
The impact

of side-channel attacks

on the design of cryptosystems

D. J. Bernstein

University of Illinois at Chicago

The standard model of senders,

receivers, attackers, etc.:

1. Parties perform computation,

send messages to other parties.

2. Parties receive all messages,

perform more computation,

send messages to other parties.

3. Etc.

Party’s local computation

is not visible to other parties

except via message contents.

Each party’s behavior is

completely determined by

message contents and local data.

e.g. Diffie-Hellman using

public elliptic-curve point P :

1. Alice generates random a,

computes aP , sends aP .

Bob generates random b,
computes bP , sends bP .

2. Alice and attacker receive bP .

Bob and attacker receive aP .

Alice computes a(bP) = abP .

Bob computes b(aP) = abP .

Attacker tries to compute the

secret abP from his own data

and aP and bP . Standard model:

attacker has no other inputs.

Traditional cryptography:

Design and implement

cryptographic systems

in the standard model.

Traditional cryptanalysis:

Analyze security of

cryptographic systems

in the standard model.

Build confidence that

contents of messages

don’t reveal keys,

don’t allow forgeries, etc.

Also aim for high speed.

In the real world,

extra information is

visible through “side channels”

outside the standard model.

e.g. When did program finish

computing outgoing message?

Visible to network sniffer.

e.g. When did program finish

processing incoming message?

Visible to the next program

run by the same CPU.

e.g. How much power

is program using right now?

Visible to power source.

Often this information

depends on cryptographic keys

(or similarly critical secrets).

Can attacker now compute keys?

In many cases: Yes.

In many cases: Unclear.

Can be difficult to analyze.

Growing research area.

Have built confidence in

standard-model security,

but do we have confidence

in real-world security?

No!

Strategy to regain confidence:

Ensure that all information

visible on side channels

is independent of

cryptographic keys etc.

Independence guarantees that

real-world attacks are as hard as

standard-model attacks.

“Side-channel-immune

cryptographic implementation.”

More difficult when there are

more side channels. Extreme case:

Hard to keep secrets in Pay-TV

smartcards given to attackers.

This talk focuses on

software side channels:

load timing, branch timing, etc.

Happy fact: Every cipher,

every signature system, etc.

can be implemented

to keep keys safely away from

all known software side channels.

Replace “all known” with “all”?

I think so, but can’t verify.

Intel and AMD are hiding

security-critical information.

“Proprietary speed data.” Idiots.

But let’s assume “all.”

Unhappy fact:

For many cryptographic systems,

side-channel-immune software

is surprisingly slow.

Happy fact:

Some cryptographic systems

achieve very high software speeds

despite side-channel immunity.

“Side-channel-immune

cryptographic design”:

In designing cryptosystems,

aim for security and high speed of

side-channel-immune software,

not standard-model software.

Case study: string comparison

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference.

AAAAAA vs. SECRET: stop at 1.

SAAAAA vs. SECRET: stop at 2.

SEAAAA vs. SECRET: stop at 3.

Attackers watch comparison time,

deduce position of difference.

A few hundred tries

reveal secret password.

Objection: “Timings are noisy!”

Answer #1: Even if noise

stops simplest attack,

does it stop all attacks?

Need side-channel immunity

to regain confidence.

Objection: “Timings are noisy!”

Answer #1: Even if noise

stops simplest attack,

does it stop all attacks?

Need side-channel immunity

to regain confidence.

Answer #2: Eliminate noise

using statistics of many timings.

Objection: “Timings are noisy!”

Answer #1: Even if noise

stops simplest attack,

does it stop all attacks?

Need side-channel immunity

to regain confidence.

Answer #2: Eliminate noise

using statistics of many timings.

Answer #3, what the

1970s attackers actually did:

Increase timing signal

by crossing page boundary,

inducing page faults.

2007: IPsec software uses

memcmp to check authenticators!

TENEX disaster redivivus.

Exercise: Forge IPsec packets.

Typical memcmp-style comparison:

for (i = 0;i < 16;++i)

if (x[i] != y[i])

return 0;

return 1;

Fix, side-channel immune:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return !diff;

Case study: Montgomery ladder

Montgomery’s computation of

((2n + b)P; (2n + b + 1)P)

from (P; nP; (n + 1)P; b)
inside fast scalar multiplication:

if (secretbit == 1) {

newnp = g(p,np,n1p);

newn1p = f(n1p);

} else {

newn1p = g(p,np,n1p);

newnp = f(np);

}

Naive view:

“This doesn’t leak secretbit.

It takes the same time whether

secretbit is 0 or 1.”

Reality: Branch time is an

extremely complicated function

of secretbit, previous bits,

branch bits elsewhere in program,

branch bits in other processes,

et al.

secretbit influences

time for this computation,

time for other computations,

and time in other processes.

The obvious way to achieve

branch-side-channel immunity:

Never branch on secret bits.

This is easily doable,

and for Montgomery ladder

it adds very little overhead.

2005: Bernstein “Curve25519”

elliptic-curve Diffie-Hellman

“avoids all input-dependent

branches, all input-dependent

array indices”; overhead is

“about 6% of the total” time.

How can we do

if (secretbit == 1) {

foutput = f(n1p);

} else {

foutput = f(np);

}

without secret branches

(or secret indices)? Answer:

finput =

((secretbit-1)&np)

|((-secretbit)&n1p);

foutput = f(finput);

Full Montgomery, branchless:

goutput = g(p,np,n1p);

finput =

((secretbit-1)&np)

|((-secretbit)&n1p);

foutput = f(finput);

newnp = goutput ^

((foutput^goutput)

& (secretbit-1));

newn1p = newnp ^

(foutput^goutput);

Faster alternative:

Merge flips across loops.

Case study: modular arithmetic

General-purpose libraries

for high-precision arithmetic

often have data-dependent

“skip leading 0” loops.

Integers modulo n are

occasionally shorter than n.

Length leaked by timings.

Fix: Always process integers

to the same length as n.

Eliminating leading-0 tests

normally saves time.

More branches in arithmetic?

Kocher’s original target

for timing attacks:

a += b;

if (a >= n) a -= n;

Fix, side-channel immune:

a += b;

c = a - n;

secretbit = signbit(c);

c ^= a;

a ^= ((secretbit-1)&c);

Often acceptable alternative:

a += b; /* that’s it! */

Exercise: Starting from

extended-Euclid algorithm

or simpler binary variant,

build side-channel-immune

modular inversion.

Replace branches by arithmetic,

use known loop-count limit.

Much simpler, often fast enough:

compute a�1 mod p
as ap�2 mod p.
One modular inversion,

after elliptic-curve scalar mult

using inversion-free coordinates,

is not a big bottleneck.

Case study: AES

AES code: y0 = T0[x0&255]

Time depends on x0&255,

a byte of plaintext � key.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss

creates timing signal,

easily visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.

Partial fix:

Eliminate all cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read T0 etc. into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news: Stopping

cache misses isn’t enough.

There are timing leaks

in cache hits.

Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads

are from L1 cache!

Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No reason to think that

these are the only effects.

The obvious way to achieve

address-side-channel immunity:

Never use secret addresses.

To compute T0[secret]:

Load T0[0], T0[1], T0[2], : : :
and do appropriate arithmetic.

Takes time to load all of T0.

Parallel lookups in one table

can save some time

(asymptotic cost O(n lgn)

for n lookups in n-entry table),

but still quite expensive.

Side-channel-immune AES

is disappointingly slow.

Do cipher designers

need secret table indices?

Modern CPUs offer

considerable parallelism:

can compute several independent

adds, xors, etc. each cycle.

We can design ciphers with many

parallel arithmetic operations,

allowing implementors to

exploit CPU capabilities.

Do other operations achieve

the same level of security

at higher speed?

An AES table lookup

mangles its input

more thoroughly than

an addition or xor.

But it is slower and

has a much smaller input.

Side-channel-immune Salsa20

software is faster than

side-channel-vulnerable

AES software despite having

a much larger security margin.

What’s safe?

No known side channels in

some operations on current CPUs:

Loads from constant addresses.

Stores to constant addresses.

Constant-distance shifts.

Constant-distance rotations.

Logical operations: xor, or, etc.

Can build all computations

from these operations,

just like building a circuit

from individual gates.

And some more arithmetic:

Additions, subtractions.

No common CPU is believed

to abort carry chains early.

Integer multiplication,

except that large inputs

slow down some CPUs—

CPU implicitly does, e.g.,

if (input < 65536) ...

Particularly useful for RSA etc.:

floating-point multiplication

in normal exponent ranges,

except that an input of 0

slows down a few CPUs.

Summary of the impact

Maintaining confidence in

security of cryptographic software,

in a world of side-channel attacks,

takes some implementation effort.

Can avoid big slowdowns

for typical public-key systems.

Small effect on designer.

Much larger slowdown

for typical secret-key ciphers,

except parallel-arithmetic ciphers.

Much larger effect on designer.

