Generic attacks
and index calculus

D. J. Bernstein
University of lllinois at Chicago

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
n€{1,23,..., p— 1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3,...,p— 1}.
So there exists an n

such that 5 mod p = 262682.

Could find n by brute force.
Is there a faster way?

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod »,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply
to elliptic-curve DL problems.
Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.
Use in evaluating

advantages of elliptic curves
compared to multiplication.

3. Tricky: Some techniques have
extra applications to some curves.

See Tanja Lange's talk
on Weil descent etc.

Understanding brute force

Can compute successively

51 mod » = b,
52mocp:25,
53 mod » = 125, . ..,

53 mod » = 390625,
59 mod p = 953122, ...,

51000002 o 5y — 1.

At some point we'll find n
with 5™ mod » = 262682.

Maximum cost of computation:
< p—1 mults by 5 mod »p;

< p» — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

This Is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:
~ 250 250
~, 9100 ~ 2100 ¢

mults for » &

mults for p ~ etc.

(Not exactly linearly:
cost of mults grows with p.
But this is a minor effect.)

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:
choose random 7, say 726379;
compute 5" mod » = 515040;
compute 5"5™ mod p as
(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod p — 1; obtain n.

Computation can be parallelized.

One low-cost chip can run
many parallel searches.
Example, 26 € one chip,
210 cores on the chip,

each 23 mults/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 224 chips,
so 234 cores,

so 2°% mults/second,

so 287 mults/year.

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5™100 mod p:

Can find all of n1,no,..., 1100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™ mod p, ..., 5™100 mod »p.
Then check table for

51 mod D, 52 mod D, etc.

Interesting consequence 71
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence #2:
Solving at least one
out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?
Typically ~ (p — 1)/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:
Choose random 71,792,...,7100.
Compute 5"15™ mod »p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

Also spent some mults
to compute each 5" mod p:
~ lgp mults for each 1.

Faster: Choose r; = 171
with r1 ~ (p — 1)/100.
Compute 51 mod »;
5715™ mod p;

52715™ mod p:

53715” mod p; etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5 mod ».

Faster: Increase 100 to =~ ,/p.
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”

Example: » = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.
Then compute 1000 targets:
5102457 mod p = 966849,

52-10245n
53-10245?’2,

MOQ

MOQ

p = 579277,
p = 579062, ...,

51000-102457 6 » = 321705,

Build a sorted table of targets:
2573 = 5%30-102457m (154 D,
3371 = 5192102457 j0d p,
3593 = 5020-10245n 154 p,
4960 = 5003-10245n 64 p,
5218 = 5370-102457 10 (D, ...,
099675 = 5344-10245m mod p.

Look up 51 mod p, 5% mod p,
53 mod p, etc. in this table.

57> mod p = 966603; find
066603 = 5332102457 mod p

in the table of targets;

so /55 = 332-1024+n mod p — 1;
deduce n = 660789.

Eliminating storage

Improved method: Define zg = 1;
z;.1 = bz; mod p if z; € 3Z;
T;11 = azf mod p if ¢; € 2 + 3Z;
;11 = 5"z, mod p otherwise.

hen z; = 5%" 0% mod p
nere (ag, bg) = (0,0) and
ait1,bi41) = (@i, b; + 1), or
ait1,bit1) = (2a4, 2b;), or
ait1,b0i41) = (@i + 1, 6;),

Search for a collision in z;:

s -

N N N

T1 = To? To =T4? T3 = X"’
T4 = 23! T = T10! etc.
Deduce linear equation for n.

The z;'s enter a cycle,
typically within = /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.

T, = 52" = 2626822 = 626121.
3 = 52"l = 5.626121 = 130596.
z4 = 5272 = 5.130596 = 652980.
zs = 52713 = 5.652980 = 264891.
zs = 52T = 5.264891 = 324452
r7 = 5% T8 — 3244522 — 784500.
rg = 5% = 5.784500 = 922491.
etc.

L1785 = 5249847n——759123 — 555013

(Cycle length is 357.)

Conclude that

249384 7n + 759123 =

388795n + 632781 (mod p — 1),
so n = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5" mod » = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

This 1s "Pollard’s rho method.”
Optimized: ~ ,/p mults.
Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Qorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With ¢ mults,
distributed across many cores,
have chance = ¢?/p

of finding n from 5™ mod p.

With 220 mults (a few years?),
have chance ~ 2130 /p.

Negligible if, e.g., p ~s 2226

Factors of the group order
Assume 5 has order ab.

Given z, a power of 5:

5% has order b, and

Q

z? is a power of 5%,

Compute £ = logsa z°.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(a;/5£).

Then ¢ = 5¢tmo,

This "Pohlig-Hellman method”
converts an order-ab DL into

an order-a DL, an order-6 DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667.
Compute log6(z°) = 160788.
Compute z /50733 — 1000002.

Compute logg, 1000002 = 3.
Then z — 5160788436 _ 5660789

Use rho: ~ +/a + v/b mults.
Better if ab factors further:

apply Pohlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over Fy
has &~ ¢ + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor
of number of points

Is much smaller than ¢
then Pohlig-Hellman methoc

computes ECDL more quickly.
Need larger g;
or change choice of curve.

Index calculus

Have generated many

group elements 53”0 mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p —3) as —31/2°5% in Q
so —31 =2°5% (mod p)

so logs(—1) + logs 3 =

6logs 2+ 6logg 5 (mod p — 1).

Can completely factor 62/(p + 62)
as 21311 /3151112191291

so logs 2 4 logs 31 =

ogs 3 + logg 5 + 2 logg 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p +2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, —3,

62, 957, 2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logg b =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn't been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — o0, Index calculus

scales surprisingly well:
cost p¢ where ¢ — 0.

Compare to rho: & p1/2.

Specifically: searching
a €{1,2,...,y°}, with

gy € O(Vigplglgp),
finds y complete factorizations

Into primes < v,
and computes discrete logs.

(Assuming standard conjectures.
Have extensive evidence.)

| atest index-calculus variants
use the “number-field sieve”
and the “function-field sieve.”

To compute discrete logs in Fy:
lg cost €

O((lg9)*(Iglg 9)*3).

For security:
g~ 2296 {4 stop rho;
g ~ 22048 {5 stop NFS.

We don't know any
index-calculus methods for ECDL!

. except for some curves.

