Complexity news: FFTs and integer multiplication

D. J. BernsteinUniversity of Illinois at Chicago

Advertisement

Fix a field k with $2 \neq 0$. Fix non-square $d \in k$.

$$\{(x,y)\in k imes k: \ x^2+y^2=1+dx^2y^2\}$$

is a commutative group with $(x_1,y_1)+(x_2,y_2)=(x_3,y_3)$ defined by Edwards addition law:

$$x_3=rac{x_1y_2+y_1x_2}{1+dx_1x_2y_1y_2}$$
 ,

$$y_3=rac{y_1y_2-x_1x_2}{1-dx_1x_2y_1y_2}.$$

More on Edwards coordinates:

Harold M. Edwards, "A normal form for elliptic curves."

Daniel J. Bernstein, Tanja Lange, "Faster addition and doubling on elliptic curves."

http://cr.yp.to
/newelliptic.html

Algebraic complexity

Example (1963 Karatsuba):

This "**R**-algebraic algorithm" computes product $h_0 + h_1 x + h_2 x^2$ of $f_0 + f_1 x$, $_0 + _1 x \in \mathbf{R}[x]$. "Total **R**-complexity" 7: 3 mults, 4 adds/subs.

FFT news

How quickly can we multiply in the ring $\mathbf{R}[x]$?

1866 Gauss "FFT" \Rightarrow algebraic algorithm to compute $f, \mapsto f$ when $\deg f, \deg < n;$ **R**-complexity $(15 + o(1))n \lg n$.

1968 R. Yavne: Can do better! "Split-radix FFT."

R-complexity $(12 + o(1))n \lg n$.

2004 James Van Buskirk: Can do better! "Tangent FFT." \mathbf{R} -complexity $(34/3 + o(1))n \lg n$. The FFT trick:

Unique $\mathbf{C}[x]$ -algebra morphism

$$egin{aligned} \mathbf{C}[x]/(x^{1024}-1) \hookrightarrow \ \mathbf{C}[x]/(x^{512}-1) \oplus \mathbf{C}[x]/(x^{512}+1). \end{aligned}$$

Gauss continuation:

$$\mathbf{C}[x]/(x^{512}+1) \hookrightarrow$$
 $\mathbf{C}[x]/(x^{256}-i) \oplus \mathbf{C}[x]/(x^{256}+i)$ where $i=\sqrt{-1}$; etc.

Alternative: Twist.

Unique **C**-algebra morphism

$$\mathbf{C}[x]/(x^{512}+1) \hookrightarrow \mathbf{C}[y]/(y^{512}-1)$$
 that maps x to $\zeta_{1024}y$ where $\zeta_{1024}=\exp(2\pi i/1024)$.

Same complexity as Gauss.

Split-radix FFT:

Don't twist $\mathbf{C}[x]/(x^{512}+1)$ but do twist $\mathbf{C}[x]/(x^{256}\pm i)$.

This maximizes the number of multiplications by 4th roots of 1.

General principle:

"Align roots of 1."

Use $\mathbf{C}[x]/(x^{\cdots}-\omega)$

if ω is "aligned"

for easy multiplications.

Twist to avoid $\mathbf{C}[x]/(x^{-}-\omega)$ if ω is not aligned.

The tangent FFT: Rethink basis of $\mathbb{C}[x]/(x^n-1)$. Instead of $1, x, \ldots, x^{n-1}$ use $1/s_{n,0}$, $x/s_{n,1}$, ..., $x^{n-1}/s_{n.n-1}$ where $s_{n,k}$ $\max\{|\cos\frac{2\pi k}{n}|, |\sin\frac{2\pi k}{n}|\}$ $\max\{\left|\cos\frac{2\pi k}{n/4}\right|,\left|\sin\frac{2\pi k}{n/4}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/16}\right|,\left|\sin\frac{2\pi k}{n/16}\right|\}$

Note that $s_{n,k}=s_{n,k+n/4}$. Note that $\zeta_n^k(s_{n/4,k}/s_{n,k})$ is $\pm (1+i\tan\cdots)$ or $\pm (\cot\cdots+i)$.

Complexity 8.5n - 28 to split n into n/4, n/4, n/4, n/8, n/8.

Three expositions of how the tangent FFT works:

Frigo/Johnson, in *IEEE Trans. Signal Processing*.

Lundy/Van Buskirk, in *Computing*.

Bernstein, http://cr.yp.to/talks.html#2007.04.17, expanding an old idea of Fiduccia.

Bit complexity

Each \cdot is a "gate" $a, b \mapsto 1 - ab$. This "circuit" computes product $h_0 + 2h_1 + 4h_2 + 8h_3$ of $f_0 + 2f_1$, $0 + 2 = \mathbf{Z}$. "Bit complexity" 15: 15 gates.

Integer-multiplication news

How quickly can we multiply in the ring **Z**?

1971 Schönhage/Strassen: circuit to compute f, $\mapsto f$ when f, $\in \{0, 1, \dots, 2^n - 1\}$; bit complexity $\Theta(n \lg n \lg \lg n)$.

2007 Fürer: Can do better! Bit complexity $(n \lg n)2^{O(\lg^* n)}$.

 $egin{aligned} & \lg^* n = 1 & \text{if } 1 \leq \lg n < 2; \\ & \lg^* n = 2 & \text{if } 1 \leq \lg \lg n < 2; \\ & \lg^* n = 3 & \text{if } 1 \leq \lg \lg \lg n < 2; \\ & \lg^* n = 4 & \text{if } 1 \leq \lg \lg \lg \lg n < 2; \\ & \text{etc.} \end{aligned}$

Bit complexity $n(\lg n)^{O(1)}$: View n-bit integers as $\Theta(n/\lg n)$ -coeff polynomials over a prime field k with $\lg \# k \in \Theta(\lg n)$, appropriate ζ . (Or $k = \mathbf{R}$, approximating coeffs.)

Bottleneck: FFT has many mults by constants in k.

Schönhage/Strassen idea: View n-bit integers as $\Theta(\sqrt{n})$ -coeff polynomials over the ring $\mathbf{Z}/(2^{\Theta(\sqrt{n})}+1)$. Mults by 2^m are easy in this ring. $\Theta(\lg \lg n)$ levels of recursion.

Fürer idea:

View n-bit integers as $\Theta(n/(\lg n)^2)$ -coeff polynomials over the ring $k[y]/(y^{\Theta(\lg n)}+1)$ with $\lg \# k \in \Theta(\lg n)$, appropriate ζ . (Or $k=\mathbf{R}$.)

 $\Theta(n/\lg n)$ mults in ring.

Align roots in FFT.
(Recall split-radix speedup!)
Then most mults are easy,
as in Schönhage-Strassen.

 $\Theta(n/(\lg n)^2)$ hard mults; ok. $\Theta(\lg^* n)$ levels of recursion.