
How fast are hash functions?

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

in cooperation with

IST–2002–507932 ECRYPT



Depends on the volume

of data being hashed.

For small data volumes

can often see big costs for

finalization, block padding, etc.

Depends on the CPU.

e.g. hashing 1000 bytes

with OpenSSL SHA–512:

118366 cycles on a Pentium 3,

16822 cycles on an Athlon 64.



Depends on the hash function.

What is the fastest function

(given a CPU and data volume)?



Depends on the hash function.

What is the fastest function

(given a CPU and data volume)?

“Surely a broken function.”



Depends on the hash function.

What is the fastest function

(given a CPU and data volume)?

“Surely a broken function.”

What is the fastest function

that hasn’t been broken?



Depends on the hash function.

What is the fastest function

(given a CPU and data volume)?

“Surely a broken function.”

What is the fastest function

that hasn’t been broken?

What is the fastest function

for which half the rounds

haven’t been broken?



Experience shows

that slower functions

attract much less interest.

The fastest functions

are the most tempting

cryptanalytic targets.

If they survive scrutiny

then they are favored by users.

e.g.: AES selected Rijndael;

eSTREAM SW selected HC-128,

Rabbit, Salsa20/12, Sosemanuk.



Does hash speed really matter?

Usually it doesn’t!

Most computers aren’t flooded

with cryptographic operations.

Can afford many more rounds.

Some computers are flooded,

but is hashing the real issue?



Does hash speed really matter?

Usually it doesn’t!

Most computers aren’t flooded

with cryptographic operations.

Can afford many more rounds.

Some computers are flooded,

but is hashing the real issue?

“Yes: I’m using HMAC-MD5

on every packet, including

denial-of-service forgeries.

I can’t afford HMAC-SHA-256!”

That’s an obsolete application.

We have faster non-hash MACs

that inspire more confidence.



Better example:

“This computer is busy

verifying public-key signatures.”

My favorite example:

Internet DNS security

(currently nonexistent)

would need DNS caches to

verify signatures on every packet.

These caches are centralized,

hard to split, and often

very heavily loaded.

Hashing, even for short packets,

can easily dominate the time

for signature verification!



Measuring what users will see

Look back at 1999.03 Bassham

“NIST’s Efficiency Testing for

Round1 AES Candidates.”

Remember CRYPTON?

Fastest cipher in NIST’s tables!

Fastest cipher in NIST’s graphs!

720 cycles key setup.

669 cycles encrypt.

NIST’s numbers for Rijndael:

6787 cycles key setup.

809 cycles encrypt.



Quite different figures in

1999 Schneier–Kelsey–Whiting–

Wagner–Hall–Ferguson

“AES performance comparisons.”

Faster CRYPTON encryption:

955 cycles key setup.

345 cycles encrypt.

But much faster Rijndael:

850 cycles key setup.

291 cycles encrypt.



Users who care about speed

will use the faster Rijndael

software, not the painfully slow

software that NIST tested.

So the painfully slow software

was discarded, and NIST’s tests

were disregarded.

1999.10 NIST: “CRYPTON

is : : : slower than either Rijndael

or Twofish on most platforms.”



1999 Schneier–Kelsey–Whiting–

Wagner–Hall–Ferguson:

“Performance is only important

in assembly language. : : :

Any application which has

speed as a requirement

will code the encryption algorithm

in assembly. : : : Optimized

assembly implementations of AES

will be available on the Internet.

If performance is critical,

it will be in assembly.”



I still see some speed papers

saying that a “fair comparison”

of algorithms means a comparison

of speeds of novice student

implementations in Java.

That’s “fair”? No. It’s idiotic.

Or dishonest: “We couldn’t

compete, so we rewrote the

competition to slow it down.”

Benchmarks, just like users,

should focus on the fastest

implementations available.

Designers with slow software

should try to speed it up.



The importance of automation

During the AES competition,

Biham and Knudsen proposed

a 2ˆ security margin.

NIST decided on (1 + ›)ˆ.

But NIST refused to consider

reduced-round Serpent etc.

“Changing the number of rounds

would impact the large amount

of performance analysis from

Rounds 1 and 2. All performance

data for the modified algorithm

would need to be either estimated

or performed again.”



2004: eSTREAM called for

stream-cipher submissions

implementing a particular API.

Received > 30 submissions

from 97 cryptographers.

De Cannière published software

to time the submissions.

Software has been run on

dozens of different CPUs.

Designers have seen results,

provided faster implementations

of the submissions.

Timings were easily updated.



2006, joint work with Lange:

eBATS (ECRYPT Benchmarking

of Asymmetric Systems).

DH; signatures; encryption.

New benchmarking software:

much more data collected,

improved portability, etc.

As in eSTREAM benchmarking,

anyone can submit new software

or improve existing software.

> 20 submissions so far,

providing > 100 pub-key systems.

All submissions are then

measured on many computers.



Today’s announcement: eBASH

(ECRYPT Benchmarking

of All Submitted Hashes).

Anyone can submit a new hash

function or a new implementation

of an old function. We’ll measure

all the software on many CPUs.

Benchmarking software has been

further improved: e.g., automatic

ABI stratification, separating

32-bit compilers from 64-bit

compilers on amd64 etc.

Suggestions? Talk to us!



What eBASH does

Currently we’re measuring

time to hash 0 bytes,

time to hash 1 byte,

time to hash 2 bytes, : : :

time to hash 8192 bytes.

Aligned input and output.

Typical for speed-oriented

applications but maybe we

should also measure unaligned.

Currently 1 core, 1 thread.

No hint of speedups from

massively parallel computation

of, e.g., tree-structured hashes.



Measurement machines run

Linux, BSD, Solaris, etc.

on a wide variety of CPUs.

Largest machine contributor:

NMI Build and Test Laboratory at

the University of Wisconsin.

We’re experimenting with ARMs

but haven’t included any yet.

Currently no 8-bit CPUs.

No FPGAs. No ASICs.

Will hardware benchmarking

be stuck forever in the dark ages?



For each hash function, currently

trying 796 combinations of

C compilers + compiler options.

Measurements of the function

use the compiler + option that

hashes 1536 bytes most efficiently.

“Have to write in C?”

No; can use C++ or asm.

Need other options? Tell us!



eBASH API examples

The eBASH software

has two files that measure

the OpenSSL SHA512 software.

hash/sha512/openssl/hash.c:

#include <openssl/sha.h>

void crypto_hash_sha512_openssl(

unsigned char *out,

const unsigned char *in,

unsigned long long inlen)

{

SHA512(in,inlen,out);

}



hash/sha512/openssl/hash.h:

#include <openssl/opensslv.h>

#define CRYPTO_hash_\

sha512_openssl_VERSION \

OPENSSL_VERSION_TEXT

#define CRYPTO_hash_\

sha512_openssl_BYTES \

64

Version is optional;

copied to database of timings.



Integrating Whirlpool:

hash/whirlpool/ref

has two files copied from

Whirlpool reference code;

hash.h defining BYTES as 64;

and an easy 19-line hash.c

built from the lower-level

functions in the reference code.

hash/whirlpool/checksum

(also optional) contains an

expected hash output.

Any compiled code that

fails to produce this output

is left out of the measurements.



Examples of easy graphs to draw

WARNING: These graphs

currently include only a few

hash-function implementations.

If you have a faster

implementation, sorry—it isn’t

in these graphs. Advertise it

by submitting it to eBASH!

We’ll easily update

benchmarks, graphs, etc.



MD5 cycles on orpheus,

x86 architecture, Pentium 3 672:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on fireball,

x86 arch, Pentium 4 f12:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on nmi-0056,

x86 arch, Xeon f41:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on thoth,

x86 arch, Athlon:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on katana,

x86 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on nmi-0104,

x86 arch, Pentium D f64:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on nmi-0020,

ia64 arch, Itanium II:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on gggg,

ppc32 arch, PowerPC G4 7410:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on nmi-0056,

amd64 arch, Xeon f41:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on nmi-0104,

amd64 arch, Pentium D f64:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on mace,

amd64 arch, Athlon 64 X2:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles/byte on orpheus,

x86 architecture, Pentium 3 672:

100 101 102 103 104
1

10

100



MD5 cycles/byte on fireball,

x86 arch, Pentium 4 f12:

100 101 102 103 104
1

10

100



MD5 cycles/byte on nmi-0056,

x86 arch, Xeon f41:

100 101 102 103 104
1

10

100



MD5 cycles/byte on thoth,

x86 arch, Athlon:

100 101 102 103 104
1

10

100



MD5 cycles/byte on katana,

x86 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



MD5 cycles/byte on nmi-0104,

x86 arch, Pentium D f64:

100 101 102 103 104
1

10

100



MD5 cycles/byte on nmi-0020,

ia64 arch, Itanium II:

100 101 102 103 104
1

10

100



MD5 cycles/byte on gggg,

ppc32 arch, PowerPC G4 7410:

100 101 102 103 104
1

10

100



MD5 cycles/byte on nmi-0056,

amd64 arch, Xeon f41:

100 101 102 103 104
1

10

100



MD5 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



MD5 cycles/byte on nmi-0104,

amd64 arch, Pentium D f64:

100 101 102 103 104
1

10

100



MD5 cycles/byte on mace,

amd64 arch, Athlon 64 X2:

100 101 102 103 104
1

10

100



SHA-512 cycles on orpheus,

x86 arch, Pentium 3 672:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



SHA-512 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



SHA-512 cycles/byte on orpheus,

x86 arch, Pentium 3 672:

100 101 102 103 104
1

10

100



SHA-512 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



MD4 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD5 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



SHA-1 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



SHA-256 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



SHA-512 cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



Whirlpool cycles on katana,

amd64 arch, Core 2 Duo:

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000



MD4 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



MD5 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



SHA-1 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



SHA-256 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



SHA-512 cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100



Whirlpool cycles/byte on katana,

amd64 arch, Core 2 Duo:

100 101 102 103 104
1

10

100


