
Generic attacks

and index calculus

D. J. Bernstein

University of Illinois at Chicago



The discrete-logarithm problem

Define p = 1000003.

Easy to prove: p is prime.

Can we find an integer

n 2 f1; 2; 3; : : : ; p� 1g
such that 5n mod p = 262682?

Easy to prove: n 7! 5n mod p
permutes f1; 2; 3; : : : ; p� 1g.
So there exists an n
such that 5n mod p = 262682.

Could find n by brute force.

Is there a faster way?



Typical cryptanalytic application:

Imagine standard p = 1000003

in the Diffie-Hellman protocol.

User chooses secret key n,

publishes 5n mod p = 262682.

Can attacker quickly solve

the discrete-logarithm problem?

Given public key 5n mod p,
quickly find secret key n?

(Warning: This is one way

to attack the protocol.

Maybe there are better ways.)



Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don’t apply.

Use in evaluating

advantages of elliptic curves

compared to multiplication.

3. Tricky: Some techniques have

extra applications to some curves.

See Tanja Lange’s talk

on Weil descent etc.



Understanding brute force

Can compute successively

51 mod p = 5,

52 mod p = 25,

53 mod p = 125, : : : ,
58 mod p = 390625,

59 mod p = 953122, : : : ,
51000002 mod p = 1.

At some point we’ll find n
with 5n mod p = 262682.

Maximum cost of computation:

� p� 1 mults by 5 mod p;
� p� 1 nanoseconds on a CPU

that does 1 mult/nanosecond.



This is negligible work

for p � 220.

But users can

standardize a larger p,
making the attack slower.

Attack cost scales linearly:

� 250 mults for p � 250,

� 2100 mults for p � 2100, etc.

(Not exactly linearly:

cost of mults grows with p.
But this is a minor effect.)



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 726379;

compute 5r mod p = 515040;

compute 5r5n mod p as

(515040 � (5n mod p)) mod p;
compute discrete log;

subtract r mod p� 1; obtain n.



Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 26 e: one chip,

210 cores on the chip,

each 230 mults/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.

Example, 230 e: 224 chips,

so 234 cores,

so 264 mults/second,

so 289 mults/year.



Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets 5n1 mod p,
5n2 mod p, : : : , 5n100 mod p:
Can find all of n1; n2; : : : ; n100

with � p� 1 mults mod p.
Simplest approach: First build

a sorted table containing

5n1 mod p, : : : , 5n100 mod p.
Then check table for

51 mod p, 52 mod p, etc.



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?
Typically � (p� 1)=100 mults.



Can use random self-reduction

to turn a single target

into multiple targets.

Given 5n mod p:
Choose random r1; r2; : : : ; r100.

Compute 5r15n mod p,
5r25n mod p, etc.

Solve these 100 DL problems.

Typically � (p� 1)=100 mults

to find at least one

ri + n mod p� 1,

immediately revealing n.



Also spent some mults

to compute each 5ri mod p:
� lg p mults for each i.
Faster: Choose ri = ir1

with r1 � (p� 1)=100.

Compute 5r1 mod p;
5r15n mod p;
52r15n mod p;
53r15n mod p; etc.

Just 1 mult for each new i.
� 100 + lg p + (p� 1)=100 mults

to find n given 5n mod p.



Faster: Increase 100 to � pp.
Only � 2

pp mults

to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”

Example: p = 1000003,

5n mod p = 262682.

Compute 51024 mod p = 58588.

Then compute 1000 targets:

510245n mod p = 966849,

52�10245n mod p = 579277,

53�10245n mod p = 579062, : : : ,
51000�10245n mod p = 321705.



Build a sorted table of targets:

2573 = 5430�10245n mod p,
3371 = 5192�10245n mod p,
3593 = 5626�10245n mod p,
4960 = 5663�10245n mod p,
5218 = 5376�10245n mod p, : : : ,
999675 = 5344�10245n mod p.
Look up 51 mod p, 52 mod p,
53 mod p, etc. in this table.

5755 mod p = 966603; find

966603 = 5332�10245n mod p
in the table of targets;

so 755 = 332 �1024+n mod p�1;

deduce n = 660789.



Eliminating storage

Improved method: Define x0 = 1;

xi+1 = 5xi mod p if xi 2 3Z;

xi+1 = x2i mod p if xi 2 2 + 3Z;

xi+1 = 5nxi mod p otherwise.

Then xi = 5ain+bi mod p
where (a0; b0) = (0; 0) and

(ai+1; bi+1) = (ai; bi + 1), or

(ai+1; bi+1) = (2ai; 2bi), or

(ai+1; bi+1) = (ai + 1; bi).
Search for a collision in xi:
x1 = x2? x2 = x4? x3 = x6?

x4 = x8? x5 = x10? etc.

Deduce linear equation for n.



The xi’s enter a cycle,

typically within � pp steps.

Example: 1000003, 262682.

Modulo 1000003:

x1 = 5n = 262682.

x2 = 52n = 2626822 = 626121.

x3 = 52n+1 = 5�626121 = 130596.

x4 = 52n+2 = 5�130596 = 652980.

x5 = 52n+3 = 5�652980 = 264891.

x6 = 52n+4 = 5�264891 = 324452.

x7 = 54n+8 = 3244522 = 784500.

x8 = 54n+9 = 5�784500 = 922491.

etc.



x1785 = 5249847n+759123 = 555013.

x3570 = 5388795n+632781 = 555013.

(Cycle length is 357.)

Conclude that

249847n + 759123 �
388795n + 632781 (mod p� 1),

so n � 160788 (mod (p� 1)=6).

Only 6 possible n’s.

Try each of them.

Find that 5n mod p = 262682

for n = 160788 + 3(p� 1)=6, i.e.,

for n = 660789.



This is “Pollard’s rho method.”

Optimized: � pp mults.

Another method, similar speed:

“Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With 
 mults,

distributed across many cores,

have chance � 
2=p
of finding n from 5n mod p.
With 290 mults (a few years?),

have chance � 2180=p.
Negligible if, e.g., p � 2256.



Factors of the group order

Assume 5 has order ab.
Given x, a power of 5:

5a has order b, and

xa is a power of 5a.
Compute ` = log5a xa.
5b has order a, and

x=5` is a power of 5b.
Compute m = log5b(x=5`).
Then x = 5`+mb.



This “Pohlig-Hellman method”

converts an order-ab DL into

an order-a DL, an order-b DL,

and a few exponentiations.

e.g. p = 1000003, x = 262682:

p� 1 = 6b where b = 166667.

Compute log56(x6) = 160788.

Compute x=5160788 = 1000002.

Compute log5b 1000002 = 3.

Then x = 5160788+3b = 5660789.

Use rho: � pa +
p
b mults.

Better if ab factors further:

apply Pohlig-Hellman recursively.



All of the techniques so far

apply to elliptic curves.

An elliptic curve over Fq
has � q + 1 points

so can compute ECDL using

� pq elliptic-curve adds.

Need quite large q.
If largest prime divisor

of number of points

is much smaller than q
then Pohlig-Hellman method

computes ECDL more quickly.

Need larger q;
or change choice of curve.



Index calculus

Have generated many

group elements 5an+b mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations

in a different way.

Example for p = 1000003:

Can completely factor

�3=(p� 3) as �31=2656 in Q

so �31 � 2656 (mod p)
so log5(�1) + log5 3 �
6 log5 2 + 6 log5 5 (mod p� 1).



Can completely factor 62=(p+ 62)

as 21311=3151112191291

so log5 2 + log5 31 �
log5 3 + log5 5 + 2 log5 11 +

log5 19 + log5 29 (mod p� 1).

Try to completely factor

1=(p + 1), 2=(p + 2), etc.

Find factorization of a=(p + a)

as product of powers of �1;
2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31

for each of the following a’s:

�5100, �4675, �3128,

�403, �368, �147, �3,

62, 957, 2912, 3857, 6877.



Each complete factorization

produces a log equation.

Now have 12 linear equations

for log5 2; log5 3; : : : ; log5 31.

Free equations: log5 5 = 1,

log5(�1) = (p� 1)=2.

By linear algebra compute

log5 2; log5 3; : : : ; log5 31.

(If this hadn’t been enough,

could have searched more a’s.)

By similar technique obtain

discrete log of any target.



For p!1, index calculus

scales surprisingly well:

cost p� where �! 0.

Compare to rho: � p1=2.
Specifically: searching

a 2 �
1; 2; : : : ; y2

	
, with

lg y 2 O(
p

lg p lg lg p),
finds y complete factorizations

into primes � y,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)



Latest index-calculus variants

use the “number-field sieve”

and the “function-field sieve.”

To compute discrete logs in Fq:
lg cost 2
O((lg q)1=3(lg lg q)2=3).
For security:

q � 2256 to stop rho;

q � 22048 to stop NFS.

We don’t know any

index-calculus methods for ECDL!

: : : except for some curves.


