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Harold M. Edwards
Edwards generalized single
example x2 + y2 = 1− x2y2 by
Euler/Gauss to whole class
of curves.

Shows that – after some field
extensions – every elliptic curve
over field k of odd characteristic
is birationally equivalent to a
curve of the form
x2 + y2 = a2(1 + x2y2), a5 6= a

Edwards gives addition law for
this generalized form, shows
equivalence with Weierstrass form, proves addition law,
gives theta parameterization . . . in his paper
Bulletin of the AMS, 44, 393–422, 2007
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How to add on an Edwards curve
Let k be a field with 2 6= 0. Let d ∈ k with d 6= 0, 1.
Edwards curve:

{(x, y) ∈ k × k|x2 + y2 = 1 + dx2y2}

y

x

OO

//

Generalization covers more curves over k.

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is (0, 1); this is an affine point.

−(x1, y1) = (−x1, y1).

(0,−1) has order 2; (1, 0) and (−1, 0) have order 4.
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Relationship to Weierstrass form
Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1− (4u3
4/v

2
4).

The coordinates x = v4u/(u4v), y = (u− u4)/(u + u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u + u4) = 0.

Addition on Edwards and Weierstrass corresponds.
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Nice features of the addition law

Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.
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Nice features of the addition law

Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.
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Nice features of the addition law

Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.
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Nice features of the addition law

Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P + Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

[2]P =

(
x1y1 + y1x1

1 + dx1x1y1y1
,

y1y1 − x1x1

1− dx1x1y1y1

)
.

No reason that the denominators should be 0.

Addition law produces correct result also for doubling.

Unified group operations!
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Complete addition law
If d is not a square the denominators 1 + dx1x2y1y2 and
1− dx1x2y1y2 are never 0; addition law is complete.

Edwards addition law allows omitting all checks
Neutral element is affine point on curve.
Addition works to add P and P .
Addition works to add P and −P .
Addition just works to add P and any Q.

Only complete addition law in the literature.

No exceptional points, completely uniform group
operations.

Having addition law work for doubling removes some
checks from the code and gives SCA protection (might
leak Hamming weight, though).
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Fast addition law
Very fast point addition 10M + 1S + 1D. (Even faster
with Inverted Edwards coordinates.)

Dedicated doubling formulas need only 3M + 4S.

Fastest scalar multiplication in the literature.

For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using Jacobian
coordinates on Weierstrass curves.

Point addition 12M + 4S.
Doubling formulas need only 4M + 4S.

For more curve shapes, better algorithms (even for
Weierstrass curves) and many more operations (mixed
addition, re-addition, tripling, scaling,. . . ) see

www.hyperelliptic.org/EFD
for the Explicit-Formulas Database.
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Edwards Curves – a new star(fish) is born
lecture circuit:
Hoboken
Turku
Warsaw
Fort Meade, Maryland
Melbourne
Ottawa (SAC)
Dublin (ECC)
Bordeaux
Bristol
Magdeburg
Seoul
Malaysia (Asiacrypt)
Madras
Bangalore (AAECC)
...

Washington (CHES)
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One year passes . . .

. . . I feel so odd . . .
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Exceptions,2 6= 0 . . .

Even characteristic much more interesting for hardware . . .
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Exceptions,2 6= 0 . . .

Even characteristic much more interesting for hardware . . .
and soon also in software, cf. Intel’s and Sun’s current
announcements to include binary instructions.
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How to design a worthy binary partner?

Our wish-list (early February 2008) after studying and
experimenting with mostly small modifications of odd
Edwards:

A binary Edwards curve should

be elliptic.

look like an Edwards curve.

have a complete addition law.

cover most (all?) ordinary binary elliptic curves.

have an easy to compute negation.

have efficient doublings.

have efficient additions.
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How to design a worthy binary partner?

Our wish-list (early February 2008) after studying and
experimenting with mostly small modifications of odd
Edwards:

A binary Edwards curve should

be elliptic.

look like an Edwards curve.

have a complete addition law.

cover most (all?) ordinary binary elliptic curves.

have an easy to compute negation.

have efficient doublings.

have efficient additions.

be found before the CHES deadline, February 29th.
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Binary Edwards curves

Let d1 6= 0 and d2 6= d2
1 + d1 then

EB,d1,d2
: d1(x + y) + d2(x

2 + y2) = xy + xy(x + y) + x2y2,

is a binary Edwards curve with parameters d1, d2.
Map (x, y) 7→ (u, v) defined by

u = d1(d
2
1 + d1 + d2)(x + y)/(xy + d1(x + y)),

v = d1(d
2
1 + d1 + d2)(x/(xy + d1(x + y)) + d1 + 1)

is a birational equivalence from EB,d1,d2
to the elliptic curve

v2 + uv = u3 + (d2
1 + d2)u

2 + d4
1(d

4
1 + d2

1 + d2
2),

an ordinary elliptic curve in Weierstrass form.
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Properties of binary Edwards curves

(x3, y3) = (x1, y1) + (x2, y2) with

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

.

if denominators are nonzero.

Neutral element is (0, 0); again, this is an affine point.

(1, 1) has order 2.

−(x, y) = (y, x).

(x1, y1) + (1, 1) = (x1 + 1, y1 + 1).
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Edwards curves over finite fieldsIF2n

Trace is map Tr : IF2n → IF2; α 7→ ∑n−1
i=0 α2i

.

For any points (x1, y1), (x2, y2) the denominators
d1 + (x1 + x2

1)(x2 + y2) and d1 + (y1 + y2
1)(x2 + y2) are

nonzero if Tr(d2) = 1.

In particular, addition formulas can be used to double.

Addition law for curves with Tr(d2) = 1 is not only
strongly unified but even complete.

No exceptional points, completely uniform group
operations.

These are the first complete binary elliptic curves!

Even better every ordinary elliptic curve over IF2n is
birationally equivalent to a complete binary Edwards
curve if n ≥ 3.
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Generality & doubling
Nice doubling formulas (use curve equation to simplify)

x3 = 1 +
d1 + d2(x

2
1 + y2

1) + y2
1 + y4

1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)
,

y3 = 1 +
d1 + d2(x

2
1 + y2

1) + x2
1 + x4

1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)

In projective coordinates:
2M+ 6S+3D, where the 3D are multiplications by d1,
d2/d1, and d2.

Can choose at least one of these constants to be small
or use curves where d1 = d2 is possible; then only 2M+
5S+2D for a doubling.
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Comparison with other doubling formulas
Assume curves are chosen with small coefficients.

System Cost of doubling
Projective 7M+4S; see HEHCC
Jacobian 4M+5S; see HEHCC
Lopez-Dahab 3M+5S; Lopez-Dahab
Edwards 2M+6S; new, complete
Lopez-Dahab a2 = 1 2M+5S; Kim-Kim
Edwards d1 = d2 2M+5S; new, complete

Explicit-Formulas Database
www.hyperelliptic.org/EFD

contains also formulas for characteristic 2; including some
speed-ups for non-Edwards coordinates, e.g. 2M + 4S +2D
for case considered by Kim-Kim.
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Differential addition I
Compute P + Q given P, Q, and Q− P .

Represent P = (x1, y1) by w(P ) = x1 + y1.

Have w(P ) = w(−P ) = w(P + (1, 1)) = w(−P + (1, 1)).

Can double in this representation:
Let (x4, y4) = (x2, y2) + (x2, y2). Then

w4 =
d1w

2
2 + d1w

4
2

d2
1 + d1w2

2 + d2w4
2

=
w2

2 + w4
2

d1 + w2
2 + (d2/d1)w4

2

If d2 = d1 then
w4 = 1 +

d1

d1 + w2
2 + w4

2

.

Projective version takes 1M+3S+2D (or 1M+3S+1D for
d2 = d1).
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Differential addition II
Let (x1, y1) = (x3, y3)− (x2, y2),
(x5, y5) = (x2, y2) + (x3, y3).

w1 + w5 =
d1w2w3(1 + w2)(1 + w3)

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

w1w5 =
d2
1(w2 + w3)

2

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

.

If d2 = d1 then
w1 + w5 = 1 +

d1

d1 + w2w3(1 + w2)(1 + w3)
,

w1w5 =
d1(w2 + w3)

2

d1 + w2w3(1 + w2)(1 + w3)
.

Some operations can be shared between differential
addition and doubling.
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Differential addition III
Mixed differential addition: w1 given as affine,
w2 = W2/Z2, w3 = W3/Z3 in projective.

general case d2 = d1

mixed diff addition 6M+1S+2D 5M+1S+1D
mixed diff addition+doubling 6M+4S+4D 5M+4S+2D
projective diff addition 8M+1S+2D 7M+1S+1D
projective diff addition+doubling 8M+4S+4D 7M+4S+2D

Note that the new diff addition formulas are complete.

Lopez and Dahab use 6M+5S for mixed dADD&DBL.

Stam uses 6M+1S for projective dADD; 4M+1S for
mixed dADD addition; and 1M+3S+1D for DBL.

Gaudry uses 5M+5S+1D for mixed dADD&DBL.
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Operation counts
These curves are the first binary curves to offer complete
addition laws. They are also surprisingly fast:

ADD on binary Edwards curves takes 21M+1S+4D,
mADD takes 13M+3S+3D.

For small D and d1 = d2 much better: ADD in 16M+1S.

Differential addition takes 8M+1S+2D; mixed version
takes 6M+1S+2D.

Differential addition+doubling (typical step in
Montgomery ladder) takes 8M+4S+2D; mixed version
takes 6M+4S+2D.

See our paper and the EFD for full details, speedups for
d1 = d2, how to choose small coefficients, affine formulas,
. . .
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Operation counts
These curves are the first binary curves to offer complete
addition laws. They are also surprisingly fast:

ADD on binary Edwards curves takes 21M+1S+4D,
mADD takes 13M+3S+3D.

For small D and d1 = d2 much better: ADD in 16M+1S.

Differential addition takes 8M+1S+2D; mixed version
takes 6M+1S+2D.

Differential addition+doubling (typical step in
Montgomery ladder) takes 8M+4S+2D; mixed version
takes 6M+4S+2D.

See our paper and the EFD for full details, speedups for
d1 = d2, how to choose small coefficients, affine formulas,
. . . (only updates, no patents, pending).
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Happy End!
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