
DNSCurve

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

uma.es wants to see

http://www.iitk.ac.in.

'& %$! "#Browser at uma.es

'& %$! "#Administrator at iitk.ac.in

“The web server

www.iitk.ac.in

has IP address

203.200.95.142.”

OO

Now uma.es

retrieves web page from

IP address 203.200.95.142.

Same for Internet mail.

uma.es has mail to deliver to

someone@iitk.ac.in.

'& %$! "#Mail client at uma.es

'& %$! "#Administrator at iitk.ac.in

“The mail server for

iitk.ac.in

has IP address

203.197.196.9.”

OO

Now uma.es

delivers mail to

IP address 203.197.196.9.

Forging DNS packets

uma.es has mail to deliver to

someone@iitk.ac.in.

'& %$! "#Mail client at uma.es

'& %$! "#Attacker anywhere on network

“The mail server for

iitk.ac.in

has IP address

157.22.245.20.”

OO

Now uma.es

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Network probably has at least

one attacker-controlled machine.

That machine sniffs network,

trivially forges DNS packets.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Network probably has at least

one attacker-controlled machine.

That machine sniffs network,

trivially forges DNS packets.

“No sniffers on my network!”

: : : so a blind attacker

guesses the bits to repeat,

eventually gets lucky.

After analysis, optimization:

blind forgery is about as easy

as downloading a movie.

Some general questions

Why doesn’t the Internet

use cryptography?

Some general questions

Why doesn’t the Internet

use cryptography?

“The Internet does

use cryptography! I just made

an SSL connection to my bank.”

Some general questions

Why doesn’t the Internet

use cryptography?

“The Internet does

use cryptography! I just made

an SSL connection to my bank.”

Indeed, many connections

use SSL, Skype, etc.

But most connections don’t.

Why is there so much unprotected

Internet communication?

Why is there so much unprotected

Internet communication?

“Because nobody cares.

Cryptography is pointless.

Attackers are exploiting

buffer overflows; they aren’t

intercepting or forging packets.”

Why is there so much unprotected

Internet communication?

“Because nobody cares.

Cryptography is pointless.

Attackers are exploiting

buffer overflows; they aren’t

intercepting or forging packets.”

In fact, attackers

are forging packets

and exploiting buffer overflows

and doing much more. Users

want all of these problems fixed.

Why are typical Internet packets

unencrypted and unauthenticated?

Why are typical Internet packets

unencrypted and unauthenticated?

“It’s too easy to write Internet

software that exchanges data

without any cryptographic

protection. Most Internet clients

and servers don’t know how to

make cryptographic connections.”

Why are typical Internet packets

unencrypted and unauthenticated?

“It’s too easy to write Internet

software that exchanges data

without any cryptographic

protection. Most Internet clients

and servers don’t know how to

make cryptographic connections.”

True for most protocols.

But let’s focus on HTTP.

Most HTTP servers and browsers

(Apache, Internet Explorer,

Firefox, etc.) support SSL.

Why is SSL used for only a tiny

fraction of all HTTP connections?

Why is SSL used for only a tiny

fraction of all HTTP connections?

“Have you ever tried to set

up SSL? Do you want to go

through all these extra Apache

configuration steps? Do you

want to pay for a certificate?

Do you want to annoy your

web-site visitors with self-signed

certificates?”

Why is SSL used for only a tiny

fraction of all HTTP connections?

“Have you ever tried to set

up SSL? Do you want to go

through all these extra Apache

configuration steps? Do you

want to pay for a certificate?

Do you want to annoy your

web-site visitors with self-signed

certificates?”

Indeed, usability is a major issue.

Only �1% of the Apache servers

on the Internet have SSL enabled.

But let’s focus on Google.

Google has already

paid for a certificate.

Google uses SSL for

https://mail.google.com.

But let’s focus on Google.

Google has already

paid for a certificate.

Google uses SSL for

https://mail.google.com.

If you connect to

https://www.google.com,

Google redirects your browser to

http://www.google.com.

Why does Google actively

turn off cryptographic protection?

Why does Google actively

turn off cryptographic protection?

“Enabling SSL

for more than a small fraction

of Google connections would

overload the Google servers.

Google doesn’t want to pay for

a bunch of extra computers.

Too slow) unusable.”

Why does Google actively

turn off cryptographic protection?

“Enabling SSL

for more than a small fraction

of Google connections would

overload the Google servers.

Google doesn’t want to pay for

a bunch of extra computers.

Too slow) unusable.”

Many companies sell

SSL-acceleration hardware,

but that costs money too.

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

Google’s communications?

Can crypto be fast enough

to protect every Internet packet?

Can universal crypto be usable?

What cryptography can do

Cryptography can

stop sniffing attackers

by scrambling legitimate packets.

Cryptography is often described

as protecting confidentiality:

attackers can’t understand

the scrambled packets.

Can also protect integrity:

attackers can’t figure out

a properly scrambled forgery.

Traditional cryptography requires

each legitimate client-server pair

to share a secret key.

Public-key cryptography

has much lower requirements.

(1976 Diffie–Hellman;

many subsequent refinements)

Each party has one public key.

Two parties can communicate

securely if each party knows

the other party’s public key.

1993: IETF begins “DNSSEC”

project to add public-key

signatures to DNS.

After fifteen years and millions of

dollars of U.S. government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

78000000 *.com names.

After fifteen years and millions of

dollars of U.S. government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

78000000 *.com names.

Surveys by DNSSEC developers,

last updated 2009.03.12,

have found 253 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 253 > 116.

Why is nobody using DNSSEC?

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

DNSSEC tries to minimize

server-side costs by precomputing

signatures of DNS records.

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs through

choice of crypto primitive.

DNSSEC RFCs

say DSA is “10 to 40 times as

slow for verification” as RSA;

recommend RSA “as the

preferred algorithm” for DNSSEC;

suggest RSA key size

of only 1024 bits

for “leaf nodes in the DNS.”

I say:

1024-bit RSA is irresponsible.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

I say:

1024-bit RSA is irresponsible.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

But most users don’t know this.

Why aren’t they using DNSSEC?

DNS architecture

Browser pulls data from

DNS cache at uma.es:

Browser at uma.es

DNS cache

WV UT

PQ RS

OO

Administrator at iitk.ac.in?> =<89 :;

OO

“The web server

www.iitk.ac.in

has IP address

203.200.95.142.”

ck

Cache pulls data from

administrator if it

doesn’t already have the data.

Administrator pushes data

through local database into

.iitk.ac.in DNS server:

Browser at uma.es

DNS cache

WV UT
PQ RS

OO

.iitk.ac.in
DNS server

OO

.iitk.ac.in
database

OO

Administrator at iitk.ac.in

WV UT

PQ RS

OO

“The web server

www.iitk.ac.in

has IP address

203.200.95.142.”

_g

DNS cache learns location of

.iitk.ac.in DNS server from

.in DNS server:

at uma.es DNS cache
'& %$
 ! "#

.in
DNS server

OO

.in
database

WV UT

PQ RS

OO

at iitk.ac.in Administrator
'& %$
 ! "#

OO

“The DNS server

for .iitk.ac.in

is ns2

with IP address

202.3.77.23.”

5=

GaneshaWV UT

PQ RS

&&NNNNNNNNNNN
Browser

Root
DNS
server

// DNS
cache

WV UT

PQ RS

OO

.in
DNS
server

::
uuuuuuuuuuu .iitk.ac.in

DNS
server

OO

.in
data

at Internet
Central HQ

base

OO

.iitk.ac.in
database

OO

at iitk.ac.in

Administrator

WV UT

PQ RS

OOhhPPPPPPPP

\d

6>

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, PowerDNS,

MaraDNS, ANS, Posadis,

Secure64 DNS.

DNS database-management

tools listed by 2008 Salomon:

BPP, DNS Boss, DNStool,

gencidrzone, h2n, makezones,

NSC, nsupdate, SENDS,

updatehosts, Utah Tools,

webdns, zsu. Plus hundreds of

homegrown tools written by

DNS registrars etc.

DNSSEC requires new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 2GB database

can produce 10GB database

(2005 NIST study).

Tool reading database into RAM

probably has to be reengineered.

Because of engineering costs

and redeployment costs, very

few database-management tools

have added DNSSEC support.

Administrator has to manually

mix existing management tools

with separate signature generation

for every change to DNS data.

Because of engineering costs

and redeployment costs, very

few database-management tools

have added DNSSEC support.

Administrator has to manually

mix existing management tools

with separate signature generation

for every change to DNS data.

2008 slideshow “DNSSEC in six

minutes” (79 pages): “Any time

you modify a zone : : : you must

re-run dnssec-signzone.”

Administrator also has to send

public key to .in.

The .in server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

Big zones such as .com

refuse to sign complete database.

Full DNSSEC signing would be

much too slow and much too big.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Often many more packets

than original DNS.

Higher latency for user.

More frequent failures.

Also, much easier for

attacker to deny service.

> 100� amplification!

Official DNSSEC response,

RFC 4033: “DNSSEC

provides no protection

against denial of service attacks.”

Replay attack on DNSSEC:

Attacker inspects DNSSEC

signatures from iitk.ac.in.

iitk.ac.in changes location,

acquires new IP addresses,

changes DNS records.

Replay attack on DNSSEC:

Attacker inspects DNSSEC

signatures from iitk.ac.in.

iitk.ac.in changes location,

acquires new IP addresses,

changes DNS records.

Attacker buys the old addresses,

forges DNS responses

with the old DNS records

and the old signatures.

Passes signature verification.

Successfully steals mail!

DNSSEC has a partial defense.

Signature has an expiration date,

normally signing date + 30 days.

Not very good security:

replay attack continues to work

for up to 30 days!

DNSSEC has a partial defense.

Signature has an expiration date,

normally signing date + 30 days.

Not very good security:

replay attack continues to work

for up to 30 days!

Also a major administrative

hassle: administrator must

generate new signatures

before old signatures expire.

If administrator forgets,

domain is destroyed.

“DNSSEC suicide.”

Imagine an “HTTPSEC”

that works like DNSSEC.

Imagine an “HTTPSEC”

that works like DNSSEC.

Install HTTPSEC software.

Set up a public key.

After every web-page update,

wiki edit, database change, etc.,

log in to web server

and run httpsec-signpages

with appropriate options

to precompute new signatures.

Imagine an “HTTPSEC”

that works like DNSSEC.

Install HTTPSEC software.

Set up a public key.

After every web-page update,

wiki edit, database change, etc.,

log in to web server

and run httpsec-signpages

with appropriate options

to precompute new signatures.

Replay attacks work for 30 days.

Have to run httpsec-signpages

again before 30-day expiration or

your web pages are destroyed.

But wait, there’s more!

NXDOMAIN attack on DNSSEC:

Attacker forges DNS response

from google.com saying that

citronella.google.com

doesn’t exist.

But wait, there’s more!

NXDOMAIN attack on DNSSEC:

Attacker forges DNS response

from google.com saying that

citronella.google.com

doesn’t exist.

Cache can’t accept this

without a signature:

otherwise attacker can

knock names off the Internet.

But wait, there’s more!

NXDOMAIN attack on DNSSEC:

Attacker forges DNS response

from google.com saying that

citronella.google.com

doesn’t exist.

Cache can’t accept this

without a signature:

otherwise attacker can

knock names off the Internet.

When is the signature

precomputed? Does Google

precompute signatures for

all possible names? Too many!

DNSSEC solution: Sign

multi-NXDOMAIN such as

“there are no names between

chrome.google.com and

code.google.com.”

DNSSEC server issues this signed

data in response to any name

between chrome and code.

Tricky definition of “between”;

theoretically implementable.

DNSSEC solution: Sign

multi-NXDOMAIN such as

“there are no names between

chrome.google.com and

code.google.com.”

DNSSEC server issues this signed

data in response to any name

between chrome and code.

Tricky definition of “between”;

theoretically implementable.

Consequence: If you deploy

DNSSEC then you are exposing

all of your DNS names!

Newest DNSSEC variant:

“NSEC3” (2008 Laurie),

exposing hashes of DNS names.

Hash is 150 SHA-1 iterations.

Hash-enumeration attack:

Attacker guesses many names,

computes their hashes,

compares to the hashes

exposed by DNSSEC+NSEC3.

Small 10-computer cluster:

� 244 guesses/year.

Large company or botnet:

� 264 guesses/year.

Without DNSSEC,

attacker has to send query

for each guessed name.

Flooding a 4Mbps connection:

� 237 guesses/year.

Compared to normal DNS,

DNSSEC+NSEC3

makes guessing silent and

makes it millions of times faster

for a well-equipped attacker.

DNSSEC+NSEC3 is advertised

as being better than DNSSEC;

but it still loses privacy

compared to normal DNS.

Precomputation impact summary:

DNSSEC is pain for implementors.

Hundreds of DNS programs—

all caches, all servers,

and all management tools—

need to be modified to

precompute and store signatures.

DNSSEC is pain for

administrators, far beyond a

simple upgrade.

DNSSEC hurts privacy.

DNSSEC hurts reliability.

DNSSEC aids denial of service.

Rethinking signatures

Conventional wisdom:

DNSSEC’s precomputation,

sacrificing security while

creating severe usability problems,

is necessary for speed.

Can we achieve adequate speed

without precomputation?

Let’s change the design.

Rethinking signatures

Conventional wisdom:

DNSSEC’s precomputation,

sacrificing security while

creating severe usability problems,

is necessary for speed.

Can we achieve adequate speed

without precomputation?

Let’s change the design.

1. Add encryption.

Want to protect against sabotage

and against espionage.

So use public-key signatures

and public-key encryption.

2. Merge signing with

encryption.

“Public-key signcryption” protects

against forgery and eavesdropping

in one step.

“Public-key authenticated

encryption” is even faster.

No need to

partition the algorithms into

an encryption component and

an authentication component.

Combined algorithms are faster.

3. Merge public-key operations

across multiple messages.

It’s silly for a sender

to authcrypt two messages

to the same recipient.

“Hybrid cryptography”

is much faster.

Example: Sender

generates a random AES key,

authcrypts the AES key,

uses the AES key to encrypt and

authenticate both messages.

4. Choose sensible primitives.

256-bit elliptic-curve cryptography

using public-domain software:

489069 Core 2 cycles to handle a

new communication partner.

5355 cycles to encrypt and

authenticate a 510-byte message.

6786 cycles to verify and decrypt

a legitimate 510-byte message.

3465 cycles to reject a forged

510-byte message.

A 2.5GHz Intel Core 2 Quad

Q9300 CPU costs US$225.

Complete computer: $400.

This CPU has 4 cores.

Each core carries out

2.5 billion cycles/second.

On this computer,

the same software takes just

49 seconds to handle 1000000

new communication partners,

and just 12 seconds to handle

10000000 incoming packets and

10000000 outgoing packets.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

Total cryptographic cost:

about half a day on a single

$400 computer with this software.

VeriSign is spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day, these servers

together handle 35 billion queries

from 5 million clients.

Total cryptographic cost:

about half a day on a single

$400 computer with this software.

Verisign says that it wants to be

prepared for 4 trillion packets/day.

Cryptographic cost of

4 trillion partners/day with this

software: < 3000 computers.

What is this software?

It’s the new “Networking and

Cryptography library” (“NaCl”)

developed within the EU FP7

“Computer Aided Cryptography

Engineering” (“CACE”) project.

What is this software?

It’s the new “Networking and

Cryptography library” (“NaCl”)

developed within the EU FP7

“Computer Aided Cryptography

Engineering” (“CACE”) project.

News: All parts of NaCl

needed for DNS are done!

What is this software?

It’s the new “Networking and

Cryptography library” (“NaCl”)

developed within the EU FP7

“Computer Aided Cryptography

Engineering” (“CACE”) project.

News: All parts of NaCl

needed for DNS are done!

Actually done three months ago.

Subsequent time has been QA.

NaCl is now released:

http://nacl.cace-project.eu

The DNSCurve project

DNSCurve uses NaCl

to add heavy-duty integrity

(RSA-1024 has 80-bit security;

DNSCurve has 128-bit security)

and some confidentiality

and availability

to the Domain Name System.

Despite all this security,

DNSCurve is very easy for DNS

software authors to implement

and very easy for

administrators to deploy.

Administrator has to change

the iitk.ac.in server

to support DNSCurve,

or install a DNSCurve forwarder

alongside the server.

Administrator does not need to

change database software,

does not need to store signatures,

does not need new procedures

for updating DNS records, and

does not risk DNSSEC suicide.

Administrator changes

server name such as ns2

to a server name that encodes

the DNSCurve public key.

The .in server

and database software

and web interface

already support

iitk.ac.in server names

selected by the

iitk.ac.in administrator!

Cache has to be upgraded

to support DNSCurve.

Cache naturally sees the

encoded DNSCurve public key.

Cache encrypts and authenticates

DNS packets sent to that server.

Cache verifies and decrypts DNS

packets received from that server.

No extra packets.

Forged packets are

very efficiently discarded.

Denial of service becomes

much more difficult.

Does DNSCurve mean that

DNSSEC is completely useless?

No. DNSSEC can protect against

compromise of DNS servers

if administrator generates

signatures on another machine

that has not been compromised.

Does DNSCurve mean that

DNSSEC is completely useless?

No. DNSSEC can protect against

compromise of DNS servers

if administrator generates

signatures on another machine

that has not been compromised.

Analogy: HTTPSEC, unlike

HTTPS, can protect against

compromise of HTTP servers

if administrator signs web pages

on another machine.

But does this justify the pain of

DNSSEC+HTTPSEC?

More information on DNSCurve:

See http://dnscurve.org.

Software release coming soon.

More information on DNSCurve:

See http://dnscurve.org.

Software release coming soon.

Thinking beyond DNS:

Can every Internet packet

be protected in a similar way?

More information on DNSCurve:

See http://dnscurve.org.

Software release coming soon.

Thinking beyond DNS:

Can every Internet packet

be protected in a similar way?

Thinking beyond networking:

When people sacrifice security

and usability for the sake of

performance, are they really

improving performance?

