
Distinguishing prime numbers

from composite numbers:

the state of the art

D. J. Bernstein

University of Illinois at Chicago



Is it easy to determine whether a

given integer is prime?

If “easy” means “computable”:

Yes, of course.

If “easy” means “computable

in polynomial time”: Yes.

(2002 Agrawal/Kayal/Saxena)

If “easy” means “computable

in essentially cubic time”:

Conjecturally yes!

See Williams talk tomorrow.



What about quadratic time?

What about linear time?

What if we want to determine

with proof whether a

given integer is prime?

Can results be verified

faster than they’re computed?

What if we want

proven bounds on time?

Does randomness help?



Cost measure for this talk:

time on a serial computer.

Beyond scope of this talk:

use “AT” cost measure

to see communication, parallelism.

Helpful subroutines:

Can compute B-bit product,

quotient, gcd in time � B1+o(1).

(1963 Toom; 1966 Cook;

1971 Knuth)

Beyond scope of this talk:

time analyses more precise

than “� Bconstant+o(1).”



Compositeness proofs

If n is prime and w 2 Z

then wn �w 2 nZ

so n is “w-sprp”:

the easy difference-of-squares

factorization of wn �w,

depending on ord2(n� 1),

has at least one factor in nZ.

e.g.: If n 2 5 + 8Z is prime

and w 2 Z then w 2 nZ or

w(n�1)=2 + 1 2 nZ or

w(n�1)=4 + 1 2 nZ or

w(n�1)=4 � 1 2 nZ.



Given n � 2: Try random w.

If n is not w-sprp, have proven n

composite. Otherwise keep trying.

Given composite n,

this algorithm eventually finds

compositeness certificate w.

Each w has � 75% chance.

Random time � B2+o(1)

to find certificate if n < 2B .

Deterministic time � B2+o(1)

to verify certificate.

Open: Is there a compositeness

certificate findable in time BO(1),

verifiable in time � B1+o(1)?



Given prime n,

this algorithm loops forever.

After many w’s we are

confident that n is prime : : :

but we don’t have a proof.

Challenge to number theorists:

Prove n prime!

Side issue: Do users care?

Paranoid bankers: “Yes,

we demand primality proofs.”

Competent cryptographers: “No,

but we have other uses for

the underlying tools.”



Combinatorial primality proofs

If there are many elements

of a particular subgroup of

a prime cyclotomic extension of

Z=n then n is a power of a prime.

(2002 Agrawal/Kayal/Saxena)

Many primes r have

prime divisors of r � 1 above r2=3

(1985 Fouvry). Deduce that AKS

algorithm takes time � B12+o(1)

to prove primality of n.

Algorithm is conjectured

to take time � B6+o(1).



Variant using arbitrary cyclotomic

extensions takes time � B8+o(1).

(2002 Lenstra)

Variant with better bound on

group structure takes time

� B7:5+o(1). (2002 Macaj;

same idea without credit

in 2003 revision of AKS paper)

These variants are conjectured

to take time � B6+o(1).

Variant using Gaussian periods

is proven to take time � B6+o(1).

(2004 Lenstra/Pomerance)



What if n is composite?

Output of these algorithms

is a compositeness proof.

Time � B4+o(1) to verify proof.

Time � B6+o(1) to find proof.

For comparison, traditional

sprp compositeness proofs:

verify proof, � B2+o(1);

find proof, random � B2+o(1).

For comparison, factorization:

verify proof, � B1+o(1);

find proof, conjectured

� B(1:901:::+o(1))(B= lgB)1=3
.



Benefit from randomness?

Use random Kummer extensions;

twist. (2003.01 Bernstein,

and independently 2003.03

Mihăilescu/Avanzi;

2-power-degree case: 2002.12

Berrizbeitia; prime-degree case:

2003.01 Cheng)

Many divisors of n��� � 1 (overkill:

1983 Odlyzko/Pomerance).

Deduce: time � B4+o(1)

to verify primality certificate.

Random time � B2+o(1)

to find certificate.



Open: Primality proof with

proven deterministic time

� B5+o(1) to find, verify?

Open: Primality proof with

proven random time

� B3+o(1) to find, verify?

Open: Primality proof with

reasonably conjectured time

� B3+o(1) to find, verify?



Prime-order primality proofs

If wn�1 = 1 in Z=n, and n� 1

has a prime divisor q � p
n

with w(n�1)=q � 1 in (Z=n)�,

then n is prime. (1876 Lucas,

1914 Pocklington, 1927 Lehmer)

Many generalizations.

Can extend Z=n. (1876 Lucas,

1930 Lehmer, 1975 Morrison,

1975 Selfridge/Wunderlich,

1975 Brillhart/Lehmer/Selfridge,

1976 Williams/Judd, 1983

Adleman/Pomerance/Rumely)



Can prove arbitrary primes.

Proofs are fast to verify

but often very slow to find.

Replace unit group by

random elliptic-curve group.

(1986 Goldwasser/Kilian;

point counting: 1985 Schoof)

Use complex-multiplication

curves; faster point counting.

(1988 Atkin; special cases:

1985 Bosma, 1986

Chudnovsky/Chudnovsky)

Merge square-root computations.

(1990 Shallit)



Culmination of these ideas

is “fast elliptic-curve

primality proving” (FastECPP):

Conjectured time � B4+o(1)

to find certificate

proving primality of n.

Proven deterministic time

� B3+o(1) to verify certificate.

For comparison, combinatorics:

proven random � B2+o(1) to find,

� B4+o(1) to verify.



Variant using

genus-2 hyperelliptic curves:

Proven random time BO(1)

to find certificate

proving primality of n.

(1992 Adleman/Huang)

Tools in proof: bounds on size

of Jacobian (1948 Weil); many

primes in interval of width x3=4

around x (1979 Iwaniec/Jutila).

Proven deterministic time

� B3+o(1) to verify certificate.



Variant using elliptic curves

with large power-of-2 factors

(1987 Pomerance):

Proven existence of certificate

proving primality of n.

Proven deterministic time

� B2+o(1) to verify certificate.

Open: Is there

a primality certificate

findable in time BO(1),

verifiable in time � B2+o(1)?

Open: Is there

a primality certificate

verifiable in time � B1+o(1)?



Verifying elliptic-curve proofs

Main theorem in a nutshell:

If an elliptic curve

E(Z=n) has a point

of prime order q > (dn1=4e + 1)2

then n is prime.

Proof in a nutshell:

If p is a prime divisor of n

then the same point mod p

has order q in E(Fp),

but #E(Fp) � (
p
p + 1)2

(Hasse 1936), so n1=2 < p.



More concretely:

Given odd integer n � 2,

a 2 f6; 10; 14; 18; : : :g, integer c,

gcd
�
n; c3 + ac2 + c

	
= 1,

gcd
�
n; a2 � 4

	
= 1,

prime q > (dn1=4e + 1)2:

Define x1 = c, z1 = 1,

x2i = (x2
i � z2

i )2,

z2i = 4xizi(x
2
i + axizi + z2

i ),

x2i+1 = 4(xixi+1 � zizi+1)2,

z2i+1 = 4c(xizi+1 � zixi+1)2.

If zq 2 nZ then n is prime.



For each prime p dividing n:

(a2 � 4)(c3 + ac2 + c) 6= 0 in Fp,

so (c3 +ac2 + c)y2 = x3 +ax2 +x

is an elliptic curve over Fp;

(c; 1) is a point on curve.

On curve: i(c; 1) = (xi=zi; : : :)

generically. (1987 Montgomery)

Analyze exceptional cases, show

q(c; 1) = 1. (2006 Bernstein)

Many previous ECPP variants.

Trickier recursions,

typically testing coprimality.



Finding elliptic-curve proofs

To prove primality of n: Choose

random E. Compute #E(Z=n)

by Schoof’s algorithm.

Compute q = #E(Z=n)=2. If q

doesn’t seem prime, try new E.

If q � n or q � (dn1=4e + 1)2:

n is small; easy base case.

Otherwise:

Recursively prove primality of q.

Choose random point P on E.

If 2P = 1, try another P .

Now 2P has prime order q.



Schoof’s algorithm:

time B5+o(1).

Conjecturally find prime q after

B1+o(1) curves on average.

Reduce number of curves

by allowing

smaller ratios q=#E(Z=n).

Recursion involves

B1+o(1) levels.

Reduce number of levels

by allowing and demanding

smaller ratios q=#E(Z=n).

Overall time B7+o(1).



Faster way to generate curves

with known number of points:

generate curves with

small-discriminant

complex multiplication (CM).

Reduces conjectured time

to B5+o(1).

With more work: B4+o(1).

CM has applications

beyond primality proofs:

e.g., can generate CM curves

with low embedding degree

for pairing-based cryptography.



Complex multiplication

Consider positive squarefree

integers D 2 3 + 4Z.

(Can allow some other D’s too.)

If prime n equals (u2 + Dv2)=4

then “CM with discriminant �D”

produces curves over Z=n with

n + 1 � u points.

Assuming D � B2+o(1):

Time B2:5+o(1).

Fancier algorithms: B2+o(1).



First step: Find all vectors

(a; b; c) 2 Z3 with

gcdfa; b; cg = 1,

�D = b2 � 4ac, jbj � a � c,

and b � 0 ) jbj < a < c.

How?

Try each integer b between

�b
p
D=3c and b

p
D=3c.

Find all small factors of b2 + D.

Find all factors a � b
p
D=3c.

For each (a; b),

find c and check conditions.



Second step: For each (a; b; c)

compute to high precision

j(�b=2a +
p�D=2a) 2 C.

Some wacky standard notations:

q(z) = exp(2�iz).

�24 = q
�

1 +
P
k�1

(�1)kqk(3k�1)=2

+
P
k�1

(�1)kqk(3k+1)=2
�24

.

f24
1 (z) = �24(z=2)=�24(z).

j = (f24
1 + 16)3=f24

1 .



How much precision is needed?

Answer: � B1+o(1) bits;

� B0:5+o(1) terms in sum;

� B1+o(1) inputs (a; b; c);

total time � B2:5+o(1).

Don’t need explicit

upper bound on error.

Start with low precision;

obtain interval around answer;

if precision is too small,

later steps will notice

that interval is too large,

so retry with double precision.



Third step: Compute product

H�D 2 C[x]

of x� j(�b=2a +
p�D=2a)

over all (a; b; c).

Amazing fact: H�D 2 Z[x].

The j values are

algebraic integers

generating a class field.

� B1+o(1) factors.

Time � B2+o(1).



Fourth step: Find a root

r of H�D in Z=n.

Easy since n is prime.

Amazing fact: the curve

y2 = x3 + (3x + 2)r=(1728 � r)

has n + 1 + u points

for some (u; v) with

4n = u2 + Dv2.



FastECPP using CM

To prove primality of n:

Choose y 2 B1+o(1).

For each odd prime p � y,

compute square root of p

in quadratic extension of Z=n.

Also square root of �1.

Each square root

costs B2+o(1).

Total time B3+o(1).



For each positive squarefree

y-smooth D 2 3 + 4Z

below B2+o(1),

compute square root of �D
in quadratic extension of Z=n.

Each square root

costs B1+o(1):

multiply square roots of primes.

Total time B3+o(1).



For each D

having
p�D 2 Z=n,

find u; v with 4n = u2 + Dv2,

if possible.

This can be done by

a half-gcd computation.

Each D costs B1+o(1).

Total time B3+o(1).



Conjecturally there are

B1+o(1) choices of (D;u; v).

Look for n + 1 � u

having form 2q where q is prime.

More generally:

remove small factors

from n + 1 � u;

then look for primes.

Each compositeness proof

costs B2+o(1).

Total time B3+o(1).



Conjecturally have

several choices of (D;u; v; q),

when o(1)’s are large enough.

Use CM to construct curve

with order divisible by q.

Time � B2:5+o(1); negligible.

Problems can occur.

Might have n + 1 + u

when n + 1 � u was desired,

or vice versa. Curve might not

be isomorphic to curve of desired

form y2 = x3 + ax2 + x.

Can work around problems,

or simply try next curve.



Recursively prove q prime.

Deduce that n is prime.

� B1+o(1) levels of recursion.

Total time � B4+o(1).

Verification time � B3+o(1).

Open: Can we quickly find (E; q)

with E an elliptic curve

(or another group scheme),

q prime, q 2 [n0:6; n0:9],

and #E(Z=n) 2 qZ?


