Generic attacks
and index calculus

D. J. Bernstein
University of lllinois at Chicago

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
n€4{1,2,3,..., p— 1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3, ..., p—1}.
So there exists an n

such that 5™ mod p = 262682.

Could find n by brute force.
Is there a faster way?

attacks

% calculus

rnstein
ty of lllinois at Chicago

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
ne€{1,2,3,..., p—1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3, ..., p—1}.
So there exists an n

such that 5" mod » = 262682.

Could find n by brute force.
Is there a faster way?

Typical «

Imagine
in the D

User chc
publishe

Can attz
the disci
Given pt
quickly 1

(Warnin

to attac
Maybe t

is at Chicago

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
n€4{1,2,3,..., p— 1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3,..., p—1}.
So there exists an n

such that 5™ mod p = 262682.

Could find n by brute force.
Is there a faster way?

Typical cryptanaly

Imagine standard
In the Diffie-Hellmr

User chooses secre
publishes 5 mod

Can attacker quicl
the discrete-logari
Given public key 5
quickly find secret

(Warning: This is
to attack the prot
Maybe there are b

g0

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
ne€{1,2,3,..., p—1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3,..., p—1}.
So there exists an n

such that 5" mod » = 262682.

Could find n by brute force.
Is there a faster way?

Typical cryptanalytic applica

Imagine standard p = 1000C
in the Difhie-Hellman protoc

User chooses secret key n,
publishes 5™ mod » = 2626¢

Can attacker quickly solve
the discrete-logarithm proble
Given public key 5™ mod p,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways

The discrete-logarithm problem

Define » = 1000003.
Easy to prove: p Is prime.

Can we find an integer
n€4{1,2,3,..., p— 1}
such that 5™ mod » = 2626827

Easy to prove: n — 5™ mod p
permutes {1,2,3,..., p—1}.
So there exists an n

such that 5™ mod p = 262682.

Could find nn by brute force.
Is there a faster way?

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod »,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

rete-logarithm problem

= 1000003.
prove: D IS prime.

find an integer
2,3,...,p— 1}
t 5 mod p = 2626827

prove: nn — 5" mod p

- exIsts an n
t 5" mod » = 262682.

d n by brute force.
a faster way?

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod p,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

Relation

1. Some
to ellipti
Use in e
security

2. Some
Use in e
advanta;
compare

3. Trick
extra ap
See Tan
on Well

ithm problem

)3.
S prime.

eger

~1}
p = 2626827

— 5™ mod p

.., p—1}
n

» = 2626382.

ute force.
ay’

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod »,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techr
to elliptic-curve D

Use in evaluating

security of an ellip

2. Some techniqu

Use in evaluating

advantages of ellig
compared to mult;

3. Tricky: Some t

extra ap

blications

See Tanj

on Well

a Lange's
descent ef

327

32.

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod p,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques alsc
to elliptic-curve DL problem
Use in evaluating

security of an elliptic curve.

2. Some techniques don't a
Use in evaluating
advantages of elliptic curves

compared to multiplication.

3. Tricky: Some techniques
extra applications to some ¢

See Tanja Lange's talk
on Welil descent etc.

Typical cryptanalytic application:

Imagine standard » = 1000003
in the Diffie-Hellman protocol.

User chooses secret key n,
publishes 5™ mod » = 262682.

Can attacker quickly solve

the discrete-logarithm problem?
Given public key 5™ mod »,
quickly find secret key n?

(Warning: This is one way
to attack the protocol.
Maybe there are better ways.)

Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.

Use in evaluating

advantages of el
compared to mu

Iptic curves
tiplication.

3. Tricky: Some techniques have

extra applications to some curves.

See Tanja Lange's talk

on Well descent etc.

cryptanalytic application:

standard » = 1000003
ifhie-Hellman protocol.

yoses secret key n,
s 5™ mod p = 262682.

icker quickly solve
ete-logarithm problem?
iblic key 5™ mod p,

Ind secret key n?

g: This Iis one way
k the protocol.
here are better ways.)

Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.

Use in evaluating

advantages of elliptic curves

compared to multiplication.

3. Tricky: Some techniques have

extra ap

blications to some curves.

See Tanj

a Lange's talk

on Well descent etc.

Underst:

Can con
5! mod-
52 moc |
53 moc ;
53 moc ;

59 moc ;
51000002

At some
with 5"

Maximu
<p-1
<p-1
that doe

tic application:

p = 1000003
an protocol.

t key n,
p = 262682.

<ly solve
thm problem?
" mod p,

key n?

one way
ocol.
etter ways.)

Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.

Use in evaluating

advantages of elliptic curves

compared to multiplication.

3. Tricky: Some techniques have

extra ap

hlications to some curves.

See Tanj

a Lange's talk

on Well descent etc.

Understanding bru

Can compute succ
5! mod » = 5,

52 mod p = 25,
53 moc p =125, .
58 mod p = 39062

59 mod p = 95312
51000002

mod p =

At some point we’
with 5 mod p =

Maximum cost of
< p — 1 mults by
< » — 1 nanosecol
that does 1 mult/

'tion:

ol.

m 7

Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.

Use in evaluating

advantages of el
compared to mu

Iptic curves
tiplication.

3. Tricky: Some techniques have

extra applications to some curves.

See Tanja Lange's talk

on Welil descent etc.

Understanding brute force

Can compute successively
5! mod » = 5,

52 mod p = 25,

53 moc p =125, ...,

58 mod p = 390625,

59 mod p = 953122, ...,
51000002

mod » = 1.

At some point we'll find n
with 5™ mod p = 262682.

Maximum cost of computat
< o —1 mults by 5 mod »;

< » — 1 nanoseconds on a (
that does 1 mult/nanosecon

Relations to ECC:

1. Some DL techniques also apply

to elliptic-curve DL problems.

Use in evaluating

security of an elliptic curve.

2. Some techniques don't apply.

Use in evaluating

advantages of elliptic curves

compared to multiplication.

3. Tricky: Some techniques have

extra ap

hlications to some curves.

See Tanj

a Lange's talk

on Well descent etc.

Understanding brute force

Can compute successively
5! mod » = 5,

52 mod p = 25,

53 moo p =125, ...,

5% mod p = 390625,

59 mod p = 953122, ...,
51000002

mod » = 1.

At some point we'll find n
with 5™ mod p = 262682.

Maximum cost of computation:
< p—1 mults by 5 mod »;

< p — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

s to ECC:

DL techniques also apply
c-curve DL problems.
valuating

of an elliptic curve.

' techniques don't apply.
valuating
ves of elliptic curves

d to multiplication.

y: Some techniques have
blications to some curves.

jJa Lange’s talk
descent etc.

Understanding brute force

Can compute successively
5! mod » = 5,

52 mod p = 25,

53 moc p =125, ...,

58 mod p = 390625,

59 mod p = 953122, ...,
51000002

mod » = 1.

At some point we'll find n
with 5™ mod p = 262682.

Maximum cost of computation:
< p—1 mults by 5 mod »;

< p — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

This is r
for p & |

But uset
standarc
making -

Attack ¢
~ 2°0 m
~ 2100

(Not ex:
cost of r
But this

liques also apply
L problems.

tic curve.

es don't apply.

ytIC curves
plication.

echniques have
to some curves.
talk

C.

Understanding brute force

Can compute successively
5! mod » = 5,

52 mod p = 25,

53 moo p =125, ...,

5% mod p = 390625,

59 mod p = 953122, ...,
51000002

mod » = 1.

At some point we'll find n
with 5™ mod p = 262682.

Maximum cost of computation:
< p—1 mults by 5 mod »;

< p — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

This is negligible \

for » &

220

But users can

standardize a large

making the attack

Attack cost scales

~ 2°0 mults for p

~ 2100 mults for 1

(Not exact
cost of mu

y lineal
tS grow

But this 1s a mino

Understanding brute force This is negligible work

. for p ~ 220,
apply Can compute successively
S. 5! mod » = 5, But users can
52 mod p = 25, standardize a larger p,
53 mod p = 125, ..., making the attack slower.

53 mod » = 390625,

oply. 9 Attack cost scales linearly:
57 mod p = 953122, ..., 50 50
1000002 ~ 2°Y mults for p ~ 2°7,
5 mod p = 1. 100 100
~ 2-7Y mults for p & 277, ¢
At some point we'll find n .
| (Not exactly linearly:
with 5™ mod p = 262682. .
have cost of mults grows with p.
urves. Maximum cost of computation: But this is a minor effect.)

< o —1 mults by 5 mod »;
< p — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

Understanding brute force

Can compute successively
5! mod » = 5,

52 mod p = 25,

53 moo p =125, ...,

5% mod p = 390625,

59 moo p = 953122, ...,
51000002

mod » = 1.

At some point we'll find n
with 5™ mod p = 262682.

Maximum cost of computation:
< p—1 mults by 5 mod »;

< p — 1 nanoseconds on a CPU
that does 1 mult/nanosecond.

This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:

~ 2°0 mults for p & 2°9,

~ 2100 mults for p ~ 2190 etc.

(Not exactly linearly:

cost of mults grows with .
But this is a minor effect.)

anding brute force

\pute successively

p =9,

p = 25,

p =125, ...,

p = 390625,

p = 953122, ...,
mod p = 1.

point we'll find n
mod p = 262682.

m cost of computation:
mults by 5 mod p;
nanoseconds on a CPU
s 1 mult/nanosecond.

This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:
250
2100

~ 2°0 mults for p &
~ 2100 mults for p ~

(Not exactly linearly:

cost of mults grows with p.
But this is a minor effect.)

etc.

Comput
of finish
Chance
1/2 cha
1/10 ch.

“So usel

That's
“randon
choose r
compute

compute
(515040
compute
subtract

te force

essively

5,
2, ...,
1.

Il find n
262632.

computation:
b mod p;

1ds on a CPU
nanosecond.

This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:

~ 2°0 mults for p & 2°9,

~ 2100 mults for p ~ 2190 etc.

(Not exactly linearly:

cost of mults grows with .
But this is a minor effect.)

Computation has

of finishing earlier.

Chance scales line

1/2

chance of 1/2

1/10 chance of 1/

“So

users should ¢

That's pointless.

“random self-redu

choose random 7,

com
com

(515040 - (5™ moc
compute discrete

bute 5" mod 1

ute 5"5™ mo

subtract r mod p -

on:

PU

This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:
250
2100

~ 2°0 mults for p &
~ 2100 mults for p ~

(Not exactly linearly:

cost of mults grows with p.
But this is a minor effect.)

etc.

Computation has a good ch
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; e

“So users should choose larg

That's pointless. We can ag
“random self-reduction”:

choose random 7, say 72637
compute 5" mod p = 51504
compute 5"5" mod p as

(515040 - (5™ mod p)) mod
compute discrete log;

subtract r mod » — 1; obtai

This is negligible work

for p ~ 220,

But users can
standardize a larger p,
making the attack slower.

Attack cost scales linearly:

~ 2°0 mults for p = 2°9,

~ 2100 mults for p ~ 2190 etc.

(Not exactly linearly:

cost of mults grows with .
But this is a minor effect.)

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random r, say 726379;
compute 5" mod p = 515040;
compute 5"5™ mod p as

(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.

\egligible work
220,

'S Can

ize a larger p,
he attack slower.

ost scales linearly:

ults for p ~
nults for p & 2100 " atc.

1Ct

nu

250

y linearly:
ts grows with p.

is a minor effect.)

Computation has a good chance

of finishing ear
Chance scales

ler.
inearly:

1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply

“random self-reduction”:

choose random 7, say 726379;
compute 5" mod p = 515040;
compute 5"5" mod p as

(515040 - (5™ mod p)) mod »p;
compute discrete log;

subtract r mod » — 1; obtain n.

Comput

One low
many pe
Example

210 ore

each 23¢
Maybe;

for detai

Attacket
many pe
Example
so 234 ¢
so 204 ny
so 289 n

vork

F D,
slower.

linearly:
~ 220

) R 2100, etc.

ly:
/s with p.
r effect.)

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random r, say 726379;
compute 5" mod p = 515040;
compute 5"5™ mod p as

(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.

Computation can

One low-cost chip

many parallel sear

Example, 2° €: ol

210

cores on the c

each 230 mults/se
Maybe; see SHAR

for detailed cost a

Attacker can run

many parallel chip
Example, 230 €: ¢
so 234 cores,

so 2°% mu
so 2% mu

ts/seco
ts/year.

{C.

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random 7, say 726379;
compute 5" mod p = 515040;
compute 5"5" mod p as

(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.

Computation can be parallel

One low-cost chip can run
many parallel searches.
Example, 2° €: one chip,
210 cores on the chip,

each 23 mults/second?
Maybe; see SHARCS workst

for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mults/second,

so 287 mults/year.

Computation has a good chance
of finishing earlier.

Chance scales linearly:
1/2 chance of 1/2 cost;
1/10 chance of 1/10 cost; etc.

“So users should choose large n.”

That's pointless. We can apply
“random self-reduction”:

choose random 7, say 726379;
compute 5" mod p = 515040;
compute 5"5™ mod p as
(515040 - (5™ mod p)) mod p;
compute discrete log;

subtract r mod » — 1; obtain n.

Computation can be parallelized.

One low-cost chip can run
many parallel searches.
Example, 2° €: one chip,
210 cores on the chip,

each 23 mults/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mults/second,

so 287 mults/year.

ation has a good chance
ing earlier.

scales linearly:
1ce of 1/2 cost;
ance of 1/10 cost; etc.

s should choose large n.”

ointless. We can apply
1 self-reduction”:

andom 7, say (26379;
' 5" mod » = 515040;
 5"5™ mod p as

- (5™ mod p)) mod p;

 discrete log;
r mod p — 1; obtain n.

Computation can be parallelized.

One low-cost chip can run
many parallel searches.
Example, 2° €: one chip,
210 cores on the chip,

each 23 mults/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mults/second,

so 2% mults/year.

Multiple

Comput
to many

Given 1(
5™2 moc
Can find
with <

Simplest
a sorted
5™1 moc
Then ch
5! mod

3 good chance

arly:
- cost:
10 cost: etc.

hoose large n.”

We can apply
ction” :

say 726379;

) = 515040;

d p as

'p)) mod p;
og;

— 1: obtain n.

Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 2° €: one chip,

210

cores on the chip,

each 23 mults/second?
Maybe; see SHARCS workshops
for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mu
so 2%° mu

ts/second,
ts/year.

Multiple targets al

Computation can
to many targets a

Given 100 DL targ
52 mod p, ..., 5

Can find all of n1
with < p — 1 mult

Simplest approach
a sorted table con
5" L modp, ..., 5
Then check table
5! mod D, 52 mod

dNCeE

tcC.

re n.

ply

N 7.

Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 2° €: one chip,

210

cores on the chip,

each 23 mults/second?
Maybe; see SHARCS workshops
for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mu
so 2% mu

ts/second,
ts/year.

Multiple targets and giant s

Computation can be applied
to many targets at once.

Given 100 DL targets 51 m
5™2 mod p, ..., 5™100 mod

Can find all of ny, o, ..., 7

with < p — 1 mults mod p.

Simplest approach: First bu
a sorted table containing
5™ mod p, ..., 5™100 mod 1
Then check table for

51 mod p, 5% mod p, etc.

Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 2° €: one chip,

210

cores on the chip,

each 23 mults/second?
Maybe; see SHARCS workshops
for detailed cost analyses.

Attacker can run

many parallel chips.
Example, 230 g. 924 chips,
so 234 cores,

so 2°% mu
so 2% mu

ts/second,
ts/year.

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5"100 mod »p:

Can find all of n1,no, ..., 100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™1 mod p, ..., 5™100 mod p.
Then check table for

51 mod p, 52 mod p, etc.

ation can be parallelized.

-cost chip can run
rallel searches.

. 20 €: one chip,
s on the chip,

" mults/second?

see SHARCS workshops
led cost analyses.

can run
rallel chips.

. 230 €. 224 chips,
ores,

1ults /second,

1ults/year.

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5"100 mod p:

Can find all of n1,no, ..., 1100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™ mod p, ..., 5™100 mod p.
Then check table for

51 mod p, 5% mod p, etc.

Interesti
Solving
Isn't mu
solving «

Interesti
Solving
out of 1
IS much

solving ¢

When d
find its
Typicall

be parallelized.

can run
ches.

e chip,

hip,

cond?

CS workshops
nalyses.

)24 chips,

nd,

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5"100 mod »p:

Can find all of n1,no, ..., 100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™1 mod p, ..., 5™100 mod p.
Then check table for

51 mod p, 52 mod p, etc.

Interesting conseq
Solving all 100 DL
iIsn't much harder

solving one DL pre

Interesting conseq
Solving at least or
out of 100 DL pro
IS much easler tha
solving one DL pre

When did this con
find its first n;?
Typically ~ (p — 1

1zed.

10PS

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5"100 mod p:

Can find all of n1,no, ..., 1100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™ mod p, ..., 5™100 mod p.
Then check table for

51 mod p, 52 mod p, etc.

Interesting consequence #1.
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence #2.
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?
Typically ~ (p — 1)/100 mu

Multiple targets and giant steps

Computation can be applied
to many targets at once.

Given 100 DL targets 5™1 mod p,
5™2 mod p, ..., 5"100 mod »p:

Can find all of n1,no, ..., 1100
with < p — 1 mults mod p.

Simplest approach: First build
a sorted table containing

5™1 mod p, ..., 5™100 mod p.
Then check table for

51 mod p, 52 mod p, etc.

Interesting consequence #1:
Solving all 100 DL problems

Isn't much harder than
solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?
Typically &~ (p — 1)/100 mults.

targets and giant steps

ation can be applied
targets at once.

)0 DL targets 5™1 mod p,
D, ..., 5100 mod p:

a// Of niy,no,...,7100
» — 1 mults mod p.

- approach: First build
table containing

| p, ..., 5™100 mod p.
eck table for

D, 52 mod D, etc.

Interesting consequence #1:
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1) /100 mults.

Can use
to turn :

iInto mul

Given 5’
Choose

Comput
H725™ m

Solve th
Typically
to find ¢
T; +N N

immedia

1d glant steps

be applied
E once.

ets 5™1 mod p,
%100 mod p:

,’nz,... ,n]_OO
s mod p.

. First build
taining

%100 mod p.
for

D, etc.

Interesting consequence #1:
Solving all 100 DL problems

Isn't much harder than
solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1)/100 mults.

Can use random s
to turn a single ta
into multiple targe

Given 5™ mod p:

Choose random 71
Compute 5"15" m
5725™ mod p, etc.

Solve these 100 D
Typically ~ (p — 1
to find at least on
r; + n modp — 1,
immediately revea

od p,

100

ild

Interesting consequence #1:
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1) /100 mults.

Can use random self-reducti
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7
Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problem
Typically ~ (p — 1)/100 mu
to find at least one

r, +n modp—1,
immediately revealing n.

Interesting consequence #£1:
Solving all 100 DL problems
isn't much harder than

solving one DL problem.

Interesting consequence 7£2:
Solving at least one

out of 100 DL problems

IS much easier than

solving one DL problem.

When did this computation
find its first n;?

Typically &~ (p — 1)/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:
Choose random 71,72, ..., 7T100.
Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

ng consequence #1:

d
C

| 100 DL problems

n harder than

ne DL problem.

ng consequence #2:

at least one
00 DL problems
easier than

one DL problem.

d this computation

irst n;?

/

~ (p — 1)/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7100-

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r, +n modp—1,
immediately revealing n.

Also spe
to comp

~lgo

Faster: |
with 71
Comput
715" m
527157
537157
Just 1 n

~ 100 -+
to find 7

uence #1:
_ problems
than
oblem.

uence #2:
e

blems

n

yblem.

1putation

/100 mults.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ..., 7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

Also spent some n
to compute each !
~ lg p mults for e:

Faster: Choose r;
with 71 & (p — 1)}
Compute 51 mod
5715™ mod p:
52715 moq D;

53715 moq D; etc

Just 1 mult for ea

~ 100 + lgp + (p
to find n given 5"

Its.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ...,7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r, +n modp—1,
immediately revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715" mod p; etc.

Just 1 mult for each new 1.

~ 100 + Igp + (p — 1)/100
to find n given 5™ mod p.

Can use random self-reduction
to turn a single target
into multiple targets.

Given 5™ mod p:

Choose random 71,72, ..., 7T100.

Compute 5"15" mod p,
5725™ mod p, etc.

Solve these 100 DL problems.
Typically ~ (p — 1)/100 mults
to find at least one

r; + n modp—1,
immediately revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg » mults for each 1.

Faster: Choose r; = 171
with 71 &~ (p — 1)/100.
Compute 5"1 mod p;
5715™ mod p:

52T15™ moq D;

53715” mod p: etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

random self-reduction
) single target
tiple targets.

"' mod p:

random r1,72,...,7T100-

e 5"15™ mod »p,
od p, etc.

ese 100 DL problems.
/ =~ (p— 1)/100 mults
it least one

od p — 1,

tely revealing n.

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715” mod p; etc.

Just 1 mult for each new 12.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster:
Only ~ |
to solve

“Shanks
discrete-

Example
5™ mod

Comput

Then co
51024572,

52-102451
53-102451
51000-102

elf-reduction

rget

ts.

T2, ..., T100-
od p,

L problems.
/100 mults
e

ling n.

Also spent some mults
to compute each 5"t mod p:
~ |lg » mults for each 1.

Faster: Choose r; = 171
with r1 &~ (p — 1)/100.
Compute 51 mod p;
5715™ mod p:

52T15™ moq D;

53715” mod p: etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster: Increase 1
Only ~ 2,/p mult:
to solve one DL pi

“Shanks baby-ster
discrete-logarithm

Example: p = 10C
5™ mod p = 2626¢

Compute 51024 m¢

Then compute 10(

5102457 mod p =

52-10245n

53-10245n mod p =
51000-10245n

mod p =

mod

on

100-

Its

Also spent some mults
to compute each 5"t mod p:
~ |lg p mults for each 1.

Faster: Choose r; = 171
with 71 & (p — 1)/100.
Compute 51 mod p;
5715™ mod p;

52T15™ moc D;

53715” mod p; etc.

Just 1 mult for each new 1.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

Faster: Increase 100 to ~ ,,
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-ste
discrete-logarithm algorithm

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod p = 58!
Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062,
51000-102457 mod p = 32170

Also spent some mults Faster: Increase 100 to =~ ,/p.

to compute each 5" mod p: Only ~ 2,/p mults

~ |lg » mults for each 1. to solve one DL problem!
Faster: Choose r; = 171 “Shanks baby-step-giant-step
with r1 &~ (p — 1)/100. discrete-logarithm algorithm.”

1 -
Compute 5"1 mod p; Example: » = 1000003,

r1EN .
52 5" mod p; 5™ mod p = 262682.
54715™ mod p;
53715” mod p; etc. Compute 51924 mod p = 58588.
Just 1 mult for each new 7. Then compute 1000 targets:

5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062, .. .,
51000-102457 mod p = 321705.

~ 100+ Igp + (p — 1)/100 mults
to find n given 5™ mod p.

nt some mults
ute each 5" mod p:
\wults for each 1.

Choose r; = 171
~ (p —1)/100.
= 51 mod p;

od p;

nod p;

nod p,; etc.
1ult for each new 2.

lgp+ (p — 1)/100 mults
» given 5™ mod .

Faster: Increase 100 to ~ ,/p.
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.
Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,
53102457 mod p = 579062, .. .,
51000:102457 6d p = 321705.

Build a
2573 =
3371 =
3593 =
4960 =
5218 =
999675 -

Look up
53 mod-

5755 mo
966603 -
In the tc
so (bbb =
deduce 1

nults

"t mod p:
ich 1.
=171
/100.

ch new 1.

— 1)/100 mults
mod p.

Faster: Increase 100 to =~ ,/p.
Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: » = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 mod p = 321705.

Build a sorted tab
2573 — 5430-102451
3371 — 5192-102451
3503 — 5626-102451
4960 — 5663-102451
5218 — 5376-102451
999675 = 5344102

Look up 5! mod p
53 mod », etc. in

579 mod p = 966
066603 = 5332102
in the table of tar;
so 755 = 332102
deduce n = 6607¢

mults

Faster: Increase 100 to ~ /p.

Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: p = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 1y 4 — 321705.

Build a sorted table of targe
2573 = 5%30-10245n 1450 D,
3371 = 5192102457 od p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5370102457 16 p, .
099675 = 5344102457 1154 ¢

Look up 51 mod p, 52 mod :
53 mod p, etc. in this table.

57> mod p = 966603; find
066603 = 5332102457 g 4
in the table of targets;

so 755 = 3321024 +n moa
deduce n = 660789.

Faster: Increase 100 to =~ ,/p.

Only ~ 2,/p mults
to solve one DL problem!

“Shanks baby-step-giant-step
discrete-logarithm algorithm.”

Example: » = 1000003,
5™ mod p = 262682.

Compute 51924 mod » = 58588.

Then compute 1000 targets:
5102457 mod p = 966849,
52102457 mod p = 579277,

53102457 mod p = 579062, .. .,

51000-102457 mod p = 321705.

Build a sorted table of targets:
2573 = 5430-102457 g p,
3371 = 5192102457 g p,
3593 = 5020:102457 6 d p,
4960 = 5503102457 g p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

57> mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 = 332-1024+n mod »—1;
deduce n = 6607389.

Increase 100 to ~ /p.

2,/p mults
one DL problem!

baby-step-giant-step
logarithm algorithm.”

: p = 1000003,
v = 262632.

> 51024 m6d p = 58588.

mpute 1000 targets:
mod p = 966849,
* mod p = 579277,

" mod » = 579062, ...,

45" mod p = 321705.

Build a sorted table of targets:
2573 = 5%30-10245n 150 D,
3371 = 5192102457 od p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5376-10245n mod p, ..
099675 = 5344102457 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

5793 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 =332-1024+n mod p—1;

deduce n = 660789.

Eliminat

Improve

Ti+1

Search f
Il — T2
T4 — T8
Deduce

00 to ~ \/5

5
-oblem!

-glant-step
algorithm.”

0003,
32.

d p = b85h88.

)0 targets:
066849,
- 579277,

- 579002, ...,

p = 32170b.

Build a sorted table of targets:
2573 = 5430-102457 od p,
3371 = 5192102457 g p,
3593 = 5020:102457 6 d p,
4960 = 5503102457 g p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

579 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 = 332-1024+n mod »—1;

deduce n = 660789.

Eliminating storag,

Improved method:

;.1 = bx; mod p

T;11 = a:f mod p

;.1 = 5"x; mod

Then z; = 5%nt0
W,

nere (ag, bg) = (

Search for a collisi
T1 = ITo! To = T4
T4 = Tg! Ty = T]
Deduce linear equ.

3]

33.

Build a sorted table of targets:
2573 = 5%30-10245n 150 D,
3371 = 5192102457 g p,
3593 = 5020:102457 o d p,
4960 = 5503102457 pd o,
5218 = 5376-10245n mod p, ..
099675 = 5344102457 64 p.

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

5793 mod p = 966603; find
066603 = 5332102457 mod p
in the table of targets;

so /b5 =332-1024+n mod p—1;

deduce n = 660789.

Eliminating storage

Improved method: Define z

z,.1 = bx; mod p if ¢; € 34
T, 1 = mf mod p if ¢; € 2 4

;.1 = 5"z; mod p otherwi:

Then z; = 5%"1% mod
where (ag, bg) = (0,0) and
(@i+1,bi+1) = (@i, b5 + 1), «
(@i+1,b541) = (2a4, 2b;), or
(@341, b541) = (@i + 1, 6;).

Search for a collision in z;:
T1 = 22! To = T4! T3 = I,
T4 = 23! T = T10¢ etc.
Deduce linear equation for 7

Build a sorted table of targets: Eliminating storage
2573 = 5430-102457 g p,
3371 = 5192102457 od p,
3593 = 5020:102457 6 d p,
4960 = 5003-10245n 64 p,
5218 = 5376-10245n mod p, ..
099675 = 534410245n 64 p.

Improved method: Define zg = 1;

;.1 = bx; mod v if x; € 3Z;
T;1 1 = a:f mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

hen z; = 5%"1% mod p
nere (ag, bg) = (0,0) and
ai+1,bi11) = (a4, 0, + 1), or
ait1,bi11) = (2a4, 2b;), or
57°° mod p = 966603; find (@1, bi41) = (a; + 1, 6;).
066603 = 5332102457 mod p

in the table of targets;

so /b5 = 332-1024+n mod »—1;
deduce n = 6607309.

S -

Look up 5! mod p, 52 mod p,
53 mod p, etc. in this table.

AN N

Search for a collision in z;:
T1 =T2! To =Z4! T3 = Tg"’
T4 = 23! Tr = 10! etc.
Deduce linear equation for n.

sorted table of targets:
5430-10245?’&

5192-1024572,
5626-1024572,
5663-10245n

5376-1024572, mod », ...,
_ 5344-10245n

mod p,

mod p,
mod p,
mod p,

mod p.

5! mod D, 52 mod D,
p, etc. in this table.

d p = 966603; find

_ 5332102457 1104 1

ble of targets;

- 332-10244+n mod p—1;

1 = 660789.

Eliminating storage

Improved method: Define z¢g = 1;

;.1 = bx; mod p if ¢; € 3Z;
T 1 = mf mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

Then z; = 5%"1% mod
where (ag, bg) = (0,0) and
(@i+1,6i+1) = (@i b; +1), 0
(@i+1,6i41) = (2a4, 2b;), or
(@41, b541) = (@i + 1, 6;)

Search for a collision in z;:

T1 = 22! To = T4! T3 = Zg"’
T4 = 23! T = T10¢ etc.

Deduce linear equation for n.

The x;'

typically
Example
Modulo
z1 = 5"
Ty — 527
T3 = 527
Ty = 527
Ty — 527
Tg = 527
T7 = 541
Ty = 541
etc.

le of targets: Eliminating storage The z;'s enter a c

7 . . . -~

) moap, Improved method: Detine zg = 1; typically within ~

Q mod p, z;+1 = 5¢; mod p if z; € 3Z; Example: 100000:
mod p, 0 . |

" mod p, T mod " T "”Zhe 2F34 " Modulo 1000003:

' o _— Tii11 = T; mod p otherwise. 121:5”:262682

*5” mod . Then z; = 5%" 1% mod p zo = 52" = 26268
2 where (ag, bg) = (0,0) and z3 = 5"l = 5.6

’h' mtc))l 8 (@541, 6i41) = (a4, 6; + 1), or z4 = 5272 = 5.1

nis table. (a;11,6;11) = (2a;, 2b;), or Ty — 52n+3 — 5.6

003; find (a;11,6;11) = (a; +1,6;). T = 52n+4 — 5.2

lEn _ g4n+8 _

>" mod p Search for a collision in z;: 7= 54 0 = 324

Zets; g = b TY = 5.7

T1 =To! To =xT4! T3 = T

44+mn mod p—1; etc.

5 T4 = 23! Tr = 10! etc.

- Deduce linear equation for n.

Eliminating storage

Improved method: Define z¢g = 1;

;.1 = bx; mod p if ¢; € 3Z;
T 1 = mf mod p if z; € 2+ 3Z;
;11 = 5"z; mod p otherwise.

Then z; = 5%"1% mod

where (ag, bg) = (0,0) and
(@i+1,6i+1) = (@i b; +1), 0
(@41, 0541) = (2a4, 2b;), or

(@341, b541) = (@i + 1, 6;),

Search for a collision in z;:
T1 = 22! To = T4! T3 = Zg"’
T4 = 23! T = T10! etc.
Deduce linear equation for n.

The z;'s enter a cycle,
typically within = , /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.

T, = 52" = 2626822 = 626]
z3 = 52"+ = 5.626121 = 1
z4 = 5272 = 5.130596 = 6
zr = 52713 = 5.652080 = 2
s = 52774 = 5.264891 = 3
17 = 54718 — 3244522 — 7
rg = 5% = 5.784500 = 9
etc.

Eliminating storage

Improved method: Define zg = 1;

;.1 = bx; mod p if x; € 3Z;
T;1 1 = a:f mod p if z; € 2+ 3Z;
;11 = 5"x; mod p otherwise.

hen z; = 5%"1% mod p
nere (ag, bg) = (0,0) and
ait+1,bi11) = (a4, 0, + 1), or
ait1,bi11) = (2a4, 2b;), or
(@i+1,b541) = (@i + 1, 6;).

S -

AN N

Search for a collision in z;:
T1 =T2! To =Z4! T3 = Tg "’
T4 = 23! Tr = 10! etc.
Deduce linear equation for n.

The z;'s enter a cycle,
typically within ~ /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.

o = 52" = 2626822 = 626121.
z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652930.
s = 52713 = 5.652980 = 264891.
z6 = 52714 = 5.264891 = 324452.
z7 = 518 — 3244522 — 784500.
rg = 579 = 5.784500 = 922491
etc.

Ing storage

d method: Define zg = 1;

x; mod p if ¢; € 3Z;
r? mod p if z; € 2 + 3Z;
"z, mod p otherwise.

— 53710 mod D

10, b9) = (0,0) and
1) =(a;,b; +1), or
1) = (2a;4, 2b;), or
+1) = (a; + 1, 6;).

or a collision in z;:

? Lo =x4? T3 = x4
? 5 = x10? etc.
linear equation for n.

The z;'s enter a cycle,
typically within = , /p steps.

Example:

1000003, 262632.

Modulo 1000003:
1 = 5" = 262682.

Ty = 5%

3 = 52"l = 5.626121 = 130596.
2 — 5.130596 = 652980.

— 2626822 = 626121.

Ty = 52n—
Ty — 52N
z6 = 5°™
T7 = RA47-

rg = 579 = 5.784500 = 922491

etc.

-8 — 3244522 = 784500.

-3 — 5.652980 = 264891.
4 — 5.264891 = 324452.

L1785 =
L3570 —

(Cycle le

Conclud
24984 77r

3837957
SONn = .

Only 6
Try eact
Find tha
for n =
for n =

S

Detfine zg = 1;

ifx; € 3Z;
if ¢; € 24+ 3Z;
» otherwise.

. mod p
0,0) and
b, + 1), or
i, 20;), or
+1,6;).

on in x;:
7?3 =1x4"
o! etc.
ation for n.

The ;s enter a cycle,
typically within ~ /p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.
> = 5°" = 2626822 = 626121.

z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652930.
zs = 52713 = 5.652080 = 264891.
z6 = 52714 = 5.264891 = 324452.

z7 = 5% 18 — 3244522 — 784500.

rg = 5419 = 5.784500 = 922491.

etc.

L1785 = 524984772,——
7057,
L3570 = 5388 Obn

(Cycle length is 3"

Conclude that

249847n + 75912:
388795n + 63278:
so n = 160788 (

Only 6 possible n'
Try each of them.
Find that 5™ mod
for n = 160788 +
for n = 6607809.

IN O

- 3Z;

)]

The z;'s enter a cycle,
typically within = , /p steps.

Example:

1000003, 262632.

Modulo 1000003:
1 = 5" = 262682.

Ty = 52"

3 = 52"l = 5.626121 = 130596.
"2 — 5.130596 = 652980.

— 2626822 = 626121.

-3 — 5.652980 = 264891.
4 — 5.264891 = 324452.

Ty = 52n—
Ty — 527
z6 = 5°™
T7 = i

rg = 579 = 5.784500 = 922491

etc.

-8 — 3244522 = 784500.

2498471+75912
Ti7gs — 5249847n+759123 _
) — 5388795n+632781 _

(ST (T

I 357

(Cycle length is 357.)

Conclude that

24984 7n + 759123 =
3887951 4+ 632781 (mod 1
so n = 160788 (mod (p —

Only 6 possible n's.

Try each of them.

Find that 5" mod » = 2626
for n = 160788 4+ 3(p — 1)/
for n = 660789.

The z;'s enter a cycle,
typically within ~ ,/p steps.

Example: 1000003, 262682.

Modulo 1000003:
1 = 5" = 262682.
> = 5°" = 2626822 = 626121.

z3 = 52"l = 5.626121 = 130596.
z4 = 52772 = 5.130596 = 652980.
zs = 52713 = 5.652080 = 264891.
z6 = 52714 = 5.264891 = 324452.

z7 = 5% 18 — 3244522 — 784500.

rg = 5419 = 5.784500 = 922491.

etc.

L1785 = 52498477?,——759123 — 555013.

L3570 = 5388795n——632781 — 555013.

(Cycle length is 357.)

Conclude that

24984 1n + 759123 =

388795n + 632781 (mod p — 1),
so n = 160788 (mod (p —1)/6).

Only 6 possible n's.
Try each of them.
Find that 5 mod » = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

, enter a cycle,
within = ,/p steps.

: 1000003, 262682.

1000003
— 262682.
T — 2626822 = 626121.

v+l — 5.626121 = 130596.
»+2 — 5.130596 = 652980.
»+3 — 5.652080 = 264891.
VT4 — 5.264801 = 324452,

18— 3244522 = 784500.

19 — 5.784500 = 922491 .

T1785 = 5249847n——759123 — 555013.
0= 53887957?,——632781 — 555013,

Z357

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

so n = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

This 1s
Optimiz
Another
“Pollard

Can par:

“van Oc
DL using

Bottom
distribut
have ch:

of findin

With 2
nave ch:

Negligib

ycle,

\/P steps.
), 262682.

.

22 — 626121

26121 = 130596.
30596 = 652930.
12930 = 264391.
04891 = 324452.

4522 — 784500.

34500 = 922491.

L1785
L 357

_ 52498477?,——759123 — 555013.

0= 5388795?’2,——632781 — 555013.

(Cycle length is 357.)

Conclude that

249847n -

- 750123 =

38387957 -

so n = 160788 (mod (p —1)/6).

- 632781 (mod p — 1),

Only 6 possible n's.

Try each of them.

Find that

5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

This is “Pollard’s

Optimized:

%\/ﬁ

Another method,
"Pollard’s kangara

Can paralle
“van Qorsc

1ze bof

ot /W

DL using distingul

Bottom line: Witl

distributed

have chance ~ ¢“,

dCroOSS
2

of finding n from

With 220 mults (a

have chance as 21
Negligible if, e.g.,

21.

30596.
52980.
64391.
24452,

34500.

22491,

L1785 =

L3570 = 5388795n——632781 — 555013,

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

son = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5™ mod p = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

5249847n——759123 — 555013.

This 1s "Pollard’s rho metho
Optimized: ~ ,/p mults.
Another method, similar spe

"Pollard’s kangaroo method

Can parallelize both methoc

“van Qorschot/Wiener para

DL using distinguished poin

Bottom line: With ¢ mults,
distributed across many core
have chance = ¢ /p

of finding n from 5™ mod p.

With 229 mults (a few years
have chance = 2180 /p,

Negligible if, e.g., p ~s 2226,

L1785

L3570 = 5388795n——632781 — 555013.

(Cycle length is 357.)

Conclude that
249847n + 759123 =
388795n + 632781 (mod p — 1),

so n = 160788 (mod (p —1)/6).

Only 6 possible n's.

Try each of them.

Find that 5 mod » = 262682

for n = 160788 + 3(p — 1)/6, i.e.,
for n = 660789.

_ 52498477?,——759123 — 555013.

This 1s “Pollard’s rho method.”
Optimized: ~ ,/p mults.
Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Qorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With ¢ mults,
distributed across many cores,
have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),
have chance ~ 2180 /p.

Negligible if, e.g., p ~s 2226

5249847n——759123 — 555013.
53887957?,——632781 — 555013.

ngth is 357.)

e that

4+ 759123 =

, + 632781 (mod p — 1),
160788 (mod (p —1)/6).

yossible n's.

' of them.

t 5™ mod p = 262682
160788 4+ 3(p — 1)/6, i.e.,
660789.

This i1s “Pollard’s rho method.”

Optimized:

Another method, similar speed:

A /P mults.

"Pollard’s kangaroo method.”

Can paralle
“van Qorsc

DL using distinguished points.”

1ze both methods.

not /Wiener parallel

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

Negligible if, e.g., p ~

have chance ~ 2180 /p.

2256.

Factors

Assume

Given z,

5% has ¢

Q

T IS a |

Comput

5% has o
z /5% is ;
Comput

Then

99123 _ 555013,
032781 _ 555013,

7.)

3 =
[(mod p — 1),
mod (p — 1)/6).

S.

» = 262632
3(p—1)/6, i.e.,

This is “Pollard’s rho method.”

Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener
DL using distinguished

harallel

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

have chance ~ 2180 /p.

Negligible if, e.g., p ~

2256_

Factors of the gro

hoints.”

Assume 5 has ord:
Given z, a power

5% has order b, an

a

z% i1s a power of 5

Compute £ = logs

5% has order a, an
z /5% is a power of
Compute m = log

Then z = 5¢tmo,

55013.
55013.

) — 1),
1)/6).

32
O, I.e.

This i1s “Pollard’s rho method.”

Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Qorschot/Wiener parallel

DL using distinguished points.”

Bottom line: With ¢ mults,
distributed across many cores,
have chance = ¢ /p

of finding n from 5™ mod p.

With 229 mults (a few years?),
have chance ~ 2180 /p.

Negligible if, e.g., p ~s 2226,

Factors of the group order

Assume 5 has order ab.
Given z, a power of 5:

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa z°.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,

This is “Pollard’s rho method.”
Optimized: ~ ,/p mults.

Another method, similar speed:

"Pollard’s kangaroo method.”

Can parallelize both methods.

“van Oorschot/Wiener
DL using distinguished

harallel

hoints.”

Bottom line: With ¢ mults,
distributed across many cores,

have chance = ¢ /p

of finding n from 5™ mod p.

With 220 mults (a few years?),

have chance ~ 2180 /p.

Negligible if, e.g., p ~

2256_

Factors of the group order

Assume 5 has order ab.

Given z, a power of b:

5% has order b, and

a

z% is a power of 5%.

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).

Then z = 5¢tmo,

‘Pollard’s rho method.”

ed: & /P mu
method, simi

ts.

ar speed:

's kangaroo method.”

yllelize both methods.

rschot /Wiener parallel

> distinguished points.”

line: With ¢ mults,
ed across many cores,

ince = ¢?/p

g n from 5™ mod p.

)

mults (a few years?),

ince ~ 2180/p.

le if, e.g., p =~

2256.

Factors of the group order

Assume 5 has order ab.

Given z, a power of b;

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,

This “Pe
converts
an order
and a fe

e.g. D=
p—1=
Comput
Comput

Comput
Then ¢

Use rho:
Better if

apply Pc

rho method.”

mults.

similar speed:

0 method.”

'h methods.

ener parallel

shed points.”

1 ¢ mults,
many cores,
'

5™ mod p.

few years?),

/.

D R 2250

Factors of the group order

Assume 5 has order ab.

Given z, a power of 5:

5% has order b, and

a

z% is a power of 5%,

Compute £ = logga z°.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).

Then z = 5¢tmo,

This “Pohlig-Hellr
converts an order-
an order-a DL, an
and a few exponer

e.g. p = 1000003,
p — 1 = 6b where
Compute loges (2
Compute z /51007¢

Compute loggp 10(
Then z = 5160788

Use rho: = /a +
Better if ab factor
apply Pohlig-Helln

S,

Factors of the group order
Assume 5 has order ab.

Given z, a power of 5:

5% has order b, and

Q

z% is a power of 5%

Compute £ = logsa 7.

5° has order a, and
z /5% is a power of 5°.
Compute m = Iog5b(m/5£).

Then ¢ = 5¢tmb,

This "Pohlig-Hellman methc
converts an order-ab DL int
an order-a DL, an order-6 D
and a few exponentiations.

e.g. p = 1000003, z = 262€
p — 1 = 6b where b = 1666¢€
Compute loggs (z°) = 16078
Compute z /5199788 = 1000(

Compute logg, 1000002 = 3
Then ¢ — 5160788436 _ 5660

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recurs

Factors of the group order This “Pohlig-Hellman method”

converts an order-ab DL into
an order-a DL, an order-6 DL,

Assume 5 has order ab.

Given z, a power of b: and a few exponentiations.

5% has order b, and e.g. p = 1000003, z = 262632:
z% is a power of 5%. p — 1 = 6b where b = 166667
Compute £ = logga z%. Compute log:e (z°) = 160788.

Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then £ — 5160788436 _ 5660789

5% has order a, and

z /5% is a power of 5°.
Compute m = Iog5b(:c/5£).
Then — 5Z—|—mb_ Use rho: =~ \/E+ \/5 mults.
Better if ab factors further:
apply Pohlig-Hellman recursively.

of the group order

5 has order ab.

a power of b:

rder b, and
yower of b2,

e { = logsa %

rder a, and
) power of 5°.

e M, = Iog5b(m/5£).

_ 5£+mb_

This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-b DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loggs (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recursively.

All of th
apply to

An ellipt
has & ¢
SO can C
. /q el
Need qu

If larges
of numb
IS much
then Pol
compute

Need lar
or chang

up order

r ab.

of 5:

This "Pohlig-Hellman method”
converts an order-ab DL into

an order-a DL, an order-b6 DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loges (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better if ab factors further:

apply Pohlig-Hellman recursively.

All of the techniqt
apply to elliptic cL

An elliptic curve o
has ~ g + 1 point:
so can compute E
~ ./q elliptic-curv
Need quite large ¢

If largest prime di
of number of poin
Is much smaller th
then Pohlig-Hellm
computes ECDL n
Need larger g;

or change choice ¢

This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-6 DL,
and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667
Compute loggs (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better it ab factors further:

apply Pohlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than g

then Pohlig-Hellman methoc
computes ECDL more quick
Need larger g;

or change choice of curve.

This "Pohlig-Hellman method”
converts an order-ab DL into
an order-a DL, an order-b6 DL,

and a few exponentiations.

e.g. p = 1000003, z = 262632:
p — 1 = 6b where b = 166667.
Compute loges (z°) = 160788.
Compute z /50783 — 1000002.

Compute logg, 1000002 = 3.
Then ¢ — 5160788436 _ 5660789

Use rho: ~ /a + v/b mults.
Better if ab factors further:

apply Pohlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method
computes ECDL more quickly.
Need larger g;

or change choice of curve.

bhlig-Hellman method”
an order-ab DL into
-a DL, an order-6 DL,

w exponentiations.

- 1000003, z = 262682
66 where b = 166667 .
e loges (z°) = 160788.
e /5100783 — 1000002.

e logp, 1000002 = 3.
_ 5160788+3b _ 5660789

~ \/a + v/b mults.

~ab factors further:

hlig-Hellman recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than g

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.

Index ca

Have ge
group el
Deducec

from rar

Index ca

discrete-
in a diffe

Example
Can con
—3/(p -
so —31:
so logs(
6logs 2 -

nan method”
ab DL into

order-6 DL,
1tiations.

T = 262682:
b= 166667.
) = 160788.
3 — 1000002.

)0002 = 3.
-3b _ 5660789

v/b mults.

s further:
1an recursively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ ¢ + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method
computes ECDL more quickly.
Need larger g;

or change choice of curve.

Index calculus

Have generated m
group elements 5%
Deduced equation
from random colli:

Index calculus obt

discrete-logarithm
in a different way.

Example for p = 1
Can completely fa
—3/(p — 3) as -3
so —31 =2050
so logs(—1) + log;
6logs 2 + 6logg 5

32
Y8

)02.

789

ively.

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ g + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.

Index calculus

Have generated many
b

group elements 5%™™° mod ;
Deduced equations for n

from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor
—3/(p — 3) as —31 /2056 in
so —31 =2°5° (mod p)
so logs(—1) + logs 3 =
6logs 2+ 6logs5 (mod p-

All of the techniques so far
apply to elliptic curves.

An elliptic curve over F,
has ~ q¢ + 1 points

so can compute ECDL using
~ ./q elliptic-curve adds.
Need quite large g.

If largest prime divisor

of number of points

Is much smaller than ¢

then Pohlig-Hellman method

computes ECDL more quickly.

Need larger g;
or change choice of curve.

Index calculus

Have generated many

group elements 54"*% mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =
6logs2 + 6logs5 (mod p—1).

e techniques so far
elliptic curves.

ic curve over Fg

+ 1 points

ompute ECDL using
liptic-curve adds.

ite large g.

t prime divisor

er of points

smaller than ¢
nlig-Hellman method

s ECDL more quickly.

ger g,
‘e choice of curve.

Index calculus

Have generated many

group elements

5740 mod p.

Deduced equations for n

from random collisions.

Index ca
discrete-

culus obtains
ogarithm equations

in a different way.

Example for » = 1000003:
Can completely factor

—3/(p —

3) as —31/2°5% in Q

so —31 =2°5° (mod p)
so logs(—1) + logs 3 =

0 |Og5 2

6logs 5 (mod p—1).

Can con
as 21311
so logs <
ogs 3 +
ogs 19 -

Try to c

1/(p +1
Find fac

as prodt
2,3,5,7
for each
—5100,

—403, -
62, 957,

1es so far

IFVES.

ver Fq

P~

D

CDL using
e adds.

/1SOr

tsS

an ¢

an method

1ore quickly:.

f curve.

Index calculus

Have generated many

group elements 54"

% mod p.

Deduced equations for n

from random collisions.

Index calculus obtains

discrete-logarithm equations

in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs 2 4 6logs 5

(mod p — 1).

Can completely fa
as 21311 /3151112
so logs 2 + logs 31
ogs 3 + logg b 4 2
ogs 19 4 logs 29

Try to completely
1/(p+1), 2/(p+
Find factorization
as product of pow
2,3,5,7,11,13, 17
for each of the fol
—5100, —4675, —
—403, —368, —14
62, 957, 2912, 38"

A2 |

Index calculus

Have generated many

group elements 54" mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/295% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs2 + 6logs5 (mod p —1).

Can completely factor 62/(x
as 21311 /3151112191291

so logs 2 + logs 31 =

ogs 3 + logs 5 + 2 logs 11 +
ogs 19 + logs 29 (mod p -

Try to completely factor
1/(p+1), 2/(p + 2), etc.
Find factorization of a/(p +
as product of powers of —1,
2,3,5,7,11,13,17, 19, 23, 2¢
for each of the following a's
—5100, —4675, —3128,
—403, —368, —147, —3,
62, 957, 2912, 3857, 6877.

Index calculus

Have generated many

group elements 54"+ mod p.
Deduced equations for n
from random collisions.

Index calculus obtains

discrete-logarithm equations
in a different way.

Example for » = 1000003:
Can completely factor

—3/(p — 3) as —31/205% in Q
so —31 =2°5° (mod p)

so logs(—1) + logs 3 =

6logs 2+ 6logs5 (mod p —1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.

lculus

nerated many

ements 54" mod p.
| equations for n
\dom collisions.

culus obtains

logarithm equations
2rent way.

 for p = 1000003:
\pletely factor

-3) as —31/205°% in Q
= 2055 (mod p)

—1) + logs 3 =

6logs5 (mod p—1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logg 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p + 2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, —3,

62, 957, 2912, 3857, 6877.

Each co
produce:

Now hay
for loge
Free eqL

logs(—1

By linea
logs 2, Ic

(If this I
could hs

By simil
discrete

any
n

% mod p.
s for n
510NS.

alns
equations

000003:
ctor
1/205% in Q
mod p)
53 =
(mod p — 1).

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.

Each complete fac
produces a log eqt

Now have 12 linea
for logs 2, logs 3, .
Free equations: lo

logs(—1) = (p — 1

By linear algebra ¢

(If this hadn’t bee
could have searche

By similar techniqg
discrete log of any

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logg 31 =

ogs 3 + logs 5 + 2logg 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p + 2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, —3,

62, 957, 2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equatior
for logs 2, logs 3, .. ., logs 31
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a

By similar technique obtain
discrete log of any target.

Can completely factor 62/(p + 62)
as 21311/315111219120!

so logs 2 4 logs 31 =

ogs 3 + logs 5 + 2logs 11 +

ogs 19 + logs 29 (mod p — 1).

Try to completely factor
1/(p+1), 2/(p+2), etc.

Find factorization of a/(p + a)
as product of powers of —1,
2,3,5,7,11,13,17,19, 23, 29, 31
for each of the following a's:
—5100, —4675, —3128,

—403, —368, —147, -3,

62, 957, 2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, .. ., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, ..., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

pletely factor 62/(p + 62)
/3151112191291

'+ logs 31 =

logs 5 4+ 2 logs 11 +

-logs 29 (mod p — 1).

ompletely factor

), 2/(p+2), etc.
torization of a/(p + a)
ct of powers of —1,
11,13,17, 19, 23, 29, 31
of the following a's:
—4675, —3128,

368, —147, —3,

2912, 3857, 6877.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, .. ., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,

could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p —
scales st
cost p¢

Compare

Specific:
a € {1,2
gy € O
finds y «
Into prin
and com

(Assumi
Have ex

ctor 62/(p + 62)
191291

E|0g5 11 -+

(mod p —1).
factor

2), etc.

of a/(p + a)
ers of —1,
19, 23,29, 31
lowing a's:
3128,
7, —3,

[, 638771.

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index
scales surprisingly
cost p¢ where ¢ —

Compare to rho: -

Specifically: searc

a € {1,2 yz}
gy € O(Vigplgl
finds y complete f

Into primes < v,
and computes disc

(Assuming standal
Have extensive evi

)+ 62)

), 31

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,

could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index calculus

scales surprisingly well:
cost p¢ where ¢ — 0.

Compare to rho: ~ p1/2.

Specifically: searching
a € {1,2 yz}, with

gy € O(Vigprlglgp).
finds y complete factorizatic

Into primes < v,
and computes discrete logs.

(Assuming standard conject
Have extensive evidence.)

Each complete factorization
produces a log equation.

Now have 12 linear equations
for logs 2, logs 3, ..., logs 31.
Free equations: logs 5 =1,

logs(—1) = (p—1)/2.

By linear algebra compute
logs 2, logs 3, .. ., logs 31.

(If this hadn’t been enough,
could have searched more a's.)

By similar technique obtain
discrete log of any target.

For p — 00, Index calculus

scales surprisingly well:
cost p¢ where ¢ — 0.

Compare to rho: ~ pl/z.

Specifically: searching
a € {1,2 yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

iInto primes < v,
and computes discrete logs.

(Assuming standard conjectures.
Have extensive evidence.)

mplete factorization
5 a log equation.

/e 12 linear equations
2,logs 3, ..., logs 31.
ations: logs 5 =1,

)= (r—-1)/2.

r algebra compute
ge 3, ..., logs 31.

1adn’'t been enough,
ve searched more a's.)

ar technique obtain
log of any target.

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ p1/2.

Specifically: searching
a € {1, 2, ... ,y2}, with

gy € O(Vigplglgp).
finds y complete factorizations

Into primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest Ir
use the
and the

To comy
lg cost €

O((lgq)

For secu

We don’

iIndex-ca
. exce

torization
1ation.

r equations

n enough,
>d more a's.)

ue obtain
target.

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ pl/z.

Specifically: searching
a € {1, 2, ... ,yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

iInto primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calcu
use the “number-f
and the “function-

To compute discre
lg cost €

O((lg9)"*(Iglg q)

For security:
q ~ 2296 4 stop r
q ~ 22048 14 stop

We don't know an
iIndex-calculus met
. except for son

1S

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: & p1/2.

Specifically: searching
a € {1, 2, ... ,y2}, with

gy € O(Vigplglgp).
finds y complete factorizations

iInto primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calculus variant
use the “number-field sieve”
and the “function-field sieve

To compute discrete logs In
lg cost €

O((lg9)'*(Iglg 9)°/3).

For security:
g ~ 2%°% to stop rho;
g ~ 22048 to stop NFS.

We don’'t know any
index-calculus methods for [
. except for some curves.

For p — 00, Index ca

scales surprisingly well:

cost p¢ where ¢ — 0.

culus

Compare to rho: ~ pl/z.

Specifically: searching
a € {1, 2, ... ,yz}, with

gy € O(Vigplglgp),
finds y complete factorizations

Into primes < v,

and computes discrete logs.

(Assuming standard conjectures.

Have extensive evidence.)

| atest index-calculus variants
use the “number-field sieve”
and the “function-field sieve.”

To compute discrete logs in Fy:
lg cost €

O((lg9)"3(Iglg 9)*3).

For security:
g ~ 2%°% to stop rho;
g ~ 22048 to stop NFS.

We don't know any
index-calculus methods for ECDL!
. except for some curves.

