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The p� 1 factorization method

2232792560 � 1 has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199, etc.

These divisors include

70 of the 168 primes � 103;

156 of the 1229 primes � 104;

296 of the 9592 primes � 105;

470 of the 78498 primes � 106;

etc.



An odd prime p

divides 2232792560 � 1

iff order of 2 in the

multiplicative group F�p
divides 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: 232792560

= lcmf1; 2; 3; 4; 5; : : : ; 20g
= 24 � 32 � 5 � 7 � 11 � 13 � 17 � 19.



Can compute 2232792560 � 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, �, �.
This computation: 1; 2 = 1 + 1;

22 = 2 � 2; 23 = 22 � 2; 26 = 23 � 23;

212 = 26�26; 213 = 212�2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560�1.



Given positive integer n,

can compute 2232792560 � 1 modn

using 41 operations in Z=n.

Notation: amod b = a� b ba=bc.
e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560�1 modn= 5626089344.

Easy extra computation (Euclid):

gcdf5626089344; ng = 991.



This p� 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p� 1 method finds

only 70 of the primes � 1000;

trial division finds all 168 primes.



Scale up to larger exponent

lcmf1; 2; 3; 4; 5; : : : ; 100g:

using 136 squarings mod n

find 2317 of the primes � 105.

Is a squaring mod n

faster than 17 trial divisions?

Or lcmf1; 2; 3; 4; 5; : : : ; 1000g:

using 1438 squarings mod n

find 180121 of the primes � 107.

Is a squaring mod n

faster than 125 trial divisions?



Plausible conjecture: if S is

exp
q�

1
2 + o(1)

�
logH log logH

then p�1 divides lcmf1; 2; : : : ; Sg
for H=S1+o(1) primes p � H.

Same if p� 1 is replaced by

order of 2 in F�p.

So uniform random prime p � H

divides 2lcmf1;2;:::;Sg � 1

with probability 1=S1+o(1).

(1:4 : : : + o(1))S squarings mod n

produce 2lcmf1;2;:::;Sg � 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.



Interlude: Addition on a clock

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of clock addition:
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Many equivalent formulations.

e.g. Clock addition represents

multiplication of norm-1 elements

of C = R[i]=(i2 + 1).

(x; y) 7! y + ix;

(4=5 + 3i=5)3

= �44=125 + 117i=125.



Addition on an Edwards curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



The p + 1 factorization method

(1982 Williams)

Define (X; Y ) 2 Q�Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer 5232792560X

is divisible by

82 of the primes � 103;

223 of the primes � 104;

455 of the primes � 105;

720 of the primes � 106;

etc.



Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F�p
are found by Clock(Fp).

If �1 is not a square mod p

and p + 1 divides 232792560

then 5232792560X mod p = 0.

Proof: Fp[i]=(i2 + 1) is a field

so (p + 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp)

so 232792560(3=5; 4=5) = (0; 1).



ECM, the elliptic-curve method

(1987 Lenstra)

Analogous method using the

elliptic curve y2 = x3 � 3x + 10

finds many new primes.

Analogous method using the

elliptic curve y2 = x3 � 3x + 11

finds many new primes.

Analogous method using the

elliptic curve y2 = x3 � 3x + 12

finds many new primes.

: : : As many curves as you want!



Good news: All primes � H

seem to be found after a

reasonable number of curves.

Plausible conjecture: if S is

exp
q�

1
2 + o(1)

�
logH log logH

then, for each prime p � H,

a uniform random curve mod p

has chance � 1=S1+o(1) to find p.

If a curve fails, try another.

Find p using, on average,

� S1+o(1) curves;

i.e., � S2+o(1) squarings.

Time subexponential in H.



Primality proofs

If 2n�1 = 1 in Z=n, and n� 1

has a prime divisor q >
p
n� 1

with 2(n�1)=q � 1 in (Z=n)�,

then n is prime. (1876 Lucas,

1914 Pocklington, 1927 Lehmer)

What if we don’t know

a big prime q dividing n� 1?

Replace multiplicative group by

random elliptic-curve group.

(1986 Goldwasser/Kilian;

point counting: 1985 Schoof)



Use complex-multiplication

curves; faster point counting.

(1988 Atkin; special: 1985 Bosma,

1986 Chudnovsky–Chudnovsky)

Conjectured time � (lgn)4+o(1)

for fastECPP (1990 Shallit) to

find certificate proving n prime.

Proven time � (lgn)3+o(1)

to verify certificate.

Newer methods prove primality

in proven time � (lgn)6+o(1)

(2002 Agrawal–Kayal–Saxena;

2005 Lenstra–Pomerance) but

fastECPP is conjecturally faster.



Public-key cryptography

(1976 Diffie–Hellman)

Standardize p = 2262 � 5081.

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
4a mod p

%%KKKKKKK

Bob’s
public key

4b mod p

yysssssss

fAlice;Bobg’s
shared secret

4ab mod p
=

fBob;Aliceg’s
shared secret

4ab mod p



Bad news: Attacker can find

a and b by “index calculus.”

To protect against this attack,

replace 2262 � 5081

with a much larger prime.

Much slower arithmetic.

Alternative (1985 Miller,

independently 1987 Koblitz):

Elliptic-curve cryptography!

Replace the multiplicative group

with an elliptic-curve group.

Somewhat slower arithmetic.



What is an elliptic curve?

Fix an odd prime p.

Fix a; b 2 Fp with 4a3 + 27b2 6= 0.

Well-known fact:

The points of the “elliptic curve”

E : y2 = x3 + ax + b over Fp

form a commutative group E(Fp).

“So the set of points is

f(x; y) 2 Fp � Fp :

y2 = x3 + ax + bg?”

Not exactly! The set is

f(x; y) 2 Fp � Fp :

y2 = x3 + ax + bg [ f1g.



To add (x1; y1); (x2; y2) 2 E(Fp):

Define x3 = �2 � x1 � x2

and y3 = �(x1 � x3)� y1

where � = (y2 � y1)=(x2 � x1).

Then (x3; y3) 2 E(Fp).

Geometric interpretation:

(x1; y1); (x2; y2); (x3;�y3) are

on the curve y2 = x3 + ax + b

and on a line;

(x3; y3); (x3;�y3) are

on a vertical line.

“So that’s the group law?

(x1; y1) + (x2; y2) = (x3; y3)?”



Not exactly! Definition of �

assumes that x2 6= x1.

To add (x1; y1); (x1; y1) 2 E(Fp):

Define x3 = �2 � x1 � x2

and y3 = �(x1 � x3)� y1

where � = (3x2
1 + a)=2y1.

Then (x3; y3) 2 E(Fp).

Geometric interpretation:

The curve’s tangent line at

(x1; y1) passes through (x3;�y3).

“So that’s the group law?

One special case for doubling?”



Not exactly! More exceptions:

e.g., y1 could be 0.

Six cases overall: 1+1 = 1;

1+ (x2; y2) = (x2; y2);

(x1; y1) +1 = (x1; y1);

(x1; y1) + (x1;�y1) = 1;

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a)=2y1;

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1).



E(Fp) is a commutative group:

Has neutral element 1, and �:

�1 = 1; �(x; y) = (x;�y).

Commutativity: P + Q = Q + P .

Associativity:

(P + Q) + R = P + (Q + R).

Straightforward but tedious:

use a computer-algebra system

to check each possible case.

Or relate each P + Q case

to “ideal-class product.”

Many other proofs,

but can’t escape case analysis.



Do we need six cases? No!

Can cover E � E

using three (open) addition laws.

(1985 H. Lange–Ruppert)

How about just one law

that covers E � E?

One complete addition law?

Bad news: “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

(1995 Bosma–Lenstra)



Edwards curves

Fix an odd prime p.

Fix non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.



“What if denominators are 0?”

Answer: They aren’t!

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

then dx1x2y1y2 can’t be �1.

Outline of proof:

If (dx1x2y1y2)2 = 1 then

curve equation implies

(x1 + dx1x2y1y2y1)2 =

dx2
1y

2
1(x2 + y2)2.

Conclude that d is a square.

But d is not a square! Q.E.D.



Fact: x2 + y2 = 1 + dx2y2

is birationally equivalent

to an elliptic curve E with

j(E) = 16(1+14d+d2)3=d(1�d)4.

The groups are isomorphic.

Can simplify and accelerate

elliptic-curve factorization,

elliptic-curve primality proving,

elliptic-curve cryptography

by switching to Edwards curves.

In factorization,

don’t mind denominators being 0,

so also allow square d.



What about Bosma–Lenstra?

Recall “Theorem 1.

The smallest cardinality of a

complete system of addition laws

on E equals two.”

“Complete” in the theorem

means “covers E(Fp)� E(Fp)”;

Fp is the algebraic closure of Fp.

The Edwards addition law has

exceptions defined over Fp, but

no exceptions defined over Fp.

Critical (but not sufficient!):

all points at 1 on curve are

singular and blow up irrationally.



Historical notes

on the addition law:

1761 Euler, 1866 Gauss:

d = �1 over field with 4
p�1.

“The lemniscatic elliptic curve.”

2007 Edwards: any 4th power d.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–T. Lange:

general d; proof of

completeness for non-square d;

new elliptic-curve speed records!



Faster adds using (Z=X;Z=Y ),

“inverted Edwards coordinates.”

Also built a computer-verified

“Explicit-Formulas Database.”

(2007 Bernstein–Lange)

First software implementation:

new speed records for ECM!

Also found better ECM curves:

smaller curves with large torsion.

(2008 B.–Birkner–L.–Peters)

Twists and isogenies bring same

speeds to more curves over Fp.

(2008 B.–Birkner–Joye–L.–Peters)



Current project (B.–L.):

for every elliptic curve E,

find complete addition law for E

with best possible speeds.

First step:

Found fast complete addition law

for “binary Edwards curves”

d1(x + y) + d2(x2 + y2)

= (x + x2)(y + y2).

If m � 3 then these cover all

ordinary elliptic curves over F2m .

(2008 B.–L.–Rezaeian Farashahi)



Last slide: Advertisement

ECC 2008: 12th Workshop on

Elliptic-Curve Cryptography.

22–24 September 2008,

Trianon Zalen, Utrecht

(on the Oudegracht!).

http://

www.hyperelliptic.org

/tanja/conf/ECC08/

Also ECC summer school:

15–19 September 2008,

Technische Universiteit

Eindhoven.


