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The clock

W

This is the curve 22 + y° = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”



Examples of points on this curve:
(0,1) = “12:00".
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Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".
(—1,0) = “0:00" .
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Examples of points on this curve:
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Examples of points on this curve:
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0,—1) = “6:00".
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Examples of points on this curve:
0,1) = “12: OO

_1/2, —+/3/4) = “7:00".
1/2,4/1/2) = “1:30".
/5,4/5). (—3/5,4/5).
/5, —4/5). (—3/5, —4/5).
4/5,3/5). (—4/5,3/5).
(4/5, —3/5). (—4/5, —3/5).

Many more.
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Clock addition

Y
} neutral = (0, 1)
P = (z1,v1)
P> = (22, y2)
> T
P = (23, y3)

Standard addition formula

for the clock z2 + y? = 1:
sum of (z1,vy1) and (z2, ¥2) is
(T1y2 + Y172, Y1Y2 — T1T2).




Examples of clock addition:
"2:00" + "5:00"

= (v/3/4.1/2) + (1/2, —+/3/4)
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Examples of clock addition:

“2:00" + "5:00"

- r 1/2) + (1/2, —/3/4)
= (—1/2,—+/3/4) = “7:00".
“5:00" 4 "“9:00”
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Examples of clock addition:

“2:00" + "5:00"

- r 1/2) + (1/2, —/3/4)
= (—1/2,—+/3/4) = “7:00".
“5:00" 4 "“9:00”

(1/2, —+/3/4) + (—1,0)
(1/3/4,1/2) = “2:00".
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Examples of clock addition:

“2:00" + "5:00"

- r 1/2) + (1/2, —/3/4)
= (—1/2,—+/3/4) = “7:00".
“5:00" 4 "“9:00”

(1/2, —+/3/4) + (—1,0)
(1/3/4,1/2) = “2:00".
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Examples of clock addition:

"2:00" 4+ “5:00"
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Examples of clock addition:

"2:00" + "5:00"

= W 1/2) + (1/2,—+/3/4)

= (—1/2,—+/3/4) = “7:00".
“5:00" + “9:00”
(1/2,—+/3/4) + (-1,0)
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Examples of clock addition:

"2:00" + "5:00"

= W 1/2) + (1/2,—+/3/4)

= (—1/2,—+/3/4) = “7:00".
“5:00" + “9:00”
(1/2,—+/3/4) + (-1,0)

1/2

(v/3/4,1/2) = “2:00".
< ;) - @:'275)'
(25)= (3 ms)
(25)= (oo )

(z1,v1) +(0,1) = (21, 91).
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Examples of clock addition:

"2:00" 4+ “5:00"

= \ﬁ 1/2) +(1/2,—+/3/4)

= (—1/2,—+/3/4) = “7:00".
“5:00" + “9:00”
(1/2,—+/3/4) + (-1,0)

1/2,
(1/3/4,1/2) = “2:00".
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Examples of clock addition:

"2:00" 4+ “5:00"

= \ﬁ 1/2) +(1/2,—+/3/4)

= (—1/2,—+/3/4) = “7:00".
“5:00" + “9:00”
(1/2,—+/3/4) + (-1,0)

1/2,
(1/3/4,1/2) = “2:00".

2(5:5) = (38)
5'5 25" 25
3 4\ (117 —44
3(3'5) - (125’ 125)'
4(§ ﬂ) _ (336 —527>
5'5 625" 625 )

(z1,91) +(0,1) = (z1, 91).
) + (—z1,91) = (0, 1).




Define Clock(R) as
{(z,y) eRxR:z°+y*> =1}
As usual R = {real numbers}.

Exercise:

Prove that Clock(R)

IS a commutative group
under clock addition.

In other words:
clock sum is in Clock(R);
clock addition is commutative:

clock addition is associative:
there Is a neutral element:
each element has a negative.



How to remember addition law:

Y
} neutral = (0, 1)
o P = (z1,91)
P> = (z2, y2)
> T
P = (z3, y3)

22 4+ y2 = 1, parametrized by
r =sina, Y =cosa. Recall
(sin(a; + ap), cos(a1 + ap)) =
(sin a1 cos ap 4 cos ag sin ay,
COS (x] COS ap — Sin a1 sin ap).



Clocks over finite fields

Clock(F7) =
{(z,y) e F; x F7: 2% + y* = 1}
Here F7 ={0,1,2,3,4,5,6}
=4{0,1,2,3,-3,-2, -1}
with +, —, X modulo 7.



Clock(F7) is a group
under the same addition law
used for Clock(R):

(z1,y1) + (%2, 92) =
(z1Y2 + Y122, Yy1y2 — T1Z2).

Similarly construct a
finite group Clock(Fy)
for each prime power gq.

Clock(F4) has ~ g elements.
“Index-calculus™ attacks find
discrete logs in Clock(Fy) in time

exp(O((log g)/3(log log 4)%/3)).



Can use Clock(F;) for crypto.

But need hard discrete logs,

so need very slow index calculus,

so need very large q.

This makes arithmetic slow.

Alternative (1985 Miller,
independently 1987 Koblitz):

Switch from FZ';

, Clock(Fy), etc.

to an “elliptic curve.”

As far as we can tell,

iIndex calculus ¢
against most el

oesn't work
Iptic curves,

SO Cahn use€e mucC

n smaller g.



Addition on an Edwards curve

Y
} neutral = (0, 1)
P = (z1,91)
P> = (z2, y2)
> I
P = (23, y3)

z? +y? = 1 — 30z%y°.

Sum of (z1,y1) and (x2,y2) is
((z1y2+y122)/(1-3021229192),
(y1y2—7122)/(1+30Z122912)).



The clock again, for comparison:

Y

} neutral = (0, 1)
P = (z1,91)

) Py = (22, y2)

P = (23, y3)

z? +y° = 1.

Sum of (z1,y1) and (z2,y2) is
(z192 + Y122,

Y1Y2 — T1T2).



"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: They aren't!

If 22 + y2 = 1 — 30z°y?
then 30z%y? < 1
so v/30 |zy| < 1.



"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: They aren't!

If 22 + y2 = 1 — 30z°y?
then 30z%y? < 1
so v/30 |zy| < 1.

If 22 + y? = 1 — 30z3y;
and a:% -+ y% =1- 30$%y§
then +/30 |z1y1| < 1

and /30 |zoyr| < 1



"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: They aren't!

If 22 + y2 = 1 — 30z°y?
then 30z%y? < 1
so v/30 |zy| < 1.

If 22 +y? = 1 — 30z2y?
and a:% -+ y% =1- 30$%y§
then /30 |z1y1] < 1

and /30 |zoyo| < 1

so 30 |z1y1z0o72| < 1



"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: They aren't!

If 22 + y2 = 1 — 30z°y?
then 30z%y? < 1
so v/30 |zy| < 1.

If 23 + y§ = 1 — 30z9y?
and a:% -+ y% =1- 30$%y§
then +/30 |z1y1| < 1

and v/30 |zoyo| < 1
so 30 |z1y1z0o72| < 1

so 1 +30xz1z2y1y2 > 0.



The Edwards addition law
(z1,y1) + (22, y2) =
((z1y2+y1z2)/(1-30Z1T2Y192),

(Viye—z122)/(1+30z1229192))
is a group law for the curve

72 +y? = 1 — 3022y,

Some calculation required:
addition result is on curve;

addition law iIs associative.

Other parts of proof are easy:
addition law I1s commutative;
(0, 1) is neutral element;

(z1,v1) + (—z1,91) = (0, 1).




More Edwards curves

Fix an odd prime power gq.
Fix a non-square d € Fy.

{(z,y) € Fg x Fy
z° +y° = 1+ dz?y?}
IS a commutative group with

(z1,91) + (22, ¥2) = (23, y3)
defined by Edwards addition law:

s — T1Y2 + Y1T2
1 +dzi1zoY1Y0
O Y1Y2 — 1T
Y3

1 —drizoy1yn



Denominators are never 0.
But need different proof;
"z2 + y% > 0" doesn't work.
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Denominators are never 0.
But need different proof;
"z2 + y% > 0" doesn't work.

If a:% + y% =1+ dm%y%
anc :z:% + y% =1+ d:z:%y%
and dzi1zoy1yo = £1
then dz?y?(zo + y2)°

= dz3y3(z5 + y5 + 2T092)

= dziy3(dziys + 1+ 2z01))

= d%%y%m%yg+d:v%y%+2da:%y%a:2y2




Denominators are never 0.
But need different proof;
"z2 + y% > 0" doesn't work.

I a:% + y% =1+ dm%y%
and :z:% + y% =1+ d:z:%y%

and dzi1zoy1yo = £1
then dz?y?(zo + y2)°

— d:c%y%(a:% + y% + 2z5Y7)

— dm%y%(dm%yg + 1+ 2zo10)
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Denominators are never 0.
But need different proof;
"z2 + y% > 0" doesn't work.

I a:% + y% =1+ dm%y%
and :z:% + y% =1+ d:z:%y%

and dzi1zoy1yo = £1
then dz?y?(zo + y2)°

— d:c%y%(a:% + y% + 2z5Y7)

— dm%y%(dm%yg + 1+ 2zo10)

= d%%y%m%yg+d:v%y%+2da:%y%a:2y2
=1+ da:%y% + 211y

= :z:% + y% + 221Y1




Denominators are never 0.
But need different proof;
"z2 + y% > 0" doesn't work.

I a:% + y% =1+ dm%y%
and :z:% + y% =1+ d:z:%y%

and dzi1zoy1yo = £1
then dz?y?(zo + y2)°

— d:c%y%(a:% + y% + 2z5Y7)

— dm%y%(dm%yg + 1+ 2zo10)

= d%%y%m%yg+d:v%y%+2da:%y%a:2y2
=1+ da:%y% + 211y

= :z:% + y% + 2T1Y]

= (z1 £ y1)°.




Case 1: zo + yo # 0. Then

d:( T1 £ Y1 >2
z1y1(z2 +v2) /)

contradiction.




Case 1: zo + yo # 0. Then

d _ ( 1 T Y1 >2
z1y1(zo +vy2) /)

contradiction.

Case 2: o — yp # 0. Then

d:( 1 F Y1 >2
z1y1(z2 —v2) /)

contradiction.




Case 1: zo + yo # 0. Then

d _ ( 1 T Y1 >2
z1y1(zo +vy2) /)

contradiction.

Case 2: o — yp # 0. Then

d:( 1 F Y1 >2
z1y1(z2 —v2) /)

contradiction.

Case 3: o+ yop =29 —yp = 0.
Then zo =0 and yp =0,
contradiction.



This is an elliptic curve
(technically, “mod blowups™).

Can use this group in crypto.

. 1t it's a “strong’ curve.

Need to compute group order.
If no large prime factor in order,
must switch to another d;

this very often happens.

Also check “twist security,”
“embedding degree,” et al.

Safe example, “Curve25519":
g=2°°-19;d=1-1/121666.



Historical notes:

1761 Euler, 1866 Gauss
introduced an addition law

for 22 + y2 = 1 — 2242,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves :z:2+y2 = 1+c4a:2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein—Lange:
Edwards addition law is complete

for 22 + y2 = 1 4 dz?y? if d #
and gives new ECC speed records!




(picture courtesy Tanja Lange)



