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The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
n€4{1,2,3,..., p— 1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3, ..., p—1}.
So there exists an n

such that 5™ mod p = 262682.

Could find n by brute force.
Is there a faster way?
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This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:

~ 2°0 mults for p = 2°9,

~ 2100 mults for p ~ 2190 etc.

(Not exactly linearly:

cost of mults grows with .
But this is a minor effect.)

Computation has a good chance
of finishing earlier.
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1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random r, say 726379;
compute 5" mod p = 515040;
compute 5"5™ mod p as

(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.
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That's pointless. We can apply
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Computation has a good chance
of finishing earlier.
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1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random 7, say 726379;
compute 5" mod p = 515040;
compute 5"5" mod p as

(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.

Computation can be parallel

One low-cost chip can run
many parallel searches.
Example, 2° €: one chip,
210 cores on the chip,

each 23 mults/second?
Maybe; see SHARCS workst

for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mults/second,

so 287 mults/year.
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taining

%100 mod p.
for

D, etc.

Interesting consequence #1:
Solving all 100 DL problems

Isn't much harder than
solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1)/100 mults.

Can use random s
to turn a single ta
into multiple targe

Given 5™ mod p:

Choose random 71
Compute 5"15" m
5725™ mod p, etc.

Solve these 100 D
Typically ~ (p — 1
to find at least on
r; + n modp — 1,
immediately revea



od p,

100

ild

Interesting consequence #1:
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1) /100 mults.

Can use random self-reducti
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7
Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problem
Typically ~ (p — 1)/100 mu
to find at least one

r, +n modp—1,
immediately revealing n.



Interesting consequence #£1:
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1)/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:
Choose random 71,72, ..., 7T100.
Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.



ng consequence #1:

d
C

| 100 DL problems

n harder than

ne DL problem.

ng consequence #2:

at least one
00 DL problems
easier than

one DL problem.

d this computation

irst n;?

/

~ (p — 1)/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7100-

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r, +n modp—1,
immediately revealing n.

Also spe
to comp

~lgo

Faster: |
with 71
Comput
715" m
527157
537157
Just 1 n

~ 100 -+
to find 7



uence #1:
_ problems
than
oblem.

uence #2:
e

blems

n

yblem.

1putation

/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ..., 7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

Also spent some n
to compute each !
~ lg p mults for e:

Faster: Choose r;
with 71 & (p — 1)}
Compute 51 mod
5715™ mod p:
52715 moq D;

53715 moq D; etc

Just 1 mult for ea

~ 100 + lgp + (p
to find n given 5"



Its.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r, +n modp—1,
immediately revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715" mod p; etc.

Just 1 mult for each new 1.

~ 100 + Igp + (p — 1)/100
to find n given 5™ mod p.



Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ..., 7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg » mults for each 1.

Faster: Choose r; = 171
with 71 &~ (p — 1)/100.
Compute 5"1 mod p;
5715™ mod p:

52T15™ moq D;

53715” mod p: etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.



random self-reduction
) single target
tiple targets.

"' mod p:

random r1,72,...,7T100-

e 5"15™ mod »p,
od p, etc.

ese 100 DL problems.
/ =~ (p— 1)/100 mults
it least one

od p — 1,

tely revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715” mod p; etc.

Just 1 mult for each new 12.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster:
Only ~ |
to solve

“Shanks
discrete-

Example
5™ mod

Comput

Then co
51024572,

52-102451
53-102451
51000-102



elf-reduction

rget

ts.

T2, ..., T100-
od p,

L problems.
/100 mults
e

ling n.

Also spent some mults
to compute each 5"t mod p:
~ |lg » mults for each 1.

Faster: Choose r; = 171
with r1 &~ (p — 1)/100.
Compute 51 mod p;
5715™ mod p:

52T15™ moq D;

53715” mod p: etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster: Increase 1
Only ~ 2,/p mult:
to solve one DL pi

“Shanks baby-ster
discrete-logarithm

Example: p = 10C
5™ mod p = 2626¢

Compute 51024 m¢

Then compute 10(

5102457 mod p =

52-10245n

53-10245n mod p =
51000-10245n

mod p =

mod



on

100-

Its

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715” mod p; etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster: Increase 100 to ~ ,,
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-ste
discrete-logarithm algorithm

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod p = 58!
Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062,
51000-102457 mod p = 32170



Also spent some mults Faster: Increase 100 to =~ ,/p.

to compute each 5" mod p: Only ~ 2,/p mults

~ |lg » mults for each 1. to solve one DL problem!
Faster: Choose r; = 171 “Shanks baby-step-giant-step
with r1 &~ (p — 1)/100. discrete-logarithm algorithm.”

1 -
Compute 5"1 mod p; Example: » = 1000003,

r1EN .
52 5" mod p; 5™ mod p = 262682.
54715™ mod p;
53715” mod p; etc. Compute 51924 mod p = 58588.
Just 1 mult for each new 7. Then compute 1000 targets:

5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062, .. .,
51000-102457 mod p = 321705.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.




nt some mults
ute each 5" mod p:
\wults for each 1.

Choose r; = 171
~ (p —1)/100.
= 51 mod p;

od p;

nod p;

nod p,; etc.
1ult for each new 2.

lgp+ (p — 1)/100 mults
» given 5™ mod .

Faster: Increase 100 to ~ ,/p.
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.
Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062, .. .,
51000:102457 6d p = 321705.

Build a
2573 =
3371 =
3593 =
4960 =
5218 =
999675 -

Look up
53 mod-

5755 mo
966603 -
In the tc
so (bbb =
deduce 1



nults

"t mod p:
ich 1.
=171
/100.

ch new 1.

— 1)/100 mults
mod p.

Faster: Increase 100 to =~ ,/p.
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: » = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 mod p = 321705.

Build a sorted tab
2573 — 5430-102451
3371 — 5192-102451
3503 — 5626-102451
4960 — 5663-102451
5218 — 5376-102451
999675 = 5344102

Look up 5! mod p
53 mod », etc. in

579 mod p = 966
066603 = 5332102
in the table of tar;
so 755 = 332102
deduce n = 6607¢



mults

Faster: Increase 100 to ~ /p.

Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 1y 4 — 321705.

Build a sorted table of targe
2573 = 5%30-10245n 1450 D,
3371 = 5192102457 od p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5370102457 16 p, .
099675 = 5344102457 1154 ¢

Look up 51 mod p, 52 mod :
53 mod p, etc. in this table.

57> mod p = 966603; find
066603 = 5332102457 g 4
in the table of targets;

so 755 = 3321024 +n moa
deduce n = 660789.



Faster: Increase 100 to =~ ,/p.

Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: » = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 mod p = 321705.

Build a sorted table of targets:
2573 = 5430-102457 g p,
3371 = 5192102457 g p,
3593 = 5020:102457 6 d p,
4960 = 5503102457 g p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

57> mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 = 332-1024+n mod »—1;
deduce n = 6607389.



Increase 100 to ~ /p.

2,/p mults
one DL problem!

baby-step-giant-step
logarithm algorithm.”

: p = 1000003,
v = 262632.

> 51024 m6d p = 58588.

mpute 1000 targets:
mod p = 966849,
* mod p = 579277,

" mod » = 579062, ...,

45" mod p = 321705.

Build a sorted table of targets:
2573 = 5%30-10245n 150 D,
3371 = 5192102457 od p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5376-10245n mod p, ..
099675 = 5344102457 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

5793 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 =332-1024+n mod p—1;

deduce n = 660789.

Eliminat

Improve

Ti+1

Search f
Il — T2
T4 — T8
Deduce



00 to ~ \/5

5
-oblem!

-glant-step
algorithm.”

0003,
32.

d p = b85h88.

)0 targets:
066849,
- 579277,

- 579002, ...,

p = 32170b.

Build a sorted table of targets:
2573 = 5430-102457 od p,
3371 = 5192102457 g p,
3593 = 5020:102457 6 d p,
4960 = 5503102457 g p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

579 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 = 332-1024+n mod »—1;

deduce n = 660789.

Eliminating storag,

Improved method:

;.1 = bx; mod p

T;11 = a:f mod p

;.1 = 5"x; mod

Then z; = 5%nt0
W,

nere (ag, bg) = (

Search for a collisi
T1 = ITo! To = T4
T4 = Tg! Ty = T]
Deduce linear equ.
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33.

Build a sorted table of targets:
2573 = 5%30-10245n 150 D,
3371 = 5192102457 g p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5376-10245n mod p, ..
099675 = 5344102457 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

5793 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 =332-1024+n mod p—1;

deduce n = 660789.

Eliminating storage

Improved method: Define z

z,.1 = bx; mod p if ¢; € 34
T, 1 = mf mod p if ¢; € 2 4

;.1 = 5"z; mod p otherwi:

Then z; = 5%"1% mod
where (ag, bg) = (0,0) and
(@i+1,bi+1) = (@i, b5 + 1), «
(@i+1,b541) = (2a4, 2b;), or
(@341, b541) = (@i + 1, 6;).

Search for a collision in z;:
T1 = 22! To = T4! T3 = I,
T4 = 23! T = T10¢ etc.
Deduce linear equation for 7



Build a sorted table of targets: Eliminating storage
2573 = 5430-102457 g p,
3371 = 5192102457 od p,
3593 = 5020:102457 6 d p,
4960 = 5003-10245n 64 p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Improved method: Define zg = 1;

;.1 = bx; mod v if x; € 3Z;
T;1 1 = a:f mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

hen z; = 5%"1% mod p
nere (ag, bg) = (0,0) and
ai+1,bi11) = (a4, 0, + 1), or
ait1,bi11) = (2a4, 2b;), or
57°° mod p = 966603; find (@1, bi41) = (a; + 1, 6;).
066603 = 5332102457 mod p

in the table of targets;

so /b5 = 332-1024+n mod »—1;
deduce n = 6607309.

S -

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

AN N

Search for a collision in z;:
T1 =T2! To =Z4! T3 = Tg"’
T4 = 23! Tr = 10! etc.
Deduce linear equation for n.




sorted table of targets:
5430-10245?’&

5192-1024572,
5626-1024572,
5663-10245n

5376-1024572, mod », ...,
_ 5344-10245n

mod p,

mod p,
mod p,
mod p,

mod p.

5! mod D, 52 mod D,
p, etc. in this table.

d p = 966603; find

_ 5332102457 1104 1

ble of targets;

- 332-10244+n mod p—1;

1 = 660789.

Eliminating storage

Improved method: Define z¢g = 1;

;.1 = bx; mod p if ¢; € 3Z;
T 1 = mf mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

Then z; = 5%"1% mod
where (ag, bg) = (0,0) and
(@i+1,6i+1) = (@i b; +1), 0
(@i+1,6i41) = (2a4, 2b;), or
(@41, b541) = (@i + 1, 6;)

Search for a collision in z;:

T1 = 22! To = T4! T3 = Zg"’
T4 = 23! T = T10¢ etc.

Deduce linear equation for n.

The x;'

typically
Example
Modulo
z1 = 5"
Ty — 527
T3 = 527
Ty = 527
Ty — 527
Tg = 527
T7 = 541
Ty = 541
etc.



le of targets: Eliminating storage The z;'s enter a c

7 . . . -~

) moap, Improved method: Detine zg = 1; typically within ~

Q mod p, z;+1 = 5¢; mod p if z; € 3Z; Example: 100000:
mod p, 0 . |

" mod p, T mod " T "”Zhe 2F34 " Modulo 1000003:

' o _— Tii11 = T; mod p otherwise. 121:5”:262682

*5” mod . Then z; = 5%" 1% mod p zo = 52" = 26268
2 where (ag, bg) = (0,0) and z3 = 5"l = 5.6

’h' mtc))l 8 (@541, 6i41) = (a4, 6; + 1), or z4 = 5272 = 5.1

nis table. (a;11,6;11) = (2a;, 2b;), or Ty — 52n+3 — 5.6

003; find (a;11,6;11) = (a; +1,6;). T = 52n+4 — 5.2

lEn _ g4n+8 _

>" mod p Search for a collision in z;: 7= 54 0 = 324

Zets; g = b TY = 5.7

T1 =To! To =xT4! T3 = T

44+mn mod p—1; etc.

5 T4 = 23! Tr = 10! etc.

- Deduce linear equation for n.




Eliminating storage

Improved method: Define z¢g = 1;

;.1 = bx; mod p if ¢; € 3Z;
T 1 = mf mod p if z; € 2+ 3Z;
;11 = 5"z; mod p otherwise.

Then z; = 5%"1% mod

where (ag, bg) = (0,0) and
(@i+1,6i+1) = (@i b; +1), 0
(@41, 0541) = (2a4, 2b;), or

(@341, b541) = (@i + 1, 6;),

Search for a collision in z;:
T1 = 22! To = T4! T3 = Zg"’
T4 = 23! T = T10! etc.
Deduce linear equation for n.

The z;'s enter a cycle,
typically within = , /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.

T, = 52" = 2626822 = 626]
z3 = 52"+ = 5.626121 = 1
z4 = 5272 = 5.130596 = 6
zr = 52713 = 5.652080 = 2
s = 52774 = 5.264891 = 3
17 = 54718 — 3244522 — 7
rg = 5% = 5.784500 = 9
etc.




Eliminating storage

Improved method: Define zg = 1;

;.1 = bx; mod p if x; € 3Z;
T;1 1 = a:f mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

hen z; = 5%"1% mod p
nere (ag, bg) = (0,0) and
ait+1,bi11) = (a4, 0, + 1), or
ait1,bi11) = (2a4, 2b;), or
(@i+1,b541) = (@i + 1, 6;).

S -

AN N

Search for a collision in z;:
T1 =T2! To =Z4! T3 = Tg "’
T4 = 23! Tr = 10! etc.
Deduce linear equation for n.

The z;'s enter a cycle,
typically within ~ /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.

o = 52" = 2626822 = 626121.
z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652930.
s = 52713 = 5.652980 = 264891.
z6 = 52714 = 5.264891 = 324452.
z7 = 518 — 3244522 — 784500.
rg = 579 = 5.784500 = 922491
etc.




Ing storage

d method: Define zg = 1;

x; mod p if ¢; € 3Z;
r? mod p if z; € 2 + 3Z;
"z, mod p otherwise.

— 53710 mod D

10, b9) = (0,0) and
1) =(a;,b; +1), or
1) = (2a;4, 2b;), or
+1) = (a; + 1, 6;).

or a collision in z;:

? Lo =x4? T3 = x4
? 5 = x10? etc.
linear equation for n.

The z;'s enter a cycle,
typically within = , /p steps.

Example:

1000003, 262632.

Modulo 1000003:
1 = 5" = 262682.

Ty = 5%

3 = 52"l = 5.626121 = 130596.
2 — 5.130596 = 652980.

— 2626822 = 626121.

Ty = 52n—
Ty — 52N
z6 = 5°™
T7 = RA47-

rg = 579 = 5.784500 = 922491

etc.

-8 — 3244522 = 784500.

-3 — 5.652980 = 264891.
4 — 5.264891 = 324452.

L1785 =
L3570 —

(Cycle le

Conclud
24984 77r

3837957
SONn = .

Only 6
Try eact
Find tha
for n =
for n =



S

Detfine zg = 1;

ifx; € 3Z;
if ¢; € 24+ 3Z;
» otherwise.

. mod p
0,0) and
b, + 1), or
i, 20;), or
+1,6;).

on in x;:
7?3 =1x4"
o! etc.
ation for n.

The ;s enter a cycle,
typically within ~ /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.
> = 5°" = 2626822 = 626121.

z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652930.
zs = 52713 = 5.652080 = 264891.
z6 = 52714 = 5.264891 = 324452.

z7 = 5% 18 — 3244522 — 784500.

rg = 5419 = 5.784500 = 922491.

etc.

L1785 = 524984772,——
7057,
L3570 = 5388 Obn

(Cycle length is 3"

Conclude that

249847n + 75912:
388795n + 63278:
so n = 160788 (

Only 6 possible n'
Try each of them.
Find that 5™ mod
for n = 160788 +
for n = 6607809.



IN O

- 3Z;

)]

The z;'s enter a cycle,
typically within = , /p steps.

Example:

1000003, 262632.

Modulo 1000003:
1 = 5" = 262682.

Ty = 52"

3 = 52"l = 5.626121 = 130596.
"2 — 5.130596 = 652980.

— 2626822 = 626121.

-3 — 5.652980 = 264891.
4 — 5.264891 = 324452.

Ty = 52n—
Ty — 527
z6 = 5°™
T7 = i

rg = 579 = 5.784500 = 922491

etc.

-8 — 3244522 = 784500.

2498471+75912
Ti7gs — 5249847n+759123 _
) — 5388795n+632781 _

(ST (T

I 357

(Cycle length is 357.)

Conclude that

24984 7n + 759123 =
3887951 4+ 632781 (mod 1
so n = 160788 (mod (p —

Only 6 possible n's.

Try each of them.

Find that 5" mod » = 2626
for n = 160788 4+ 3(p — 1)/
for n = 660789.



The z;'s enter a cycle,
typically within ~ ,/p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.
> = 5°" = 2626822 = 626121.

z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652980.
zs = 52713 = 5.652080 = 264891.
z6 = 52714 = 5.264891 = 324452.

z7 = 5% 18 — 3244522 — 784500.

rg = 5419 = 5.784500 = 922491.

etc.

L1785 = 52498477?,——759123 — 555013.

L3570 = 5388795n——632781 — 555013.

(Cycle length is 357.)

Conclude that

24984 1n + 759123 =

388795n + 632781 (mod p — 1),
so n = 160788 (mod (p —1)/6).

Only 6 possible n's.
Try each of them.
Find that 5 mod » = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.



, enter a cycle,
within = ,/p steps.

: 1000003, 262682.

1000003
— 262682.
T — 2626822 = 626121.

v+l — 5.626121 = 130596.
»+2 — 5.130596 = 652980.
»+3 — 5.652080 = 264891.
VT4 — 5.264801 = 324452,

18— 3244522 = 784500.

19 — 5.784500 = 922491 .

T1785 = 5249847n——759123 — 555013.
0= 53887957?,——632781 — 555013,

Z357

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

so n = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.
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ycle,

\/P steps.
), 262682.

.

22 — 626121

26121 = 130596.
30596 = 652930.
12930 = 264391.
04891 = 324452.

4522 — 784500.

34500 = 922491.

L1785
L 357

_ 52498477?,——759123 — 555013.

0= 5388795?’2,——632781 — 555013.

(Cycle length is 357.)

Conclude that

249847n -

- 750123 =

38387957 -

so n = 160788 (mod (p —1)/6).

- 632781 (mod p — 1),

Only 6 possible n's.

Try each of them.

Find that

5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

This is “Pollard’s

Optimized:
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Another method,
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Can paralle
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distributed
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30596.
52980.
64391.
24452,

34500.

22491,

L1785 =

L3570 = 5388795n——632781 — 555013,

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

son = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

5249847n——759123 — 555013.

This 1s "Pollard’s rho metho
Optimized: ~ ,/p mults.
Another method, similar spe

"Pollard’s kangaroo method

Can parallelize both methoc

“van Qorschot/Wiener para

DL using distinguished poin

Bottom line: With ¢ mults,
distributed across many core
have chance = ¢ /p

of finding n from 5™ mod p.

With 229 mults (a few years
have chance = 2180 /p,

Negligible if, e.g., p ~s 2226,



L1785

L3570 = 5388795n——632781 — 555013.

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

so n = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5 mod » = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

_ 52498477?,——759123 — 555013.

This 1s “Pollard’s rho method.”
Optimized: ~ ,/p mults.
Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Qorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With ¢ mults,
distributed across many cores,
have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),
have chance ~ 2180 /p.

Negligible if, e.g., p ~s 2226



5249847n——759123 — 555013.
53887957?,——632781 — 555013.

ngth is 357.)

e that

4+ 759123 =

, + 632781 (mod p — 1),
160788 (mod (p —1)/6).

yossible n's.

' of them.

t 5™ mod p = 262682
160788 4+ 3(p — 1)/6, i.e.,
660789.

This i1s “Pollard’s rho method.”

Optimized:

Another method, similar speed:

A /P mults.

"Pollard’s kangaroo method.”

Can paralle
“van Qorsc

DL using distinguished points.”

1ze both methods.

not /Wiener parallel

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

Negligible if, e.g., p ~

have chance ~ 2180 /p.
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99123 _ 555013,
032781 _ 555013,

7.)

3 =
[ (mod p — 1),
mod (p — 1)/6).

S.

» = 262632
3(p—1)/6, i.e.,

This is “Pollard’s rho method.”

Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener
DL using distinguished

harallel

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

have chance ~ 2180 /p.

Negligible if, e.g., p ~

2256_

Factors of the gro

hoints.”

Assume 5 has ord:
Given z, a power

5% has order b, an

a

z% i1s a power of 5

Compute £ = logs

5% has order a, an
z /5% is a power of
Compute m = log

Then z = 5¢tmo,



55013.
55013.

) — 1),
1)/6).

32
O, I.e.

This i1s “Pollard’s rho method.”

Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Qorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With ¢ mults,
distributed across many cores,
have chance = ¢ /p

of finding n from 5™ mod p.

With 229 mults (a few years?),
have chance ~ 2180 /p.

Negligible if, e.g., p ~s 2226,

Factors of the group order

Assume 5 has order ab.
Given z, a power of 5:

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa z°.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,



This is “Pollard’s rho method.”
Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener
DL using distinguished

harallel

hoints.”

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

have chance ~ 2180 /p.

Negligible if, e.g., p ~

2256_

Factors of the group order

Assume 5 has order ab.

Given z, a power of b:

5% has order b, and

a

z% is a power of 5%.

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).

Then z = 5¢tmo,
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Factors of the group order

Assume 5 has order ab.

Given z, a power of b;

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,
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Factors of the group order

Assume 5 has order ab.

Given z, a power of 5:

5% has order b, and

a

z% is a power of 5%,

Compute £ = logga z°.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).

Then z = 5¢tmo,

This “Pohlig-Hellr
converts an order-
an order-a DL, an
and a few exponer

e.g. p = 1000003,
p — 1 = 6b where
Compute loges (2
Compute z /51007¢

Compute loggp 10(
Then z = 5160788

Use rho: = /a +
Better if ab factor
apply Pohlig-Helln
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Factors of the group order
Assume 5 has order ab.

Given z, a power of 5:

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,

This "Pohlig-Hellman methc
converts an order-ab DL int
an order-a DL, an order-6 D
and a few exponentiations.

e.g. p = 1000003, z = 262€
p — 1 = 6b where b = 1666¢€
Compute loggs (z°) = 16078
Compute z /5199788 = 1000(

Compute logg, 1000002 = 3
Then ¢ — 5160788436 _ 5660

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recurs



Factors of the group order This “Pohlig-Hellman method”

converts an order-ab DL into
an order-a DL, an order-6 DL,

Assume 5 has order ab.

Given z, a power of b: and a few exponentiations.

5% has order b, and e.g. p = 1000003, z = 262632:
z% is a power of 5%. p — 1 = 6b where b = 166667
Compute £ = logga z%. Compute log:e (z°) = 160788.

Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then £ — 5160788436 _ 5660789

5% has order a, and

z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).
Then  — 5Z—|—mb_ Use rho: =~ \/E+ \/5 mults.
Better if ab factors further:
apply Pohlig-Hellman recursively.




of the group order

5 has order ab.

a power of b:

rder b, and
yower of b2,

e { = logsa %

rder a, and
) power of 5°.

e M, = Iog5b(m/5£).

_ 5£+mb_

This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-b DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loggs (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recursively.
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This "Pohlig-Hellman method”
converts an order-ab DL into

an order-a DL, an order-b6 DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loges (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better if ab factors further:

apply Pohlig-Hellman recursively.

All of the techniqt
apply to elliptic cL

An elliptic curve o
has ~ g + 1 point:
so can compute E
~ ./q elliptic-curv
Need quite large ¢

If largest prime di
of number of poin
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This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-6 DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loggs (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than g

then Pohlig-Hellman methoc
computes ECDL more quick
Need larger g;

or change choice of curve.



This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-b6 DL,

and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667.
Compute loges (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better if ab factors further:

apply Pohlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method
computes ECDL more quickly.
Need larger g;

or change choice of curve.



bhlig-Hellman method”
an order-ab DL into
-a DL, an order-6 DL,

w exponentiations.

- 1000003, z = 262682
66 where b = 166667 .
e loges (z°) = 160788.
e /5100783 — 1000002.

e logp, 1000002 = 3.
_ 5160788+3b _ 5660789

~ \/a + v/b mults.

~ab factors further:

hlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than g

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.
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b= 166667.
) = 160788.
3 — 1000002.

)0002 = 3.
-3b _ 5660789

v/b mults.

s further:
1an recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ ¢ + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method
computes ECDL more quickly.
Need larger g;

or change choice of curve.

Index calculus

Have generated m
group elements 5%
Deduced equation
from random colli:

Index calculus obt

discrete-logarithm
in a different way.

Example for p = 1
Can completely fa
—3/(p — 3) as -3
so —31 =2050
so logs(—1) + log;
6logs 2 + 6logg 5
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All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.

Index calculus

Have generated many
b

group elements 5%™™° mod ;
Deduced equations for n

from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor
—3/(p — 3) as —31 /2056 in
so —31 =2°5° (mod p)
so logs(—1) + logs 3 =
6logs 2+ 6logs5 (mod p-




All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ q¢ + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.

Index calculus

Have generated many

group elements 54"*% mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =
6logs2 + 6logs5 (mod p—1).
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Index calculus

Have generated many

group elements

5740 mod p.

Deduced equations for n

from random collisions.

Index ca
discrete-

culus obtains
ogarithm equations

in a different way.

Example for » = 1000003:
Can completely factor

—3/(p —

3) as —31/2°5% in Q

so —31 =2°5° (mod p)
so logs(—1) + logs 3 =

0 |Og5 2

6logs 5 (mod p—1).

Can con
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Index calculus

Have generated many

group elements 54"

% mod p.

Deduced equations for n

from random collisions.

Index calculus obtains

discrete-logarithm equations

in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs 2 4 6logs 5

(mod p — 1).

Can completely fa
as 21311 /3151112
so logs 2 + logs 31
ogs 3 + logg b 4 2
ogs 19 4 logs 29

Try to completely
1/(p+1), 2/(p+
Find factorization
as product of pow
2,3,5,7,11,13, 17
for each of the fol
—5100, —4675, —
—403, —368, —14
62, 957, 2912, 38"
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Index calculus

Have generated many

group elements 54" mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/295% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs2 + 6logs5 (mod p —1).

Can completely factor 62/(x
as 21311 /3151112191291

so logs 2 + logs 31 =

ogs 3 + logs 5 + 2 logs 11 +
ogs 19 + logs 29 (mod p -

Try to completely factor
1/(p+1), 2/(p + 2), etc.
Find factorization of a/(p +
as product of powers of —1,
2,3,5,7,11,13,17, 19, 23, 2¢
for each of the following a's
—5100, —4675, —3128,
—403, —368, —147, —3,
62, 957, 2912, 3857, 6877.



Index calculus

Have generated many

group elements 54"+ mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs 2+ 6logs5 (mod p —1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29  (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.
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 for p = 1000003:
\pletely factor

-3) as —31/205°% in Q
= 2055 (mod p)

—1) + logs 3 =

6logs5 (mod p—1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logg 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p + 2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, —3,

62, 957, 2912, 3857, 6877.

Each co
produce:
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for loge
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53 =
(mod p — 1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29  (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.

Each complete fac
produces a log eqt

Now have 12 linea
for logs 2, logs 3, .
Free equations: lo

logs(—1) = (p — 1

By linear algebra ¢

(If this hadn’t bee
could have searche

By similar techniqg
discrete log of any



Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logg 31 =

ogs 3 + logs 5 + 2logg 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p + 2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, —3,

62, 957, 2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equatior
for logs 2, logs 3, .. ., logs 31
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a

By similar technique obtain
discrete log of any target.



Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29  (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, .. ., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, ..., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.



pletely factor 62/(p + 62)
/3151112191291

'+ logs 31 =

logs 5 4+ 2 logs 11 +

-logs 29 (mod p — 1).

ompletely factor

), 2/(p+2), etc.
torization of a/(p + a)
ct of powers of —1,
11,13,17, 19, 23, 29, 31
of the following a's:
—4675, —3128,

368, —147, —3,

2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, .. ., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,

could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p —
scales st
cost p¢

Compare

Specific:
a € {1,2
gy € O
finds y «
Into prin
and com

(Assumi
Have ex



ctor 62/(p + 62)
191291

E|0g5 11 -+

(mod p —1).
factor

2), etc.

of a/(p + a)
ers of —1,
19, 23,29, 31
lowing a's:
3128,
7, —3,

[, 638771.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index
scales surprisingly
cost p¢ where ¢ —

Compare to rho: -

Specifically: searc

a € {1,2 ..... yz}
gy € O(Vigplgl
finds y complete f

Into primes < v,
and computes disc

(Assuming standal
Have extensive evi



)+ 62)

), 31

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,

could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index calculus

scales surprisingly well:
cost p¢ where ¢ — 0.

Compare to rho: ~ p1/2.

Specifically: searching
a € {1,2 ..... yz}, with

gy € O(Vigprlglgp).
finds y complete factorizatic

Into primes < v,
and computes discrete logs.

(Assuming standard conject
Have extensive evidence.)



Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index calculus

scales surprisingly well:
cost p¢ where ¢ — 0.

Compare to rho: ~ pl/z.

Specifically: searching
a € {1,2 ..... yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

iInto primes < v,
and computes discrete logs.

(Assuming standard conjectures.
Have extensive evidence.)



mplete factorization
5 a log equation.

/e 12 linear equations
2,logs 3, ..., logs 31.
ations: logs 5 =1,

)= (r—-1)/2.

r algebra compute
ge 3, ..., logs 31.

1adn’'t been enough,
ve searched more a's.)

ar technique obtain
log of any target.

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ p1/2.

Specifically: searching
a € {1, 2, ... ,y2}, with

gy € O(Vigplglgp).
finds y complete factorizations

Into primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest Ir
use the
and the

To comy
lg cost €

O((lgq)

For secu

We don’

iIndex-ca
. exce



torization
1ation.

r equations

n enough,
>d more a's.)

ue obtain
target.

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ pl/z.

Specifically: searching
a € {1, 2, ... ,yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

iInto primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calcu
use the “number-f
and the “function-

To compute discre
lg cost €

O((lg9)"*(Iglg q)

For security:
q ~ 2296 4 stop r
q ~ 22048 14 stop

We don't know an
iIndex-calculus met
. except for son



1S

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: & p1/2.

Specifically: searching
a € {1, 2, ... ,y2}, with

gy € O(Vigplglgp).
finds y complete factorizations

iInto primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calculus variant
use the “number-field sieve”
and the “function-field sieve

To compute discrete logs In
lg cost €

O((lg9)'*(Iglg 9)°/3).

For security:
g ~ 2%°% to stop rho;
g ~ 22048 to stop NFS.

We don’'t know any
index-calculus methods for [
. except for some curves.



For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ pl/z.

Specifically: searching
a € {1, 2, ... ,yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

Into primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calculus variants
use the “number-field sieve”
and the “function-field sieve.”

To compute discrete logs in Fy:
lg cost €

O((lg9)"3(Iglg 9)*3).

For security:
g ~ 2%°% to stop rho;
g ~ 22048 to stop NFS.

We don't know any
index-calculus methods for ECDL!
. except for some curves.



