The EFD thing

Daniel J. Bernstein

Tanja Lange

University of Illinois at Chicago and djb@cr.yp.to

Technische Universiteit Eindhoven tanja@hyperelliptic.org

and Nigel for the title

Ever found too many coordinate systems?

Which elliptic curve coordinate system

is the fastest for addition, doubling, ...?

Ever found too many coordinate systems?

Which elliptic curve coordinate system

- is the fastest for addition, doubling, ...?
- is the slowest for addition, doubling,...?

Ever found too many coordinate systems?

Which elliptic curve coordinate system

- is the fastest for addition, doubling, ...?
- is the fastest for re-addition?
- is the fastest for unified group operations?
- needs the fewest registers?
- is the best for single-scalar multiplication?
- is the best for multi-scalar multiplication?
- is the best for batch verification of signatures?
- etc.

... and which formulas are the best for a given system?

Projective Coordinates

$$P=(X_1:Y_1:Z_1),\,Q=(X_2:Y_2:Z_2),\,P\oplus Q=(X_3:Y_3:Z_3)$$
 on $E:Y^2Z=X^3+a_4XZ^2+a_6Z^3;\,(x,y)\sim (X/Z,Y/Z)$

Addition: $P \neq \pm Q$

$$A = Y_2 Z_1 - Y_1 Z_2, B = X_2 Z_1 - X_1 Z_2, A = a_4 Z_1^2 + 3X_1^2, B = Y_1 Z_1,$$

$$C = A^2 Z_1 Z_2 - B^3 - 2B^2 X_1 Z_2$$

$$X_3 = BC, Z_3 = B^3 Z_1 Z_2$$

$$Y_3 = A(B^2 X_1 Z_2 - C) - B^3 Y_1 Z_2,$$

Doubling $P = Q \neq -P$

$$A = a_4 Z_1^2 + 3X_1^2, B = Y_1 Z_1,$$

$$C = X_1 Y_1 B, D = A^2 - 8C$$

$$X_3 = 2BD, Z_3 = 8B^3$$
.

$$Y_3 = A(4C - D) - 8Y_1^2 B^2$$

- No inversion is needed good for most implementations
- General ADD: 12M+2S
- **DBL:** 7M+5S
- Fast . . . but very different performance of ADD and DBL

Jacobian Coordinates

$$P=(X_1:Y_1:Z_1),\,Q=(X_2:Y_2:Z_2),\,P\oplus Q=(X_3:Y_3:Z_3)$$
 on $Y^2=X^3+a_4XZ^4+a_6Z^6$; $(x,y)\sim (X/Z^2,Y/Z^3)$

Addition: $P \neq \pm Q$

$$A = X_1 Z_2^2, B = X_2 Z_1^2, C = Y_1 Z_2^3, A = Y_1^2, B = Z_1^2$$

$$X_3 = 2(-E^3 - 2AE^2 + F^2)$$

$$Z_3 = E(Z_1 + Z_2)^2 - Z_1^2 - Z_2^2$$

$$Y_3 = 2(-CE^3 + F(AE^2 - X_3)),$$

Doubling $P = Q \neq -P$

$$A = Y_1^2, B = Z_1^2$$

$$D = Y_2 Z_1^3, E = B - A, F = D - C$$
 $C = 4X_1 A, D = 3X_1^2 + a_4 B^2$

$$X_3 = -2C + D^2$$

$$Z_3 = (Y_1 + Z_1)^2 - A - B$$

$$Y_3 = -8A^2 + D(C - X_3)$$
.

- General ADD: 11M+5S
- mixed ADD $(\mathcal{J} + \mathcal{A} = \mathcal{J})$: 8M+3S
- DBL: 3M+7S (one M by a_4); for $a_4 = -3$: 3M+5S

− p. 4

Chudnovsky Jacobian Coordinates

$$P=(X_1:Y_1:Z_1:Z_1^2:Z_1^3),\,Q=(X_2:Y_2:Z_2:Z_2^2:Z_2^3),\ P\oplus Q=(X_3:Y_3:Z_3:Z_3^2:Z_3^3) \text{ on } Y^2=X^3+a_4XZ^4+a_6Z^6;\ (x,y)\sim (X/Z^2,Y/Z^3)$$

Addition: $P \neq \pm Q$

$$A = X_1 Z_2^2, B = X_2 Z_1^2, C = Y_1 Z_2^3,$$

$$D = Y_2 Z_1^3, E = B - A, F = D - C$$

$$X_3 = 2(-E^3 - 2AE^2 + F^2)$$

$$Z_3 = E(Z_1 + Z_2)^2 - Z_1^2 - Z_2^2$$

$$Y_3 = 2(-CE^3 + F(AE^2 - X_3)),$$

$$Z_3^2, Z_3^3$$
,

Doubling $P = Q \neq -P$

$$A = Y_1^2,$$

$$C = 4X_1A, D = 3X_1^2 + a_4(Z_1^2)^2$$

$$X_3 = -2C + D^2$$

$$Z_3 = (Y_1 + Z_1)^2 - A - Z_1^2$$

$$Y_3 = -8A^2 + D(C - X_3)$$

$$Z_3^2, Z_3^3$$

- General ADD: 10M+4S
- mixed ADD $(\mathcal{J} + \mathcal{A} = \mathcal{J})$: 8M+3S
- DBL:3M+7S (one M by a_4)_{http://hyperelliptic.org/EFD}

...and with extra feature: SCA resistance...

Montgomery Form

Generalized to arbitrary multiples

$$[n]P = (X_n:Y_n:Z_n), [m]P = (X_m:Y_m:Z_m)$$
 with known difference $[m-n]P$ on $E_M:By^2=x^3+Ax^2+x$

Addition: $n \neq m$

$$X_{m+n} = Z_{m-n} ((X_m - Z_m)(X_n + Z_n) + (X_m + Z_m)(X_n - Z_n))^2$$

$$Z_{m+n} = X_{m-n} ((X_m - Z_m)(X_n + Z_n) - (X_m + Z_m)(X_n - Z_n))^2$$

Doubling: n = m

$$4X_n Z_n = (X_n + Z_n)^2 - (X_n - Z_n)^2,$$

$$X_{2n} = (X_n + Z_n)^2 (X_n - Z_n)^2,$$

$$Z_{2n} = 4X_n Z_n ((X_n - Z_n)^2 + ((A+2)/4)(4X_n Z_n)).$$

An addition takes 4M and 2S whereas a doubling needs only 3M and 2S. Order is divisible by 4.

– р. 7

Side-channel atomicity

- Chevallier-Mames, Ciet, Joye 2004
 Idea: build group operation from identical blocks.
- Each block consists of:

1 multiplication, 1 addition, 1 negation, 1 addition;

fill with cheap dummy additions and negations ADD $(A + \mathcal{J})$ needs 11 blocks DBL $(2\mathcal{J})$ needs 10 blocks

ADD_9	ADD_{10}	ADD_{11}	DBL_1	DBL_2	DBL_3	DBL_4	DBL_5	

- Requires that M and S are indistinguishable from their traces.
- No protection against fault attacks.

Unified Projective coordinates

- Brier, Joye 2002 Idea: unify how the slope is computed.
- improved in Brier, Déchène, and Joye 2004

$$\lambda = \frac{(x_1 + x_2)^2 - x_1 x_2 + a_4 + y_1 - y_2}{y_1 + y_2 + x_1 - x_2}$$

$$= \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & (x_1, y_1) \neq \pm (x_2, y_2) \\ \frac{3x_1^2 + a_4}{2y_1} & (x_1, y_1) = (x_2, y_2) \end{cases}$$

Multiply numerator & denominator by $x_1 - x_2$ to see this.

- Proposed formulae can be generalized to projective coordinates.
- Some special cases may occur, but with very low probability, e.g. $x_2 = y_1 + y_2 + x_1$. Alternative equation for this case.

Jacobi intersection and quartic

- Liardet and Smart CHES 2001: Jacobi intersection
- Billet and Joye AAECC 2003: Jacobi-Model

$$E_J: Y^2 = \epsilon X^4 - 2\delta X^2 Z^2 + Z^4.$$

$$X_{3} = X_{1}Z_{1}Y_{2} + Y_{1}X_{2}Z_{2}$$

$$Z_{3} = (Z_{1}Z_{2})^{2} - \epsilon(X_{1}X_{2})^{2}$$

$$Y_{3} = (Z_{3} + 2\epsilon(X_{1}X_{2})^{2})(Y_{1}Y_{2} - 2\delta X_{1}X_{2}Z_{1}Z_{2}) + 2\epsilon X_{1}X_{2}Z_{1}Z_{2}(X_{1}^{2}Z_{2}^{2} + Z_{1}^{2}X_{2}^{2}).$$

- Unified formulas need 10M+3S+D+2E
- **•** Can have ϵ or δ small
- ▶ Needs point of order 2; for $\epsilon = 1$ the group order is divisible by 4.

D. J. Bernstein & T. Lange

http://hyperelliptic.org/EFD

Hessian curves

$$E_H: X^3 + Y^3 + Z^3 = cXYZ.$$

Addition:
$$P \neq \pm Q$$
 Doubling $P = Q \neq -P$ $X_3 = X_2Y_1^2Z_2 - X_1Y_2^2Z_1$ $X_3 = Y_1(X_1^3 - Z_1^3)$ $Y_3 = X_1^2Y_2Z_2 - X_2^2Y_1Z_1$ $Y_3 = X_1(Z_1^3 - Y_1^3)$ $Z_3 = X_2Y_2Z_1^2 - X_1Y_1Z_2^2$ $Z_3 = Z_1(Y_1^3 - X_1^3)$

- Curves were first suggested for speed
- Joye and Quisquater suggested Hessian Curves for unified group operations using

$$[2](X_1:Y_1:Z_1)=(Z_1:X_1:Y_1)\oplus(Y_1:Z_1:X_1)$$

- Unified formulas need 12M.
- Needs point of order 3.

There is help!

Explicit-Formulas Database www.hyperelliptic.org/EFD

Explicit-Formulas Database

	System	Cost of doubling
_	Projective	5M+6S+1D; EFD
	Projective if $a_4 = -3$	7M+3S; EFD
	Hessian	6M+3S; see Joye/Quisquater '01
	Jacobi quartic	1M+9S+1D; see Billet/Joye '01
	Jacobian	1M+8S+1D; EFD
	Jacobian if $a_4 = -3$	3M+5S; see DJB '01
	Jacobi intersection	3M+4S; see Liardet/Smart '01
	Doche/Icart/Kohel	2M+5S+2D; see Doche/Icart/Kohel '06

- All formulas human readable and computer verifiable.
- Several speed-ups only in EFD!
- Correct formulas only in EFD!
- Will extend EFD to characteristic 2 soon.

Elliptic vs Hyperelliptic

More and more papers say: Genus-2 hyperelliptic curves are better than elliptic curves!

- Special families of genus-2 curves in characteristic 2 faster than ECC.
- Generalization of Montgomery in odd characteristic
 - Gaudry: Genus-2 Montgomery-style formulas for nP in large characteristic.
 - Bernstein ECC 2006 "New Diffie-Hellman speed record" (with HECC)
 - Gaudry, ECC 2007: "Important speed-up."
- Special base points for pairings.

Plan to include hyperelliptic curves in EFD.

But time has come ...

D. J. Bernstein & T. Lange

http://hyperelliptic.org/EFD

k field of odd characteristic.

$$x^2 + y^2 = 1 + dx^2y^2$$

is an elliptic curve for $d \neq 0, 1$.

$$P + Q = \left(\frac{x_P y_Q + y_P x_Q}{1 + dx_P x_Q y_P y_Q}, \frac{y_P y_Q - x_P x_Q}{1 - dx_P x_Q y_P y_Q}\right).$$

- ullet Neutral element is (0,1), this is an affine point!
- $-(x_P, y_P) = (-x_P, y_P).$

k field of odd characteristic.

$$x^2 + y^2 = 1 + dx^2y^2$$

is an elliptic curve for $d \neq 0, 1$.

$$P + Q = \left(\frac{x_P y_Q + y_P x_Q}{1 + dx_P x_Q y_P y_Q}, \frac{y_P y_Q - x_P x_Q}{1 - dx_P x_Q y_P y_Q}\right).$$

- ullet Neutral element is (0,1), this is an affine point!
- $-(x_P, y_P) = (-x_P, y_P).$

k field of odd characteristic.

$$x^2 + y^2 = 1 + dx^2y^2$$

is an elliptic curve for $d \neq 0, 1$.

$$P + Q = \left(\frac{x_P y_Q + y_P x_Q}{1 + dx_P x_Q y_P y_Q}, \frac{y_P y_Q - x_P x_Q}{1 - dx_P x_Q y_P y_Q}\right).$$

- ullet Neutral element is (0,1), this is an affine point!
- $-(x_P, y_P) = (-x_P, y_P).$

Unified group operations!

k field of odd characteristic.

$$x^2 + y^2 = 1 + dx^2y^2$$

is an elliptic curve for $d \neq 0, 1$.

$$P + Q = \left(\frac{x_{P}y_{Q} + y_{P}x_{Q}}{1 + dx_{P}x_{Q}y_{P}y_{Q}}, \frac{y_{P}y_{Q} - x_{P}x_{Q}}{1 - dx_{P}x_{Q}y_{P}y_{Q}}\right).$$

$$A = Z_{P} \cdot Z_{Q}; B = A^{2}; C = X_{P} \cdot X_{Q}; D = Y_{P} \cdot Y_{Q};$$

$$E = d \cdot C \cdot D; F = B - E; G = B + E;$$

$$X_{P+Q} = A \cdot F \cdot ((X_{P} + Y_{P}) \cdot (X_{Q} + Y_{Q}) - C - D);$$

$$Y_{P+Q} = A \cdot G \cdot (D - C); Z_{P+Q} = F \cdot G.$$

k field of odd characteristic.

$$x^2 + y^2 = 1 + dx^2y^2$$

is an elliptic curve for $d \neq 0, 1$.

$$P + Q = \left(\frac{x_{P}y_{Q} + y_{P}x_{Q}}{1 + dx_{P}x_{Q}y_{P}y_{Q}}, \frac{y_{P}y_{Q} - x_{P}x_{Q}}{1 - dx_{P}x_{Q}y_{P}y_{Q}}\right).$$

$$A = Z_{P} \cdot Z_{Q}; B = A^{2}; C = X_{P} \cdot X_{Q}; D = Y_{P} \cdot Y_{Q};$$

$$E = d \cdot C \cdot D; F = B - E; G = B + E;$$

$$X_{P+Q} = A \cdot F \cdot ((X_{P} + Y_{P}) \cdot (X_{Q} + Y_{Q}) - C - D);$$

$$Y_{P+Q} = A \cdot G \cdot (D - C); Z_{P+Q} = F \cdot G.$$

Needs 10M + 1S + 1D + 7A.

Fastest unified formulae

System	Cost of unified addition-or-doubling
Projective	11M+6S+1D; see Brier/Joye '03
Projective if $a_4 = -1$	13M+3S; see Brier/Joye '02
Jacobi intersection	13M+2S+1D; see Liardet/Smart '01
Jacobi quartic	10M+3S+1D; see Billet/Joye '01
Hessian	12M; see Joye/Quisquater '01
Edwards ($c = 1$)	10M+1S+1D

- Exactly the same formulae for doubling (no re-arrangement like in Hessian; no if-else)
- No exceptional cases if d is not a square. Formulae correct for all affine inputs (incl. (0, c), P + (-P)); formulae are complete!

Very fast doubling formulae

System	Cost of doubling
Projective	5M+6S+1D; EFD
Projective if $a_4 = -3$	7M+3S; EFD
Hessian	6M+3S; see Joye/Quisquater '01
Jacobi quartic	1M+9S+1D; see Billet/Joye '01
Jacobian	1M+8S+1D; EFD
Jacobian if $a_4 = -3$	3M+5S; see DJB '01
Jacobi intersection	3M+4S; see Liardet/Smart '01
Edwards ($c = 1$)	3M+4S;
Doche/Icart/Kohel	2M+5S+2D; see Doche/Icart/Kohel '06

Edwards fastest for general curves, no D.

Fastest addition formulae

	System	Cost of addition
-	Doche/Icart/Kohel	12M+5S+1D; see Doche/Icart/Kohel '06
	Jacobian	11M+5S; EFD
	Jacobi intersection	13M+2S+1D; see Liardet/Smart '01
	Projective	12M+2S; HECC
	Jacobi quartic	10M+3S+1D; see Billet/Joye '03
	Hessian	12M; see Joye/Quisquater '01
	Edwards ($c = 1$)	10M+1S+1D

- Faster than Jacobian-3 etc. for single-scalar multiplication, multi-scalar multiplication, etc.
- Complete addition formulas: code-size advantage and SCA resistance.
- More at Asiacrypt 2007.

