT1y + ATyl

z5+Yy5 = To+ Y2 +izoyn +dTsys.

Then 1 —2dzizoys —
d:c%(a:z + Yo + (t — 2)xryr) # 0.




Only if d is a square!

Theorem: Assume that
k is a field with 2 #£ 0;
d,t, T1,Y1, %2, Y2 € k;
d Is not a square In k;

27d # (2 — t)3;
T2+ yf = z1+y1-
T5+y5 = To+yo-

-tT1Y1 -

-dzTy7;

-tToY? -

Then 1 —2dzizoys —
d:c%(a:z + Yo + (t — 2)xryr) # 0.

By £ <+ y symmetry

also 1 — 2dyiyrxo —
dyt(y2 + z2 + (t — 2)y2z2) # 0.

—dm%yg.



Proof: Suppose that
1 — 2dziTo7Y7 —
d:l:%(:cz + Yo + (t — 2)xrys) = 0.
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(1 — dz12292)? = dzf(z2 — Y2)°.
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Use curve equations to see that
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Proof: Suppose that
1 — 2dziTo7Y7 —
da:%(:z:z + Yo + (t — 2)xrys) = 0.

Note that 1 # 0.

Use curve equations to see that
(1 — dz12292)? = dzf(z2 — Y2)°.

By hypothesis d is non-square

SO a:%(a:z —12)? =0

and (1 — dz1zoYy2)? = 0.

Hence o0 = yo and 1 = dz1zoYy».



Curve equation] times 1/z%:
1+ y?/zf =
1/z1 + y1(1/z] + t/z1) + dyi.
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Substitute 1/z1 = da:%:

1+ d2y13:2 —

dz5 + dyi(dz + z5t) + dy?.
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Curve equation] times 1/z%:
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1/z1 + y1(1/z] + t/z1) + dyi.
Substitute 1/z1 = da:%:

1+ d2y13:2 —

dz5 + dyi(dz + z5t) + dy?.

Substitute 2:1:% — 22> + t:z:% + d:cg:

(1 - dy125)* = d(z2 — y1)*.
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Curve equation] times 1/z%:
1+ y?/zf =

1/z1 + y1(1/z] + t/z1) + dyi.
Substitute 1/z1 = da:%:

1+ d2y13:2 —

dz5 + dyi(dz + z5t) + dy?.

Substitute 2:1:% — 22> + t:z:% + d:cg:
(1 - dy125)* = d(z2 — y1)*.

Thus zp =vy; and 1 = dyla:%.
Hence 1 = da:g.

Now 2:1:% — 2T + ta:% + 9
so 3 = (2—t)zp so 27d = (2—t)3.
Contradiction.






