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EC point counting

1983 (published 1985) Schoof:
Algorithm to count points on

elliptic curves over finite fields.

Input: prime power g; a,b € Fy
such that 6(4a3 4 276°) # 0.

Output: #{(z,y) € Fq x Fy :
vy’ =z3 +az + b} + 1;

i.e., #£E(Fq) where E is the
elliptic curve y2 = 3 + az + b.

Time: (log q)°(1).

How? See this afternoon’s talk.



Elliptic curves everywhere

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method
of factoring integers.

1984 (published 1985) Miller,
and independently

1984 (published 1987) Koblitz:
ECC, elliptic-curve cryptography.

Bosma, Goldwasser—Kilian,

C

el

nudnovsky—Chudnovsky, Atkin:

iptic-curve primality proving.

These applications are different

but share many optimizations.



Representing curve points

Crypto 1985, Miller, “Use of
elliptic curves in cryptography”:

Givenn € Z, P € E(F,),
division-polynomial recurrence
computes nP € E(F,)

“In 26 log, n multiplications”;
but can do better!

“It appears to be best to
represent the points on the curve
in the following form:

Each point is represented by the

triple (z, ¥, z) which corresponds
to the point (z/2%,y/23)."



Note that each point

has many representations

in this traditional form:

e.g., (7/2,5/3) can be
represented as (7/2:5/3 : 1)
or (126 : 360 :6) or ...

Can use this flexibility
to avoid, or delay, divisions.
Most ECC software does this.

Good idea if /M is big, where
M is cost of multiplying in Fg,
| is cost of inverting in Fy.
Typical software: 1/M > 10.



1986 Chudnovsky—Chudnovsky,
“Sequences of numbers
generated by addition

in formal groups

and new primality

and factorization tests' :

“The crucial problem becomes
the choice of the model

of an algebraic group variety,
where computations mod p
are the least time consuming.”

Most important computations:
ADD is PQ— P+ Q.
DBL is P +— 2P.



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,
for otherwise the number of
coordinates and operations Is
increasing. This limits us ... to

4 basic models of elliptic curves.”

Short Welerstrass:
y° =23 + az + b.

Jacobi intersection:
32+c2 — 1 a32+d2 = 1.

Jacobi quartic: y? = z*+2az?+1.

Hessian: z3 + y3 + 1 = 3dzy.
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Optimizing Jacobian coordinates

For “traditional” (X/Z2,Y/Z3)
on y° = z3 + az + b
1986 Chudnovsky—Chudnovsky

state explicit formulas using
10M for DBL; 16M for ADD.

Consequence:
|
~ | 10lgn + 16 5% \m
lglgn
to compute n, P — nP

using sliding-windows method
of scalar multiplication.

Notation: Ig = logs.



Squaring is faster than M.

Here are the DBL formulas:

S =4X1 Y

M =3X?{ +aZ7;

T = M? - 2S;

X3 =1T;
Ys=M-(S—-T) -8y
73 =2Y1 - Z1.

Total cost 3M + 6S + 1D where
S is the cost of squaring in Fg,
D is the cost of multiplying by a.

The squarings produce
X2,Y2, Y} Z2, 7 M2,



Most ECC standards choose
curves that make formulas faster.

Curve-choice advice from
1986 Chudnovsky—Chudnovsky:

Can eliminate the 1D
by choosing curve with a = 1.

But “it i1s even smarter”
to choose curve with a = —3.

f a = —3 then M = 3(X? — Z7)
=3(X1 - Z7) - (X1 + Z7).
Replace 2S5 with 1M.

Now DBL costs 4M -+ 4S.



2001 Bernstein:
3M 4+ 58 for DBL.
11M + 58S for ADD.

How? Easy S — M tradeoff:
instead of computing 2Y7 - /7,
compute (Y1 + Z1)%? — Y — Z2.
DBL formulas were already
computing Y12 and 212.

Same idea for the ADD formulas,
but have to scale X,VY, /
to eliminate divisions by 2.




ADD for y° = z3 + az + b:
Uy = X125, Uy = XoZ2,
S1=Y123, So =Ya2Z3,
many more computations.

1986 Chudnovsky—Chudnovsky:
“We suggest to write

addition formulas involving
(X,Y, Z,Z%, Z3)."

Disadvantages:
Allocate space for Z2, Z3.
Pay 1S+ 1M in ADD and in DBL.

Advantages:
Save 2S + 2M at start of ADD.
Save 1S at start of DBL.



1998 Cohen—Miyaji—Ono:
Store point as (X : Y : Z).
If point is input to ADD,
also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,
reuse Z2 73, Save 1S + 1M!

Best Jacobian speeds today,
including S — M tradeoffs:
3M + 5S for DBL if a = —3.
11M + 58S for ADD.

10M + 4S for reADD.

/M + 4S for mADD (i.e. Zp = 1).




Compare to speeds for Edwards
curves z° + y° = 1 + dz?y?

In projective coordinates

(2007 Bernstein—Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

OM + 1S + 1D for mADD.

Inverted Edwards coordinates
(2007 Bernstein—Lange):

3M +4S + 1D for DBL.

OM + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

| atest Edwards speed news:
2008.12 Hisil-Wong—Carter—Dawson.



y> =123 — 0.4z +0.7



The \Weierstrass
turtle: old truste
and slow. Warniﬂg:

(picture) incomplete!

(Thanks to Tanja Lange
for the pictures.)



22 + y? = 1 — 300z%y?



The Edwards

starfish new.

fast and complete!



Start!
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Weierstrass sets off Edwards
left behind sleepmg




Weierstrass has made some progress -

ﬁna”y Edwards wakes up.



Exciﬁng progress. Edwards

about to overtakell




Mar

And the winner is Edwardsl!



Speed-oriented Jacobian standards

2000 IEEE “Std 1363"

uses Welerstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of
choosing curves y° = z3 — 3z + b.

2000 NIST “FIPS 186-2"
standardizes five such curves.

2005 NSA “Suite B” recommends
two of the NIST curves as

the only public-key cryptosystems
for U.S. government use.



Projective for Weierstrass

1986 Chudnovsky—Chudnovsky:
Speed up ADD by switching from
(X/Z%,Y/Z3) to (X/Z,Y)2Z).
/M + 3S for DBL if a = —3.
12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:
DBL dominates in ECDH etc.
But ADD dominates In

some applications: e.g.,

batch signature verification.



Montgomery curves

1987 Montgomery:

Use by? = z3 + az® + z.
Choose small (a + 2)/4.

2(z2, y2) = (24, y4)
(z3 —1)°
4zy(z5 +azp + 1)

— T4 =

(z3,93) — (%2, ¥2) = (z1, 1),
(z3,y3) + (2, ¥2) = (=5, ys)
(z2z3 — 1)3

z1(z2 — 23)°

— Ty =



Represent (z, y)
as (X:Z) satisfying z = X/Z.

B = (X2 + 22)%,

C = (X2— 22)",

D=B-C, X4=8B-C,
Zy=D-(C+D(a+2)/4) =
2(Xo:2Zo) = (X4:2Z4).

(X3:23) — (X2:22) = (X1:21),
E=(X3—23) - (X2+ 22),
F=(X3+ 2Z3) (X2 — 27),
Xs =271 (E+ F)?

Zs =X1-(E—F) =
(X3:23) + (X2:22) = (X5:Z5).



This representation

does not allow ADD but it allows
DADD, “differential addition”:

RQ.RQ—R— Q+ R.

eg. 2P, P,P— 3P.
e.g. 3P,2P, P+— 5P.
e.g. 6P, bP P — 11P.

2M + 2S + 1D for DBL.
4M + 2S for DADD.
Save 1M if Zl = 1.

Easily compute n(X7 : Z1) using
~ lgn DBL, ~ Ilgn DADD.
Almost as fast as Edwards nP.
Relatively slow for mP + n@ etc.



Doubling-oriented curves

2006 Doche—Ilcart—Kohel:

Use y2 = z3 + az? + 16az.
Choose small a.

Use (X : Y :Z:2Z%)

to represent (X/Z,Y/Z?).

3M + 4S + 2D for DBL.
How? Factor DBL as ()
where ¢ Is a 2-isogeny.

2007 Bernstein—Lange:
2M + 5S + 2D for DBL

on the same curves.



12M + 55 + 1D for ADD.

Slower ADD than other systems,
typically outweighing benefit
of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of
genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:
tripling-oriented curves

(see 2006 Doche—lcart—Kohel),
double-base chains, ...



Hessian curves

Credited to Sylvester
by 1986 Chudnovsky—Chudnovsky:

(X :Y :Z) represent (X/Z,Y/Z)
on z3 4+ y3 + 1 = 3dzy.

12M for ADD:

X3 =Y1X2- Y142 — Z1Y2 - X1Y2,
Y3 = X142 - X1Y2 — V1 X2 - £1X2,
73 = 21Yo - Z1 X0 — X12Z» - Y12>.

6M —+ 3S for DBL.



2001 Joye—Quisquater:

2(X1: N :21) =

(Zl X1 : Yl) -+ (Yl AR Xl)
so can use ADD to double.

“Unified addition formulas,”
helpful against side channels.
But not strongly unified:
need to permute inputs.

2008.02 Hisil-Wong—Carter—Dawson:

(X:Y:Z:X%:Y?%: 77
2XY :2XZ :2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.




z3 —y3 +1 = 0.3zy



The Hessian-ray: uniform
e—

not sfrangl y so



Jacobi intersections

1986 Chudnovsky—Chudnovsky:

(S:C:D:Z) represent
(5/Z,C/Z,D/Z) on
s 1 2 = 1, as® - d? =1.

14M + 2S + 1D for ADD.
“Tremendous advantage”
of being strongly unified.

5M + 3S for DBL.
“Perhaps (7) ... the most
efficient duplication formulas

which do not depend on the
coefficients of an elliptic curve.”



2001 Liardet—Smart:
13M + 2S + 1D for ADD.
4M + 3S for DBL.

2007 Bernstein—Lange:
3M + 4S8 for DBL.

2008.02 Hisil-Wong—Carter—Dawson:
13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S:C:D:Z:5C:DZ2):
11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi quartics

(X:Y:Z) represent (X/Z,Y/Z?)
on y?> = z* + 2az° + 1.

1986 Chudnovsky—Chudnovsky:
3M + 6S + 2D for DBL.
Slow ADD.

2002 Billet—Joye:
New choice of neutral element.

10M + 3S + 1D for ADD,
strongly unified.

2007 Bernstein—Lange:
1M + 9S + 1D for DBL.



2007 Hisil-Carter—Dawson:
2M + 6S + 2D for DBL.

2007 Feng—\Wu:
2M + 6S + 1D for DBL.
1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,
2007 Hisil-Carter—Dawson,

2008.02 Hisil-Wong—Carter—Dawson:
use (X 1Y :Z: X?:Z?)

or (X:Y:Z:X%:2%:2X2).
Can combine with Feng—Wau.
Competitive with Edwards!






The Jacab:-quar'ﬁc squrd can be
extended 'h:: \

XXYZZR l
giant squid.

‘f \


















For more information

Explicit-Formulas Database,
joint work with Tanja Lange:
hyperelliptic.org/EFD

EFD has 316 computer-verified
formulas and operation counts
for ADD, DBL, etc.

In 22 representations

on 8 shapes of elliptic curves.

Not yet handled by computer:
generality of curve shapes
(e.g., Hessian order € 3Z);
complete addition algorithms
(e.g., checking for co).



Can do similar survey
for elliptic curves over
fields of characteristic 2.

Latest EFD updates now include
characteristic-2 formulas!

Currently 102 computer-verified
formulas and operation counts
for ADD, DBL, etc.

iIn 16 representations

on 2 shapes (binary Edwards
and short Weierstrass) of
ordinary binary elliptic curves.



