
High-speed cryptography

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

y

x

OO

//



1. The Domain Name System

'& %$ ! "#Mail sender at snu.ac.kr

'& %$ ! "#Administrator at icisc.org

DNS packet:

“The mail server for

icisc.org

has IP address

211.202.2.8.”

OO

Now snu.ac.kr sends mail

to 211.202.2.8.



Is this system secure?

Many security holes

in DNS software:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

cr.yp.to/djbdns.html

But what about protocol holes?



Stealing mail by attacking DNS

'& %$ ! "#Mail sender at snu.ac.kr

'& %$ ! "#Attacker anywhere on network

DNS packet:

“The mail server for

icisc.org

has IP address

131.193.36.27.”

OO

Now snu.ac.kr sends mail

to 131.193.36.27.

Real icisc.org never sees it.

No warning to snu.ac.kr.



Are attacks really so easy?

Can attacker guess

where mail is being sent?

Can attacker guess

time when mail is being sent?

Can attacker guess

UDP port for DNS packet?

Can attacker guess

the random 16-bit ID

that the mail sender

puts into its DNS request?

For sniffing attackers, yes; but

attackers anywhere on network?



July 2007: Emergency security

update for BIND

to change ID generation.

Previous ID generator was

cryptanalyzed by Amit Klein:

“This is a weak version (since the

output is 16 bits, as opposed to

the traditional 1 bit) of the : : :

mutually clock controlled

(LFSR) generator : : : ”

Attacker legitimately receives

13 successive IDs from sender,

reconstructs stream-cipher state,

predicts sender’s subsequent IDs.



Add signatures to DNS?

Long IDs and strong generators

don’t stop sniffing attackers.

Obvious solution:

Public-key signatures in packets.

But many deployment obstacles:

many DNS implementations;

many different databases;

tiny packets, 512 bytes;

heavily loaded senders;

heavily loaded receivers.

Current Internet situation:

0% of DNS packets are signed.



Can change DNS-security protocol

to minimize effects on

implementations, databases.

But still need extremely small,

extremely fast signatures with

extremely fast verification.

For fastest verification:

state-of-the-art Rabin-Williams.

But that could be trouble

for signature time, space.

Let’s look at some alternatives.



2. Secure authenticators

Standardize a prime p = 1000003.

Sender rolls 10-sided die

to generate independent

uniform random secrets

r1 2 f0; 1; : : : ; 999999g,
r2 2 f0; 1; : : : ; 999999g,
: : :,

r5 2 f0; 1; : : : ; 999999g,
s1 2 f0; 1; : : : ; 999999g,
: : :,

s100 2 f0; 1; : : : ; 999999g.



Sender meets receiver in private

and tells receiver the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ;m100,

each mn having 5 components

mn;1;mn;2;mn;3;mn;4;mn;5
with mn;i 2 f0; 1; : : : ; 999999g.

Sender transmits 30-digit

mn;1;mn;2;mn;3;mn;4;mn;5
together with an authenticator

(mn;1r1 + ´ ´ ´+mn;5r5 mod p)

+ sn mod 1000000

and the message number n.



e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 ´ 314159 + 7 ´ 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.



Receiver checks authenticator.

Easy to prove upper bound

on success chance of forgery.

But the success chance

is unacceptably high!

“Provable weak security.”

Replace 6 digits, p = 1000003

with 128 bits, p = 2130 ` 5;

one 128-bit multiplication

for each 128-bit message chunk.

Then success chance of forgery

is small enough to be ignored.

“Provable strong security.”



Fewer multiplications

Provably secure authenticators

(m1r1 +m2r2 + ´ ´ ´) + sn: 1974

Gilbert/MacWilliams/Sloane.

Crypto 1999, Black/Halevi/

Krawczyk/Krovetz/Rogaway

(crediting Carter/Wegman):

Replace m1r1 +m2r2
with (m1 + r1)(m2 + r2),

replace m3r3 +m4r4
with (m3 + r3)(m4 + r4), etc.

Half as many multiplications!

Same speedup idea as

1968 Winograd matrix mult.



Fewer secret r’s

FOCS 1979, Wegman/Carter:

Another authentication function;

fewer secrets r1; r2; : : :.

1987 Karp/Rabin, 1981 Rabin:

Another authentication function;

extremely short secret r,

but expensive to generate.

1993 den Boer; independently

1994 Taylor; independently 1994

Johansson/Kabatianskii/Smeets:

Another authentication function;

extremely short secret r,

trivial to generate.



den Boer et al. authenticator:

m1r
5 +m2r

4 + ´ ´ ´+m5r + sn.

Oops, lost the 2ˆ speedup!

2007 Bernstein, using

1970 Winograd speedup idea:

Another authentication function;

extremely short secret r,

trivial to generate;

half as many multiplications.

cr.yp.to/papers.html#pema

(((r + m1)(r
2 + m2) + m3)

´ (r4 +m4) +m5)r + sn etc.



Lower-level speedups

Typically gain another

factor of 2 or more

from fast field arithmetic.

Many choices. Which prime?

Or non-prime finite field?

How to encode messages?

How to split integers?

How to build arithmetic

from CPU instructions?

With careful choices, can

compute secure authenticator

on common CPUs in just

a few cycles per message byte.



Should r be reused?

Secrets r; s1; s2; s3; : : :

(1979 Wegman/Carter):

minimum length but

each message accesses

two segments of array.

Secrets r1; s1; r2; s2; r3; s3; : : :

(2006 Lange):

each message accesses

only one segment of array.

If receiver enforces

non-reuse of nonces

then this structure

also stops “re-forgeries.”



3. Ciphers

2:: Sender generates

independent uniform random

secrets r1; s1; : : :.

Shares with receiver.

Computes authenticators.

2:+ 3:: Sender generates

uniform random secret

128-bit string k.

Shares with receiver.

Computes (r1; s1; : : :) =

(AESk(0);AESk(1);AESk(2); : : :),

in advance or upon demand.

Computes authenticators.



Advantage of this change:

Much shorter secret key;

much less expensive

to generate and share.

Disadvantage of this change:

Can’t prove security.

New r1; s1; : : : are not

independent uniform random.

Standard security conjecture:

(AESk(0);AESk(1);AESk(2); : : :)

is very hard to distinguish

from a uniform random string.

Conjecture seems reasonable.



Each message: Authentication

uses 32 bytes from AES.

2 blocks; – 300 CPU cycles.

Huge cost for short messages.

(Plus extra costs: key expansion;

protection against timing leaks;

more AES blocks if encrypting.)

Many faster alternatives.

See, e.g., my Salsa20 cipher

and other ciphers in 3rd round of

ECRYPT Stream Cipher Project.

Salsa20/8 generates 64 bytes

in 128 Core 2 cycles.



4. Diffie-Hellman functions

2:+ 3:: Alice generates k.

Alice shares k with Bob

through a secret authentic

communications channel.

Use k to authenticate

messages on other channels.

2:+ 3:+ 4:: Alice, Bob use

an authentic non-secret

communications channel

to agree on a secret k.

Use k to authenticate

messages on other channels.



1976 Diffie/Hellman:

Standardize q = 2262 ` 5081.

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
4a mod q

%%KKK
KKK

K

Bob’s
public key

4b mod q

yysss
sss

s

fAlice;Bobg’s
shared secret
4ab mod q

=
fBob;Aliceg’s
shared secret
4ab mod q

Compute hash k of 4ab mod q.



Bad news: Attacker can find

a and b by “index calculus.”

To protect against this attack,

replace 2262 ` 5081 with

a much larger prime.

Much slower arithmetic.

Alternative:

Elliptic-curve cryptography.

Replace
˘
1; 2; : : : ; 2262 ` 5082

¯
with a comparable-size

“safe elliptic-curve group.”

Somewhat slower arithmetic.



Recent ECC speed news

1. New DH speed records

using “Curve25519” curve:

958000 Pentium 4 cycles;

641000 Pentium M cycles.

(PKC 2006, Bernstein)

Same curve, 64-bit CPUs:

386000 Core 2 cycles;

307000 Opteron cycles.

(SPEED 2007, Gaudry/Thomé)

See eBATS (ECRYPT

Benchmarking of

Asymmetric Systems):

www.ecrypt.eu.org/ebats



2. Special hyperelliptic curves

should achieve better speeds.

See ECC 2006 Bernstein/Lange

survey “Elliptic vs. hyperelliptic.”

But need serious computation

to find secure special curves.

3. New curve shape

(2007 Edwards)

leads to new speed records

(Asiacrypt 2007 et al.,

Bernstein/Lange)

for elliptic-curve computations.

“Elliptic strikes back.”



What are Edwards curves?

cr.yp.to/newelliptic.html

Example: Define q = 2255 ` 19

and d = 1` 1=121666.

Then the Edwards curve

x2 + y2 = 1 + dx2y2 over Fq
is equivalent to Curve25519.

The Edwards addition law

(x1; y1) + (x2; y2) =„
x1y2 + x2y1

1 + dx1x2y1y2
;
y1y2 ` x1x2

1` dx1x2y1y2

«
works for all pairs

of points on this curve.

Denominators are never 0.



With coordinates (X : Y : Z)

representing Edwards (X=Z; Y=Z),

can add using 10M + 1S + 1D.

Check for special cases?

Not required, but saves time.

Can double using 3M + 4S.

Consistently fewer mults than,

e.g., Jacobian coordinates.

Fewer mults than Montgomery

for large scalars.

Implementation in progress.

Expect new speed records

for Curve25519 etc.



5. Public-key signature systems

Summary of costs for sender

to authenticate B blocks

in M messages to R receivers:

1 public-key generation;

R shared-secret generations;

M cipher invocations;

B multiplications.

Similar costs for receiver.

Alternative: Public-key signatures.

1 public-key generation;

S signature generations

for S unique messages;

M verifications for receivers.



State-of-the-art signatures

Standardize hash function H;

Q, order p, on Curve25519.

Signer has 32-byte secret key

n 2
˘
0; 1; : : : ; 2256 ` 1

¯
; 32-byte

public key, compressed K = nQ.

To verify (m; compressed R; t):

verify tQ = H(R;m)R +K.

To sign m: generate a secret s;

R = sQ; t = H(R;m)s+n mod p.

(first similar idea: 1985 ElGamal;

many generalizations, variations;

these choices: 2006 van Duin)



To verify a batch

t1Q` h1R1 = K1,

t2Q` h2R2 = K2,
...,

t100Q` h100R100 = K100:

Verify linear combination

(v1t1 + ´ ´ ´+ v100t100)Q

` v1h1R1 ` ´ ´ ´ ` v100h100R100

` v1K1 ` ´ ´ ´ ` v100K100 = 0

for random 128-bit v1; : : : ; v100.

(Eurocrypt 1994, Naccache et al.;

Eurocrypt 1998, Bellare et al.)



Use subtractive multi-scalar

multiplication algorithm:

if n1 – n2 – ´ ´ ´ then

n1P1 + n2P2 + n3P3 + ´ ´ ´ =
(n1 ` qn2)P1 + n2(qP1 + P2) +

n3P3 + ´ ´ ´ where q = bn1=n2c.
(Eurocrypt 1994, de Rooij,

credited to Bos and Coster;

see also tweaks by Wei Dai, 2007)

Only ı 25:2 curve adds/bit

to verify 100 signatures.

Can use Jacobian coordinates,

but Edwards is much faster!


