Generic attacks and index calculus

D. J. BernsteinUniversity of Illinois at Chicago

The discrete-logarithm problem

Define p = 1000003.

Easy to prove: p is prime.

Can we find an integer

 $n \in \{1, 2, 3, \dots, p-1\}$

such that $5^n \mod p = 262682$?

Easy to prove: $n \mapsto 5^n \mod p$ permutes $\{1, 2, 3, \dots, p-1\}$. So there exists an n such that $5^n \mod p = 262682$.

Could find n by brute force. Is there a faster way?

Typical cryptanalytic application:

Imagine standard p=1000003 in the Diffie-Hellman protocol.

User chooses secret key n, publishes $5^n \mod p = 262682$.

Can attacker quickly solve the discrete-logarithm problem? Given public key $5^n \mod p$, quickly find secret key n?

(Warning: This is *one* way to attack the protocol.

Maybe there are better ways.)

Relations to ECC:

- 1. Some DL techniques also apply to elliptic-curve DL problems.

 Use in evaluating security of an elliptic curve.
- 2. Some techniques don't apply. Use in evaluating advantages of elliptic curves compared to multiplication.
- 3. Tricky: Some techniques have extra applications to some curves. See Tanja Lange's talk on Weil descent etc.

Understanding brute force

Can compute successively $5^1 \mod p = 5$, $5^2 \mod p = 25$, $5^3 \mod p = 125$, ..., $5^8 \mod p = 390625$, $5^9 \mod p = 953122$, ..., $5^{1000002} \mod p = 1$.

At some point we'll find n with $5^n \mod p = 262682$.

Maximum cost of computation:

 $\leq p-1$ mults by 5 mod p; $\leq p-1$ nanoseconds on a CPU that does 1 mult/nanosecond.

This is negligible work for $p \approx 2^{20}$.

But users can standardize a larger p, making the attack slower.

Attack cost scales linearly:

 $pprox 2^{50}$ mults for $ppprox 2^{50}$,

 $pprox 2^{100}$ mults for $ppprox 2^{100}$, etc.

(Not exactly linearly: cost of mults grows with p. But this is a minor effect.)

Computation has a good chance of finishing earlier.

Chance scales linearly:

1/2 chance of 1/2 cost;

1/10 chance of 1/10 cost; etc.

"So users should choose large n."

That's pointless. We can apply "random self-reduction": choose random r, say 726379; compute $5^r \mod p = 515040$; compute $5^r 5^n \mod p$ as $(515040 \cdot (5^n \mod p)) \mod p$; compute discrete \log ; subtract $r \mod p - 1$; obtain n.

Computation can be parallelized.

One low-cost chip can run many parallel searches. Example, $2^6 \in$: one chip, 2^{10} cores on the chip, each 2^{30} mults/second? Maybe; see SHARCS workshops for detailed cost analyses.

Attacker can run many parallel chips. Example, 2^{30} €: 2^{24} chips, so 2^{34} cores, so 2^{64} mults/second, so 2^{89} mults/year.

Multiple targets and giant steps

Computation can be applied to many targets at once.

Given 100 DL targets 5^{n_1} mod p, 5^{n_2} mod p, ..., $5^{n_{100}}$ mod p: Can find *all* of $n_1, n_2, \ldots, n_{100}$ with $\leq p-1$ mults mod p.

Simplest approach: First build a sorted table containing $5^{n_1} \mod p$, ..., $5^{n_{100}} \mod p$. Then check table for $5^1 \mod p$, $5^2 \mod p$, etc.

Interesting consequence #1: Solving all 100 DL problems isn't much harder than solving one DL problem.

Interesting consequence #2: Solving at least one out of 100 DL problems is much easier than solving one DL problem.

When did this computation find its $first \ n_i$? Typically pprox (p-1)/100 mults.

Can use random self-reduction to turn a single target into multiple targets.

Given $5^n \mod p$: Choose random $r_1, r_2, \ldots, r_{100}$. Compute $5^{r_1}5^n \mod p$, $5^{r_2}5^n \mod p$, etc.

Solve these 100 DL problems. Typically pprox (p-1)/100 mults to find at least one r_i+n mod p-1, immediately revealing n.

Also spent some mults to compute each 5^{r_i} mod p: $\approx \lg p$ mults for each i.

Faster: Choose $r_i=ir_1$ with $r_1pprox (p-1)/100$. Compute 5^{r_1} mod p; $5^{r_1}5^n$ mod p; $5^{2r_1}5^n$ mod p; $5^{3r_1}5^n$ mod p; etc. Just 1 mult for each new i.

 $pprox 100 + \lg p + (p-1)/100$ mults to find n given $5^n \mod p$.

Faster: Increase 100 to $\approx \sqrt{p}$. Only $\approx 2\sqrt{p}$ mults to solve one DL problem!

"Shanks baby-step-giant-step discrete-logarithm algorithm."

Example: p = 1000003, $5^n \mod p = 262682$.

Compute 5^{1024} mod p=58588. Then compute 1000 targets: $5^{1024}5^n$ mod p=966849, $5^{2\cdot 1024}5^n$ mod p=579277, $5^{3\cdot 1024}5^n$ mod p=579062, ..., $5^{1000\cdot 1024}5^n$ mod p=321705.

Build a sorted table of targets:

$$2573 = 5^{430 \cdot 1024} 5^n \mod p$$
,
 $3371 = 5^{192 \cdot 1024} 5^n \mod p$,
 $3593 = 5^{626 \cdot 1024} 5^n \mod p$,
 $4960 = 5^{663 \cdot 1024} 5^n \mod p$,
 $5218 = 5^{376 \cdot 1024} 5^n \mod p$, ...,
 $999675 = 5^{344 \cdot 1024} 5^n \mod p$.

Look up $5^1 \mod p$, $5^2 \mod p$, $5^3 \mod p$, etc. in this table.

 $5^{755} \mod p = 966603$; find $966603 = 5^{332 \cdot 1024} 5^n \mod p$ in the table of targets; so $755 = 332 \cdot 1024 + n \mod p - 1$; deduce n = 660789.

Eliminating storage

Improved method: Define $x_0 = 1$; $x_{i+1} = 5x_i \mod p$ if $x_i \in 3\mathbf{Z}$; $x_{i+1} = x_i^2 \mod p$ if $x_i \in 2+3\mathbf{Z}$; $x_{i+1} = 5^n x_i \mod p$ otherwise.

Then $x_i=5^{a_in+b_i} mod p$ where $(a_0,b_0)=(0,0)$ and $(a_{i+1},b_{i+1})=(a_i,b_i+1)$, or $(a_{i+1},b_{i+1})=(2a_i,2b_i)$, or $(a_{i+1},b_{i+1})=(a_i+1,b_i)$.

Search for a collision in x_i : $x_1=x_2$? $x_2=x_4$? $x_3=x_6$? $x_4=x_8$? $x_5=x_{10}$? etc. Deduce linear equation for n.

The x_i 's enter a cycle, typically within $\approx \sqrt{p}$ steps.

Example: 1000003, 262682.

Modulo 1000003:

$$egin{aligned} x_1 &= 5^n = 262682. \ x_2 &= 5^{2n} = 262682^2 = 626121. \ x_3 &= 5^{2n+1} = 5 \cdot 626121 = 130596. \ x_4 &= 5^{2n+2} = 5 \cdot 130596 = 652980. \ x_5 &= 5^{2n+3} = 5 \cdot 652980 = 264891. \ x_6 &= 5^{2n+4} = 5 \cdot 264891 = 324452. \ x_7 &= 5^{4n+8} = 324452^2 = 784500. \ x_8 &= 5^{4n+9} = 5 \cdot 784500 = 922491. \ \mathrm{etc.} \end{aligned}$$

$$egin{aligned} x_{1785} &= 5^{249847n + 759123} = 555013. \ x_{3570} &= 5^{388795n + 632781} = 555013. \end{aligned}$$

(Cycle length is 357.)

Conclude that

$$249847n + 759123 \equiv$$

$$388795n + 632781 \pmod{p-1}$$
,

so
$$n \equiv 160788 \pmod{(p-1)/6}$$
.

Only 6 possible n's.

Try each of them.

Find that $5^n \mod p = 262682$

for
$$n = 160788 + 3(p-1)/6$$
, i.e.,

for n = 660789.

This is "Pollard's rho method." Optimized: $\approx \sqrt{p}$ mults. Another method, similar speed: "Pollard's kangaroo method."

Can parallelize both methods. "van Oorschot/Wiener parallel DL using distinguished points."

Bottom line: With c mults, distributed across many cores, have chance $\approx c^2/p$ of finding n from 5^n mod p.

With 2^{90} mults (a few years?), have chance $\approx 2^{180}/p$. Negligible if, e.g., $p \approx 2^{256}$.

Factors of the group order

Assume 5 has order ab.

Given x, a power of 5:

 5^a has order b, and x^a is a power of 5^a . Compute $\ell = \log_{5^a} x^a$.

 5^b has order a, and $x/5^\ell$ is a power of 5^b . Compute $m = \log_{5^b}(x/5^\ell)$.

Then $x = 5^{\ell + mb}$.

This "Pohlig-Hellman method" converts an order-ab DL into an order-a DL, an order-b DL, and a few exponentiations.

e.g. p=1000003, x=262682: p-1=6b where b=166667. Compute $\log_{5^6}(x^6)=160788$. Compute $x/5^{160788}=1000002$. Compute $\log_{5^b}1000002=3$. Then $x=5^{160788+3b}=5^{660789}$.

Use rho: $\approx \sqrt{a} + \sqrt{b}$ mults. Better if ab factors further: apply Pohlig-Hellman recursively. All of the techniques so far apply to elliptic curves.

An elliptic curve over \mathbf{F}_q has $\approx q+1$ points so can compute ECDL using $\approx \sqrt{q}$ elliptic-curve adds. Need quite large q.

If largest prime divisor of number of points is much smaller than q then Pohlig-Hellman method computes ECDL more quickly. Need larger q; or change choice of curve.

Index calculus

Have generated many group elements 5^{an+b} mod p. Deduced equations for n from random collisions.

Index calculus obtains discrete-logarithm equations in a different way.

Example for p = 1000003: Can completely factor -3/(p-3) as $-3^1/2^65^6$ in \mathbf{Q} so $-3^1 \equiv 2^65^6 \pmod{p}$ so $\log_5(-1) + \log_5 3 \equiv 6\log_5 2 + 6\log_5 5 \pmod{p-1}$. Can completely factor 62/(p+62) as $2^131^1/3^15^111^219^129^1$ so $\log_5 2 + \log_5 31 \equiv \log_5 3 + \log_5 5 + 2\log_5 11 + \log_5 19 + \log_5 29 \pmod{p-1}$.

Try to completely factor 1/(p+1), 2/(p+2), etc. Find factorization of a/(p+a)as product of powers of -1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 for each of the following a's: -5100, -4675, -3128,-403, -368, -147, -3, 62, 957, 2912, 3857, 6877.

Each complete factorization produces a log equation.

Now have 12 linear equations for $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$. Free equations: $\log_5 5 = 1$, $\log_5 (-1) = (p-1)/2$.

By linear algebra compute $\log_5 2$, $\log_5 3$, . . . , $\log_5 31$.

(If this hadn't been enough, could have searched more a's.)

By similar technique obtain discrete log of any target.

For $p \to \infty$, index calculus scales surprisingly well: cost p^{ϵ} where $\epsilon \to 0$.

Compare to rho: $\approx p^{1/2}$.

Specifically: searching $a \in \{1, 2, ..., y^2\}$, with $\lg y \in O(\sqrt{\lg p \lg \lg p})$, finds y complete factorizations into primes $\leq y$, and computes discrete logs.

(Assuming standard conjectures. Have extensive evidence.)

Latest index-calculus variants use the "number-field sieve" and the "function-field sieve."

To compute discrete logs in \mathbf{F}_q : $\lg \cos t \in O((\lg q)^{1/3}(\lg \lg q)^{2/3}).$

For security:

 $q \approx 2^{256}$ to stop rho; $q \approx 2^{2048}$ to stop NFS.

We don't know any index-calculus methods for ECDL! ... except for some curves.